Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (994)

Search Parameters:
Keywords = magnetic drug delivery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1417 KB  
Review
Recent Advances in Smart Stimulus-Responsive Hydrogels for Precision Drug Delivery in Tumours
by Huiling Zuo, Yuhang Jiao, Jiaxin Chen, Sen Tong, Yan Li and Wei Zhao
Gels 2026, 12(2), 98; https://doi.org/10.3390/gels12020098 (registering DOI) - 23 Jan 2026
Viewed by 63
Abstract
Cancer remains one of the most prominent global health concerns, posing a substantial threat to public health. Millions of people die from cancer each year, and many cancer types remain incurable at present. Conventional cancer treatments, including surgery, chemotherapy, radiotherapy, and immunotherapy, often [...] Read more.
Cancer remains one of the most prominent global health concerns, posing a substantial threat to public health. Millions of people die from cancer each year, and many cancer types remain incurable at present. Conventional cancer treatments, including surgery, chemotherapy, radiotherapy, and immunotherapy, often fail to achieve optimal clinical outcomes and are frequently associated with severe trauma and adverse effects. Consequently, there is an urgent need to develop novel therapeutic strategies to address these limitations. Hydrogels have been widely utilised as platforms for loading drugs, proteins, DNA, and stem cells in biomedical tissue repair and cancer therapy. Through modification of their physicochemical properties and functions, hydrogels can be endowed with responsiveness to multiple stimuli. In recent years, stimuli-responsive hydrogels (also known as smart-responsive hydrogels), as novel drug delivery systems, have demonstrated remarkable efficacy in cancer treatment. Stimuli-responsive hydrogels are capable of altering their mechanical properties, swelling behaviour, hydrophilicity, bioactivity, and molecular permeability in response to endogenous stimuli (including pH, ROS, and temperature) and exogenous stimuli (including light, ultrasound, and magnetic fields). This review highlights recent advances and applications of responsive hydrogels triggered by endogenous stimuli (including pH, ROS, and temperature) and exogenous stimuli (including light, ultrasound, and magnetic force) in cancer drug delivery and treatment. Finally, the current application limitations and future prospects of smart-responsive hydrogels are summarised. Full article
22 pages, 6931 KB  
Article
Biopolymer Casein–Pullulan Coating of Fe3O4 Nanocomposites for Xanthohumol Encapsulation and Delivery
by Nikolay Zahariev, Dimitar Penkov, Radka Boyuklieva, Plamen Simeonov, Paolina Lukova, Raina Ardasheva and Plamen Katsarov
Polymers 2026, 18(2), 256; https://doi.org/10.3390/polym18020256 - 17 Jan 2026
Viewed by 197
Abstract
Introduction: Magnetic nanoparticles are widely investigated as multifunctional platforms for drug delivery and theranostic applications, yet their biomedical implementation is hindered by aggregation, limited colloidal stability, and insufficient biocompatibility. Hybrid biopolymer coatings can mitigate these issues while supporting drug incorporation. Aim: This study [...] Read more.
Introduction: Magnetic nanoparticles are widely investigated as multifunctional platforms for drug delivery and theranostic applications, yet their biomedical implementation is hindered by aggregation, limited colloidal stability, and insufficient biocompatibility. Hybrid biopolymer coatings can mitigate these issues while supporting drug incorporation. Aim: This study aimed to develop casein–pullulan-coated Fe3O4 nanocomposites loaded with xanthohumol, enhancing stability and enabling controlled release for potential theranostic use. Methods: Fe3O4 nanoparticles were synthesized through co-precipitation and incorporated into a casein–pullulan matrix formed via polymer complexation and glutaraldehyde crosslinking. A 32 full factorial design evaluated the influence of casein:pullulan ratio and crosslinker concentration on physicochemical performance. Nanocomposites were characterized for size, zeta potential, morphology, composition, and stability, while drug loading, encapsulation efficiency, and release profiles were determined spectrophotometrically. Molecular docking was performed to examine casein–pullulan interactions. Results: Uncoated Fe3O4 nanoparticles aggregated extensively, displaying mean sizes of ~292 nm, zeta potential of +80.95 mV and high polydispersity (PDI above 0.2). Incorporation into the biopolymer matrix improved colloidal stability, yielding particles of ~185 nm with zeta potentials near –35 mV. TEM and SEM confirmed spherical morphology and uniform magnetic core incorporation. The optimal formulation, consisting of a 1:1 casein:pullulan ratio with 1% glutaraldehyde, achieved 5.7% drug loading, 68% encapsulation efficiency, and sustained release of xanthohumol up to 84% over 120 h, fitting Fickian diffusion (Korsmeyer–Peppas R2 = 0.9877, n = 0.43). Conclusions: Casein–pullulan hybrid coatings significantly enhance Fe3O4 nanoparticle stability and enable controlled release of xanthohumol, presenting a promising platform for future targeted drug delivery and theranostic applications. Full article
(This article belongs to the Special Issue Engineered Polymeric Particles for Next-Generation Nanomedicine)
Show Figures

