Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = magnetic induction density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1770 KiB  
Article
Measuring the Operating Condition of Induction Motor Using High-Sensitivity Magnetic Sensor
by Akane Kobayashi, Kenji Nakamura and Takahito Ono
Sensors 2025, 25(14), 4471; https://doi.org/10.3390/s25144471 - 18 Jul 2025
Viewed by 336
Abstract
This study aimed to monitor the operating state of an induction motor, a type of electromagnetic motor, using a highly sensitive magnetic sensor, which could be applied for anomaly detection in the future. Monitoring the health of electromagnetic motors is very important to [...] Read more.
This study aimed to monitor the operating state of an induction motor, a type of electromagnetic motor, using a highly sensitive magnetic sensor, which could be applied for anomaly detection in the future. Monitoring the health of electromagnetic motors is very important to minimize losses due to failures. Detecting anomalies using the changes compared with the initial state is a possible solution, but there are issues such as a lack of training data for machine learning and the need to install multiple sensors. Therefore, an attempt was made to acquire the various operating states of a motor from magnetic signals using a single magnetic sensor capable of non-contact measurement. The relationships between the magnetic flux density from the motor and the other motor conditions were investigated. As a result, the magnetic spectrum was found to contain information on the rotor rotation frequency, torque, and output power. Therefore, the magnetic sensor can be applied to monitor a motor’s operating conditions, making it a useful tool for advanced data analysis. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

25 pages, 2524 KiB  
Article
α Effect and Magnetic Diffusivity β in Helical Plasma Under Turbulence Growth
by Kiwan Park
Universe 2025, 11(7), 203; https://doi.org/10.3390/universe11070203 - 22 Jun 2025
Viewed by 156
Abstract
We investigate the transport coefficients α and β in plasma systems with varying Reynolds numbers while maintaining a unit magnetic Prandtl number (PrM). The α and β tensors parameterize the turbulent electromotive force (EMF) in terms of the large-scale magnetic [...] Read more.
We investigate the transport coefficients α and β in plasma systems with varying Reynolds numbers while maintaining a unit magnetic Prandtl number (PrM). The α and β tensors parameterize the turbulent electromotive force (EMF) in terms of the large-scale magnetic field B¯ and current density as follows: u×b=αB¯β×B¯. In astrophysical plasmas, high fluid Reynolds numbers (Re) and magnetic Reynolds numbers (ReM) drive turbulence, where Re governs flow dynamics and ReM controls magnetic field evolution. The coefficients αsemi and βsemi are obtained from large-scale magnetic field data as estimates of the α and β tensors, while βtheo is derived from turbulent kinetic energy data. The reconstructed large-scale field B¯ agrees with simulations, confirming consistency among α, β, and B¯ in weakly nonlinear regimes. This highlights the need to incorporate magnetic effects under strong nonlinearity. To clarify α and β, we introduce a field structure model, identifying α as the electrodynamic induction effect and β as the fluid-like diffusion effect. The agreement between our method and direct simulations suggests that plasma turbulence and magnetic interactions can be analyzed using fundamental physical quantities. Moreover, αsemi and βsemi, which successfully reproduce the numerically obtained magnetic field, provide a benchmark for future theoretical studies. Full article
Show Figures