Figure 1

20 pages, 5704 KB  
Article
Magnetic Nanocarriers with ICPTES- and GPTMS-Functionalized Quaternary Chitosan for pH-Responsive Doxorubicin Release
by Sofia F. Soares, Ana L. M. Machado, Beatriz S. Cardoso, Diogo Marinheiro, Nelson Andrade, Fátima Martel and Ana L. Daniel-da-Silva
Biomolecules 2026, 16(1), 137; https://doi.org/10.3390/biom16010137 - 13 Jan 2026
Viewed by 215
Abstract
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O [...] Read more.
Smart nanocarriers are being increasingly explored to improve the performance selectivity of cancer chemotherapy. Here, two pH-responsive magnetic nanocarriers were developed using quaternary chitosan (HTCC) functionalized with 3-(triethoxysilyl)propyl isocyanate- ICPTES (MNP-HTCC1) or 3-(glycidyloxypropyl)trimethoxysilane-GPTMS (MNP-HTCC2) to form hybrid silica shells on Fe3O4 cores. The resulting core–shell nanoparticles (14.5 and 12.5 nm) displayed highly positive zeta potentials (+45.4 to +27.1 mV, pH 4.2–9.5), confirming successful HTCC incorporation and strong colloidal stability. Both nanocarriers achieved high doxorubicin (DOX) loading at pH 9.5, reaching 90% efficiency and a capacity of 154 µg DOX per mg. DOX release was pH-dependent, with faster release under acidic conditions relevant to tumor and endo-lysosomal environments. At pH 4.2, MNP-HTCC1 released 90% of DOX over 72 h, while MNP-HTCC2 released 79%. Release at pH 5.0 was intermediate (67–72%), and moderate at physiological pH (43–55%). All formulations showed an initial burst followed by sustained release. Kinetic modelling (Weibull) indicated a diffusion-controlled mechanism consistent with Fickian transport through the HTCC–silica matrix. Cytotoxicity assays using MCF-7 breast cancer cells revealed greater cytotoxicity for DOX-loaded nanocarriers compared with free DOX, with MNP-HTCC1 showing the strongest effect. Overall, these HTCC-based magnetic nanocarriers offer efficient loading, controlled pH-triggered DOX release, and enhanced therapeutic performance. Full article
(This article belongs to the Special Issue Applications of Biomaterials in Medicine and Healthcare)
Show Figures

Figure 1

27 pages, 1311 KB  
Review
Peptide-Functionalized Iron Oxide Nanoparticles for Cancer Therapy: Targeting Strategies, Mechanisms, and Translational Opportunities
by Andrey N. Kuskov, Lydia-Nefeli Thrapsanioti, Ekaterina Kukovyakina, Anne Yagolovich, Elizaveta Vlaskina, Petros Tzanakakis, Aikaterini Berdiaki and Dragana Nikitovic
Molecules 2026, 31(2), 236; https://doi.org/10.3390/molecules31020236 - 10 Jan 2026
Viewed by 415
Abstract
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles [...] Read more.
Therapeutic peptides have emerged as promising tools in oncology due to their high specificity, favorable safety profile, and capacity to target molecular hallmarks of cancer. Their clinical translation, however, remains limited by poor stability, rapid proteolytic degradation, and inefficient biodistribution. Iron oxide nanoparticles (IONPs) offer a compelling solution to these challenges. Owing to their biocompatibility, magnetic properties, and ability to serve as both drug carriers and imaging agents, IONPs have become a versatile platform for precision nanomedicine. The integration of peptides with IONPs has generated a new class of hybrid systems that combine the biological accuracy of peptide ligands with the multifunctionality of magnetic nanomaterials. Peptide functionalization enables selective tumor targeting and deeper tissue penetration, while the IONP core supports controlled delivery, MRI-based tracking, and activation of therapeutic mechanisms such as magnetic hyperthermia. These hybrids also influence the tumor microenvironment (TME), facilitating stromal remodeling and improved drug accessibility. Importantly, the iron-driven redox chemistry inherent to IONPs can trigger regulated cell death pathways, including ferroptosis and autophagy, inhibiting opportunities to overcome resistance in aggressive or refractory tumors. As advances in peptide engineering, nanotechnology, and artificial intelligence accelerate design and optimization, peptide–IONP conjugates are poised for translational progress. Their combined targeting precision, imaging capability, and therapeutic versatility position them as promising candidates for next-generation cancer theranostics. Full article
Show Figures