Figure 1

14 pages, 12187 KiB  
Article
Magnetic Field Simulation and Torque-Speed Performance of a Single-Phase Squirrel-Cage Induction Motor: An FEM and Experimental Approach
by Jhonny Barzola and Jonathan Chandi
Machines 2025, 13(6), 492; https://doi.org/10.3390/machines13060492 - 5 Jun 2025
Viewed by 524
Abstract
This study presents a detailed investigation of the torque-speed characteristics of a WEG single-phase squirrel-cage induction motor (SPSCIM) of (1/2 hp), 110/220 V at 60 Hz. The primary objective was to derive the motor’s equivalent circuit and validate its performance curves through finite [...] Read more.
This study presents a detailed investigation of the torque-speed characteristics of a WEG single-phase squirrel-cage induction motor (SPSCIM) of (1/2 hp), 110/220 V at 60 Hz. The primary objective was to derive the motor’s equivalent circuit and validate its performance curves through finite element analysis (FEA), simulation using MATLAB®/Simulink®, and experimental testing. Finite element simulations were conducted using the software FEMM (Finite Element Method Magnetics) to model the magnetic flux distribution within the motor’s stator and rotor. These simulations, based on the motor’s dimensions and nameplate data, provided essential insights into the electromagnetic behavior, including flux density and saturation effects, which are crucial for accurate torque-speed curve predictions. For experimental validation, tests were performed under open-circuit and locked-rotor conditions through a universal machine as a load emulator. The torque-speed characteristics were determined using the Suhr method and the classical approach, with the resulting curves compared to experimental measurements. Voltage and current were measured using AC PZEM-004T and DC PZEM-017 meters, while rotor speed was monitored with a Hall effect sensor (A3144). The results revealed strong agreement between the FEM simulations, Surh method, and experimental data, demonstrating the reliability and accuracy of the combined simulation and analytical methods for modeling the motor’s performance. The estimations using classical and Suhr methods, Simulink simulations, and FEMM yielded low error percentages, mostly below 2%. However, in the FEMM simulation, rotor resistance showed a higher error of around 20% due to unavailable data on the exact number of windings turns, a modifiable parameter that can be corrected through further adjustments in the simulation. The torque-speed curves obtained at different voltage levels showed an excellent correlation, confirming the effectiveness of the proposed approach in characterizing the motor’s operational behavior. Full article
Show Figures

Figure 1

31 pages, 8352 KiB  
Article
Novel Trimethoprim-Based Metal Complexes and Nanoparticle Functionalization: Synthesis, Structural Analysis, and Anticancer Properties
by Abbas M. Abbas, Hossam H. Nasrallah, A. Aboelmagd, W. Christopher Boyd, Haitham Kalil and Adel S. Orabi
Inorganics 2025, 13(5), 144; https://doi.org/10.3390/inorganics13050144 - 1 May 2025
Viewed by 881
Abstract
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their [...] Read more.
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their structures were confirmed through 1H NMR, mass spectrometry, FTIR, conductivity, thermal analysis, magnetic susceptibility, X-ray diffraction, UV-Vis spectroscopy, and TEM, revealing octahedral geometries for all complexes. Surface features were investigated using density functional theory (DFT) analysis. Pharmacokinetic parameters and target enzymes for HD and its complexes were computed using the SwissADME web tool, with the BOILED-Egg model indicating that HD and its Cu complex should be passively permeable via the blood-brain barrier and highly absorbed by the gastrointestinal tract (GIT), unlike the Ni, Co, Ag, and Zn complexes, which are predicted to show low GIT absorption. Molecular docking studies with the Caspase-3 enzyme (PDB code: 3GJQ) using the AutoDock 4.2 software demonstrated binding energies of −7.66, −8.36, −9.05, −8.62, −6.90, and −7.81 kcal/mol for HD and the Cu, Co, Ni, Ag, and Zn complexes, respectively, compared to −6.54 and −4.63 kcal/mol for TMP and 5-FU (5-fluorouracil), indicating a potential superior anticancer potential of the novel compounds. The anticancer activities of these complexes were evaluated using the MTT assay. The IC50 values for 5-FU, TMP, HD, Cu-HD, HD@ZnONPs, Cu-HD@ZnONPs, HD@AuNPs, and Cu-HD@AuNPs were found to be 32.53, 80.76, 114.7, 61.66, 77, 53.13, 55.06, and 50.81 µg/mL, respectively. Notably, all derivatives exhibited higher activity against the HepG-2 cancer cell line than TMP, except for HD, which showed similar effectiveness to TMP. Real-time PCR analysis revealed that the Au-HD@AuNPs and Cu-HD@AuNPs significantly increased caspase-3 inhibition by 4.35- and 4.5-fold and P53 expression by 3.05- and 3.41-fold, respectively, indicating enhanced pro-apoptotic gene expression and apoptosis induction in HepG2 cells. Our findings demonstrate that these novel derivatives possess significant anticancer properties, with some complexes showing superior activity compared to standard drugs such as 5-Fluorouracil (5-FU) and Trimethoprim (TMP). This study highlights the potential of these nanocomposites as promising candidates for cancer therapy. Full article
Show Figures

Figure 1

32 pages, 4936 KiB  
Article
Optimization and Performance Evaluation of PM Motor and Induction Motor for Marine Propulsion Systems
by Theoklitos S. Karakatsanis
Appl. Syst. Innov. 2025, 8(3), 58; https://doi.org/10.3390/asi8030058 - 29 Apr 2025
Viewed by 1772
Abstract
The electrification of ships and the use of electric propulsion systems are projects which have attracted increased research and industrial interest in recent years. Efforts are particularly focused on reducing pollutants for better environmental conditions and increasing efficiency. The main source of propulsion [...] Read more.
The electrification of ships and the use of electric propulsion systems are projects which have attracted increased research and industrial interest in recent years. Efforts are particularly focused on reducing pollutants for better environmental conditions and increasing efficiency. The main source of propulsion for such a ship’s shafts is related to the operation of electrical machines. In this case, several advantages are offered, related to both reduced fuel consumption and system functionality. Nowadays, two types of electric motors are used in propulsion applications: traditional induction motors (IMs) and permanent magnet synchronous motors (PMSMs). The evolution of magnetic materials and increased interest in high efficiency and power density have established PMSMs as the dominant technology in various industrial and maritime applications. This paper presents a comprehensive comparative analysis of PMSMs and both Squirrel-Cage and Wound-Rotor IMs for ship propulsion applications, focusing on design optimization. The study shows that PMSMs can be up to 3.11% more efficient than IMs. Additionally, the paper discusses critical operational and economic aspects of adopting PMSMs in large-scale ship propulsion systems, such as various load conditions, torque ripple, thermal behavior, material constraints, control complexity, and lifetime costs, contributing to decision making in the marine industry. Full article
Show Figures

Figure 1

23 pages, 2616 KiB  
Article
Investigation of Harmonic Losses to Reduce Rotor Copper Loss in Induction Motors for Traction Applications
by Muhammad Salik Siddique, Hulusi Bülent Ertan, Muhammad Shahab Alam and Muhammad Umer Khan
World Electr. Veh. J. 2025, 16(5), 248; https://doi.org/10.3390/wevj16050248 - 25 Apr 2025
Cited by 1 | Viewed by 866
Abstract
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study [...] Read more.
The focus of this paper is to seek means of increasing induction motor efficiency to a comparable level to a permanent magnet motor. Harmonic and high-frequency losses increase the rotor core and copper loss, often limiting IM efficiency. The research in this study focuses on reducing rotor core and copper losses for this purpose. An accurate finite element model of a prototype motor is developed. The accuracy of this model in predicting the performance and losses of the prototype motor is verified with experiments over a 32 Hz–125 Hz supply frequency range. The verified model of the motor is used to identify the causes of the rotor core and copper losses of the motor. It is found that the air gap flux density of the motor contains many harmonics, and the slot harmonics are dominant. The distribution of the core loss and the copper loss is investigated on the rotor side. It is discovered that up to 35% of the rotor copper losses and 90% rotor core losses occur in the regions up to 4 mm from the airgap where the harmonics penetrate. To reduce these losses, one solution is to reduce the magnitude of the air gap flux density harmonics. For this purpose, placing a sleeve to cover the slot openings is investigated. The FEA indicates that this measure reduces the harmonic magnitudes and reduces the core and bar losses. However, its effect on efficiency is observed to be limited. This is attributed to the penetration depth of flux density harmonics inside the rotor conductors. To remedy this problem, several FEA-based modifications to the rotor slot shape are investigated to place rotor bars deeper than the harmonic penetration. It is found that placing the bars further away from the rotor surface is very effective. Using a 1 mm sleeve across the stator’s open slots combined with a rotor tapered slot lip positions the bars slightly deeper than the major harmonic penetration depth, making it the optimal solution. This reduces the bar loss by 70% and increases the motor efficiency by 1%. Similar loss reduction is observed over the tested supply frequency range. Full article
(This article belongs to the Special Issue Propulsion Systems of EVs 2.0)
Show Figures