Graphical abstract

19 pages, 5487 KB  
Article
Unsupervised Variational-Autoencoder-Based Analysis of Morphological Representations in Magnetic-Nanoparticle-Treated Macrophages
by Su-Yeon Hwang, Tae-Il Kang, Hyeon-Seo Kim, Seokmin Hong, Jong-Oh Park and Byungjeon Kang
Bioengineering 2026, 13(1), 76; https://doi.org/10.3390/bioengineering13010076 - 9 Jan 2026
Viewed by 267
Abstract
Magnetic nanoparticles (MNPs) are widely applied in biomedicine, including bioimaging, drug delivery, and cell tracking. As central mediators of immune surveillance, macrophages phagocytize foreign substances, rendering their interactions with MNPs particularly consequential. During MNP uptake, macrophages undergo cytoplasmic remodeling that can lead to [...] Read more.
Magnetic nanoparticles (MNPs) are widely applied in biomedicine, including bioimaging, drug delivery, and cell tracking. As central mediators of immune surveillance, macrophages phagocytize foreign substances, rendering their interactions with MNPs particularly consequential. During MNP uptake, macrophages undergo cytoplasmic remodeling that can lead to morphological alterations. Although prior studies have predominantly focused on MNP uptake efficiency and cytotoxicity, systematic quantitative assessments of macrophage morphological alterations following MNP treatment remain scarce. In this study, phase-contrast microscopy images of macrophages before and after MNP treatment were analyzed using unsupervised variational autoencoder (VAE)-based frameworks. Specifically, the β-VAE, β-total correlation VAE, and multi-encoder VAE frameworks were employed to extract latent representations of cellular morphology. The analysis revealed that MNP-treated macrophages exhibited pronounced structural alterations, including membrane expansion, central density shifts, and shape distortions. These findings were further substantiated through quantitative evaluations, including effect size analysis, kernel density estimation, latent traversal, and difference mapping. Collectively, these results demonstrate that VAE-based unsupervised learning provides a robust framework for detecting subtle morphological responses of macrophages to nanoparticle exposure and highlights its broader applicability across varied cell types, treatment conditions, and imaging platforms. Full article
(This article belongs to the Special Issue AI and Data Science in Bioengineering: Innovations and Applications)
Show Figures

Figure 1

47 pages, 10163 KB  
Review
Nanomedicine in Ovarian Cancer: Advances in Imaging, Targeted Delivery, and Theranostic Therapeutic Platforms
by Dorota Bartusik-Aebisher, Izabella Wilk and David Aebisher
Cancers 2026, 18(1), 86; https://doi.org/10.3390/cancers18010086 - 27 Dec 2025
Viewed by 660
Abstract
Ovarian cancer continues to be the most lethal gynaecological malignancy, principally due to its late-stage diagnosis, extensive peritoneal dissemination, chemoresistance, and limitations of current imaging and therapeutic strategies. By optimising pharmacokinetics, refining tumour-selective drug delivery, and supporting high-resolution, multimodal imaging, nanomedicine offers a [...] Read more.
Ovarian cancer continues to be the most lethal gynaecological malignancy, principally due to its late-stage diagnosis, extensive peritoneal dissemination, chemoresistance, and limitations of current imaging and therapeutic strategies. By optimising pharmacokinetics, refining tumour-selective drug delivery, and supporting high-resolution, multimodal imaging, nanomedicine offers a versatile platform to address these limitations. In this review, current progress across lipid-based, polymeric, inorganic, hybrid, and biomimetic nanocarriers is synthesised, emphasising how tailored physiochemical properties, surface functionalisation, and stimuli-responsive designs can improve tumour localisation, surmount stromal and ascetic barriers, and enable controlled drug release. Concurrently, significant advancement in imaging nanoprobes, including magnetic resonance imaging (MRI), positron emission tomography (PET)/single-photon emission computed tomography (SPECT), optical, near-infrared imaging (NIR), ultrasound, and photoacoustic systems, has evolved early lesion detection, intraoperative guidance, and quantitative monitoring of treatment. Diagnosis and therapy are further integrated within single platforms by emerging theranostic constructs, encouraging real-time visualisation of drug distribution and treatment response. Additionally, immune-nanomedicine, intraperitoneal depot systems, and nucleic acid-centred nanotherapies offer promising strategies to address immune suppression and molecular resistance in advanced ovarian cancer. In spite of noteworthy achievements, clinical translation is limited by complex manufacturing requirements, challenges with safety and stability, and restricted patient stratification. To unlock the full clinical potential of nanotechnology in ovarian cancer management, constant innovation in scalable design, regulatory standardisation, and integration of precision biomarkers will be necessary. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Graphical abstract