Figure 1

18 pages, 10854 KiB  
Article
Analysis and Research on the Influence of a Magnetic Field Concentrator on the Gear Heating Process Using a High-Frequency Resonant Inverter
by Piotr Legutko
Energies 2025, 18(5), 1096; https://doi.org/10.3390/en18051096 - 24 Feb 2025
Viewed by 679
Abstract
The article presents basic information about the induction heating of gears, which are widely used in various industries. This article presents the methodology and results of a coupled FEM simulation of a circuit model for a power electronics converter connected to an inductor-charged [...] Read more.
The article presents basic information about the induction heating of gears, which are widely used in various industries. This article presents the methodology and results of a coupled FEM simulation of a circuit model for a power electronics converter connected to an inductor-charged heating system. The induction heating of gears was performed using a high-frequency inverter with SiC MOSFET transistors. A prototype inverter was built using a full-bridge structure with a series-parallel resonant circuit. The operating frequency was 350 kHz, the output power of the inverter was 3.5 kW, and the drain efficiency was equal to 96%. Coupled simulation was performed for a charge in the form of a gear made of 42CrMo4 steel (material parameters are provided in the article) for two types of heating: with and without a magnetic field concentrator. In addition, the article presents the results of co-simulation studies in the following form: a distribution of magnetic induction in the gear, energy density in the gear, the characteristics of energy density in a single tooth on the 8 mm length and the temperature of the tooth tip for two types of induction heating. Full article
Show Figures

Figure 1

17 pages, 12589 KiB  
Article
Analysis of the Influence of Process Parameters on Transverse Flux Induction Heating of Endless-Rolling Strip
by Lin Gao, Fang-Zhou Shi, Meng Yan, Yi-Ping He, Jian Xiang, Xiao-Hu Qi and Hua-Gui Huang
Metals 2025, 15(2), 218; https://doi.org/10.3390/met15020218 - 18 Feb 2025
Viewed by 787
Abstract
This study focuses on the effect of an induction heating device on the entry of a thin strip continuous casting and rolling line. A finite element model for the electromagnetic–thermal coupling of transverse magnetic flux induction heating was developed by adopting COMSOL software [...] Read more.
This study focuses on the effect of an induction heating device on the entry of a thin strip continuous casting and rolling line. A finite element model for the electromagnetic–thermal coupling of transverse magnetic flux induction heating was developed by adopting COMSOL software 6.1 to systematically investigate the effects of process parameters on the magnetic field, eddy current field, and the transverse temperature distribution of the strip. The results show that when the gap is between 20 mm and 40 mm, the maximum value of magnetic induction in the overheating region at the edges of the strip increases from 0.28 T to 0.35 T and 0.38. When the strip width is 1000 mm, there is an approximately 29% increase in magnetic induction in comparison to a strip with a width of 800 mm, and both eddy current density and temperature exhibit abnormal fluctuations. The maximum temperature difference in the temperature uniformity region at the center of the strip is only 3 °C at different frequencies, and the temperature-rise curves almost completely overlap. With increasing current, the temperature difference between the weak temperature region and the temperature uniformity region at the center widens, indicating a deterioration in temperature uniformity. Meanwhile, the field conditions are simulated using a simplified model of continuous heating. The results indicate that the maximum temperature deviation in the overheating region at the edges of the strip is 6 °C, while the deviation in the temperature uniformity region is 2 °C. Furthermore, the simulation data reveal an average temperature rise of 1156 °C across the width of the strip, with a deviation of 1.4 °C compared to the measured results, which verifies the validity of the proposed model. The analysis results provide a reference basis for designing transverse magnetic flux induction heating devices and optimizing process parameters. Full article
Show Figures

Figure 1

19 pages, 5216 KiB  
Article
Research on Anchor Cable Force Detection Technology Based on Magnetic Intensity Distribution of Permanent Magnet
by Haifei Jiang, Anwen Hu and Yiyong Zhang
Appl. Sci. 2025, 15(4), 2144; https://doi.org/10.3390/app15042144 - 18 Feb 2025
Viewed by 505
Abstract
The anchor cables of slopes are affected by long-term environmental corrosion, geotechnical creep, and adverse weather, resulting in gradual loss of tensile force, which can lead to structural failure and subsequent safety accidents. The authors of this paper conducted research based on the [...] Read more.
The anchor cables of slopes are affected by long-term environmental corrosion, geotechnical creep, and adverse weather, resulting in gradual loss of tensile force, which can lead to structural failure and subsequent safety accidents. The authors of this paper conducted research based on the magnetic induction density distribution characteristics of permanent magnets, including model derivation, theoretical simulation, and indoor experiments, aiming to propose a new anchor cable force monitoring technology with high sensitivity, strong applicability, and good stability. Based on the molecular circulation model and the Biot–Savart law, the analytical expression of the spatial magnetic field distribution of a rectangular permanent magnet was derived and, combined with the stress–strain relationship characteristics of anchor cables, a theoretical model for the relationship between anchor cable tensile force and magnetic induction density was established. MATLAB (R2018b) was used to simulate and analyze the spatial magnetic field distribution and the force–magnetism relationship. The analysis showed that the magnetic induction density along the central axis of the permanent magnet approximately exhibited a symmetrical quadratic curve distribution, and its value was significantly negatively correlated with the anchor cable force. Based on this, a new anchor cable force monitoring technology was proposed, and an indoor experimental platform was established. The indoor experimental studies further confirmed the negative correlation between force and magnetism (i.e., as the tensile force increases, the magnetic induction strength decreases, and as the tensile force decreases, the magnetic induction strength increases). The fitting results of the force–magnetism curve show that a quadratic function can better describe the correspondence between magnetic induction density and anchor cable force. Reproducibility analysis of the experimental data showed low dispersion in magnetic induction values under various design loads, along with good stability, validating the effectiveness and applicability of the proposed anchor cable force monitoring technology. Full article
Show Figures

Figure 1

19 pages, 23112 KiB  
Review
Review of Conductive Reciprocating Liquid Metal Magnetohydrodynamic Generators
by Lingzhi Zhao and Aiwu Peng
Energies 2025, 18(4), 959; https://doi.org/10.3390/en18040959 - 17 Feb 2025
Cited by 2 | Viewed by 1333
Abstract
Reciprocating liquid metal magnetohydrodynamic (MHD) power generation is a new MHD power generation method in which the working fluid is a single-phase liquid metal with a low melting point and high conductivity. The internal combustion stroke of automobiles, ocean waves, sound waves and [...] Read more.
Reciprocating liquid metal magnetohydrodynamic (MHD) power generation is a new MHD power generation method in which the working fluid is a single-phase liquid metal with a low melting point and high conductivity. The internal combustion stroke of automobiles, ocean waves, sound waves and other reciprocating external forces drive the liquid metal to flow back and forth in an applied magnetic field, generating single-phase alternating current (AC) energy. Reciprocating liquid metal MHD (LMMHD) power generation has the advantages of a high power density, high efficiency, a fast start and good stability, and it provides a new solution for space static nuclear power conversion, variable-stroke automobile engines, distributed power supply and ocean energy utilization. According to the mode of action of an electromagnetic field, reciprocating LMMHD generators can be divided into the inductive type and conductive type. Compared with the inductive type, the conductive type has a simple structure and is the current research hot spot. Firstly, the classification and characteristics of reciprocating LMMHD power generation are introduced. Then, the working characteristics of conductive reciprocating LMMHD (CRLMMHD) generators are analyzed. On this basis, technical key points and issues in the current research of CRLMMHD generators are elaborated. Finally, conclusions and the future research direction of CRLMMHD generators are pointed out. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

22 pages, 5859 KiB  
Article
Research on a Wind-Energy-Harvesting Device Based on a Non-Contact Electret–Piezoelectric Coupling Structure
by Qian Wang, Jiankang Bao, Haitao Wu, Jingang Wang, Pengcheng Zhao and Changli Yu
Appl. Sci. 2025, 15(4), 1919; https://doi.org/10.3390/app15041919 - 12 Feb 2025
Viewed by 890
Abstract
Persistently and reliably harvesting wind energy to power intelligent online monitoring devices for transmission lines promotes the intelligent and sustainable development of the Internet of Things. Current small-scale wind-energy-harvesting devices, relying on a single energy conversion principle, face challenges such as low efficiency [...] Read more.
Persistently and reliably harvesting wind energy to power intelligent online monitoring devices for transmission lines promotes the intelligent and sustainable development of the Internet of Things. Current small-scale wind-energy-harvesting devices, relying on a single energy conversion principle, face challenges such as low efficiency and poor performance at low wind speeds. This paper presents a coaxial rotating non-contact coupling transducer structure, and its optimization methods have been studied, which are based on electret electrostatic induction and magnetically actuated piezoelectric conversion. By analyzing the principles of alternating positive–negative unipolar electret components and constructing a finite element model, improved output capacity is demonstrated. The electric signals from electret components are more suitable for inferring the shaft and wind speeds compared to piezoelectric components. The piezoelectric components utilize frequency up-conversion theory to enhance output while addressing the low power density of the electrostatic components. Experimental results indicate that the proposed structure operates reliably at rotational speeds of 100–700 rpm, achieving a maximum output power of 6.742 mW. The output power of the electret electrostatic component’s electrodes nearly doubled, with the signal positively correlated to rotation speed. The optimized structure of the magnetically actuated piezoelectric component achieved a power increase of 11.51% at four excitations and 250 rpm. This study provides a new design approach for more durable and efficient small-scale wind-energy-harvesting devices, as well as for achieving integrated measurement and supply. Full article
Show Figures

Figure 1

18 pages, 10021 KiB  
Article
Loss Research and Thermal Analysis of BLDC Hollow-Cup Motor Under Reactor Suppression
by Jingjuan Du, Yumeng Sun, Jian Zhao, Boran Liu and Yanqing Mi
Appl. Sci. 2025, 15(3), 1523; https://doi.org/10.3390/app15031523 - 2 Feb 2025
Viewed by 1163
Abstract
In order to avoid overheating of a BLDC permanent magnet (PM) motor at high speeds, this paper focuses on the loss reduction of a 90 W 47,000 r/min BLDC hollow-cup motor. It is proposed to provide an optimizing method for the series reactors [...] Read more.
In order to avoid overheating of a BLDC permanent magnet (PM) motor at high speeds, this paper focuses on the loss reduction of a 90 W 47,000 r/min BLDC hollow-cup motor. It is proposed to provide an optimizing method for the series reactors and the parameterization of reactors in the motor system. The finite element method (FEM) is used to calculate and analyze the time harmonic of air-gap magnetic flux density, stator core loss, and rotor eddy current loss in two cases: with a series reactor and without a reactor. By parameterizing the inductance value, the optimal resistance value is determined to minimize motor loss. In addition, an electromagnetic–thermal coupling analysis is conducted, and the results show that the temperature distribution of the stator core, winding, and rotor are improved under reactor suppression. Finally, an experimental platform is built to verify the temperature increase and the efficiency of the motor load operation. A clear reference for the research and optimization analysis of motor loss reduction is provided. Full article
Show Figures

Figure 1

15 pages, 6215 KiB  
Article
Ultrasound-Assisted Determination of Selenium in Organic Rice Using Deep Eutectic Solvents Coupled with Inductively Coupled Plasma Mass Spectrometry
by Shanshan Zhang, Boyu Chen, Yu Liu, Haoyu Sun, Haixing Zhang, Na Li, Yang Qing, Jeevithan Elango, Dayun Zhao and Wenhui Wu
Foods 2025, 14(3), 384; https://doi.org/10.3390/foods14030384 - 24 Jan 2025
Viewed by 973
Abstract
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep [...] Read more.
As the focus on green chemistry intensifies, researchers are progressively looking to incorporate biodegradable and environmentally friendly solvents. Given the prevalent use of inorganic solvents in conventional methods for detecting selenium content, this study utilized a mixture design approach to create four deep eutectic solvents (DESs). The elements of the DESs consisted of six different compounds: guanidine hydrochloride, fructose, glycerol, citric acid, proline, and choline chloride. The synthesized deep eutectic solvents (DESs) exhibited a uniform and transparent appearance. The ideal ratios for each DES were established based on their density and viscosity measurements, leading to the formulations of DES1 (34% guanidine hydrochloride, 21% fructose, 45% water), DES2 (23% guanidine hydrochloride, 32% glycerol, 45% water), DES3 (27.5% citric acid, 27.5% proline, 45% water), and DES4 (30% choline chloride, 25% citric acid, 45% water). The characterization of the deep eutectic solvents (DESs) was performed using nuclear magnetic resonance (NMR) spectroscopy and infrared (IR) spectroscopy, which confirmed the molecular formation of each DES. Following this, the DESs were applied as extraction solvents in a process involving ultrasonic-assisted microextraction (UAE) combined with inductively coupled plasma mass spectrometry (ICP-MS) to assess the selenium levels in selenium-rich rice. The results were benchmarked against traditional microwave-assisted acid digestion (TM-AD), revealing selenium recovery rates ranging from 85.5% to 106.7%. These results indicate that UAE is an effective method for extracting selenium from selenium-rich rice, thereby establishing a solid data foundation for the environmentally friendly analysis of selenium content in rice. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

18 pages, 17944 KiB  
Article
Numerical Modeling and Structure Optimization for Magnetic Levitation Planar Machine Using PCB Coils
by Han Zhang, Jiawen He, Xianze Xu, Rui Wang, Manman Xu and Fengqiu Xu
Actuators 2025, 14(1), 33; https://doi.org/10.3390/act14010033 - 16 Jan 2025
Cited by 2 | Viewed by 1202
Abstract
Magnetically levitated (ML) systems that incorporate PCB coils represent a growing trend in precision machining, valued for their controllable current flow and high fill factor. The size of modern power devices is decreasing to enhance power density, minimize parasitic inductance, and reduce power [...] Read more.
Magnetically levitated (ML) systems that incorporate PCB coils represent a growing trend in precision machining, valued for their controllable current flow and high fill factor. The size of modern power devices is decreasing to enhance power density, minimize parasitic inductance, and reduce power losses. However, due to the high resistance of PCB coils, managing heat generation has become a significant area of study. This paper seeks to optimize PCB coil design to minimize power loss and control peak temperatures in ML systems, using a numerical model. An improved magnetic node model is employed to construct the magnetic fields of an ML system. The proposed optimization method considers the interdependencies among parameters to reduce overall power loss from coil resistance and switching losses in the H-bridge circuit, while enhancing heat dissipation efficiency in steady-state operation. A heuristic multi-objective optimization algorithm is employed to optimize the design of the ML actuator. The optimization process initially focuses on the PCB coils, with the magnet size held constant. Once the optimal coil parameters are identified, the magnet volume is optimized. By integrating a theoretical analysis with simulation, this approach effectively addresses the optimization challenges and achieves the desired performance for the ML actuator. Coils and magnets are constructed based on the optimized design and tested by the magnetic field simulation software Radia, confirming the feasibility of the approach. The method was also applied to a different type of ML system for comparison, demonstrating the universality of the proposed strategy. In this optimization effort, the maximum temperature reduction reached an impressive 50 °C Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

18 pages, 2905 KiB  
Article
Analysis of Mutual Inductance Characteristics of Rectangular Coils Based on Double-Sided Electromagnetic Shielding Technology and Study of the Effects of Positional Misalignment
by Yang Leng, Derong Luo, Zhongqi Li and Fei Yu
Electronics 2025, 14(1), 200; https://doi.org/10.3390/electronics14010200 - 5 Jan 2025
Cited by 1 | Viewed by 1471
Abstract
In wireless power transfer systems, the relative positional misalignment between transmitting and receiving coils significantly impacts the system’s mutual inductance characteristics, thereby constraining the system’s output power stability and transmission efficiency optimization potential. Hence, accurate formulas for calculating mutual inductance are crucial for [...] Read more.
In wireless power transfer systems, the relative positional misalignment between transmitting and receiving coils significantly impacts the system’s mutual inductance characteristics, thereby constraining the system’s output power stability and transmission efficiency optimization potential. Hence, accurate formulas for calculating mutual inductance are crucial for optimizing coil structures and achieving mutual inductance stability. This study focuses on the mutual inductance characteristics of rectangular coils under positional misalignment conditions in a dual-sided electromagnetic shielding environment. Initially, the research deduces the incident magnetic flux density induced by the current in rectangular coils through the dual Fourier transform and magnetic vector potential method. Subsequently, Maxwell’s equations and boundary conditions are employed to analytically examine the induced eddy currents within the shielding layer, allowing for the calculation of reflected magnetic flux density. Based on these analyses, the study derives a formula for mutual inductance using the magnetic flux density method. A prototype was built for experimental verification. The experiment results show that the maximum error between the measured mutual inductance and the calculated result is less than 3.8%, which verifies the feasibility and the accuracy of the proposed calculation method. Simulations and empirical validation demonstrate the superior accuracy and practicality of the proposed formula. This research not only offers an innovative technological pathway for enhancing the stability and efficiency of wireless power transfer systems but also provides a solid theoretical foundation and guiding framework for coil design and optimization. Full article
Show Figures

Figure 1

Back to TopTop