26 pages, 88895 KB  
Review
Active Propelled Micro Robots in Drug Delivery for Urologic Diseases
by Chunlian Zhong, Menghuan Tang and Zhaoqing Cong
Micromachines 2026, 17(1), 24; https://doi.org/10.3390/mi17010024 - 25 Dec 2025
Viewed by 675
Abstract
Active propelled micro robots (MRs) represent a transformative shift in biomedical engineering, engineered to navigate physiological environments by converting chemical, acoustic, or magnetic energy into mechanical propulsion. Unlike passive delivery systems limited by diffusion and systemic clearance, MRs offer autonomous mobility, enabling precise [...] Read more.
Active propelled micro robots (MRs) represent a transformative shift in biomedical engineering, engineered to navigate physiological environments by converting chemical, acoustic, or magnetic energy into mechanical propulsion. Unlike passive delivery systems limited by diffusion and systemic clearance, MRs offer autonomous mobility, enabling precise penetration and retention in hard-to-reach tissues. This review provides comprehensive analysis of MR technologies within urology, a field uniquely suited for microrobotic intervention due to the urinary tract’s anatomical accessibility and fluid-filled nature. We explore how MRs address critical therapeutic limitations, including the high recurrence of kidney stones and the rapid washout of intravesical bladder cancer therapies. The review categorizes propulsion mechanisms optimized for the urinary environment, such as urea-fueled nanomotors and magnetic swarms. Furthermore, we detail emerging applications, including bioresorbable acoustic robots for tumor ablation and magnetic grippers for minimally invasive biopsies. Finally, we critically assess the path toward clinical translation, focusing on challenges in biocompatibility, real-time tracking (MRI, MPI, photoacoustic imaging), and the regulatory landscape for these advanced combination products. Full article
Show Figures

Figure 1

32 pages, 18311 KB  
Review
Magnetic Microrobots for Drug Delivery: A Review of Fabrication Materials, Structure Designs and Drug Delivery Strategies
by Jin Shi, Yanfang Li, Dingran Dong, Junyang Li, Tao Wen, Yue Tang, Qi Zhang, Fei Pan, Liqi Yan, Duanpo Wu and Shaowei Jiang
Molecules 2026, 31(1), 86; https://doi.org/10.3390/molecules31010086 - 25 Dec 2025
Viewed by 855
Abstract
Magnetic microrobots have emerged as a promising platform for drug delivery in recent years. By enabling remotely controlled motion and precise navigation under external magnetic fields, these systems offer new solutions to overcome the limitations of traditional drug delivery nanocarriers, such as inadequate [...] Read more.
Magnetic microrobots have emerged as a promising platform for drug delivery in recent years. By enabling remotely controlled motion and precise navigation under external magnetic fields, these systems offer new solutions to overcome the limitations of traditional drug delivery nanocarriers, such as inadequate tissue penetration and heterogeneous biodistribution. Over the past few years, significant advancements have been made in the structural design of magnetic microrobots, as well as in drug loading techniques and stimuli-responsive drug release mechanisms, thereby demonstrating distinct advantages in enhancing therapeutic efficacy and targeting precision. This review provides a comprehensive overview of magnetic drug delivery microrobots, which are categorised into biomimetic structural, bio-templated and advanced material-based types, and introduces their differences in propulsion efficiency and biocompatibility. Additionally, drug loading and release strategies are summarised, including physical adsorption, covalent coupling, encapsulation, and multistimuli-responsive mechanisms such as pH, enzyme activity and thermal triggers. Overall, these advancements highlight the significant potential of magnetic microrobots in targeted drug delivery and emphasise the key challenges in their clinical translation, such as biological safety, large-scale production and precise targeted navigation within complex biological environments. Full article
Show Figures

Graphical abstract

8 pages, 1701 KB  
Proceeding Paper
Biohybrid Micro-Robots for Targeted Drug Delivery in Cancer Therapy
by Wai Yie Leong
Eng. Proc. 2025, 120(1), 4; https://doi.org/10.3390/engproc2025120004 - 24 Dec 2025
Viewed by 525
Abstract
The development of biohybrid micro-robots represents a groundbreaking advancement in targeted drug delivery for cancer therapy, offering unprecedented precision and reduced systemic toxicity. These microscale robots integrate synthetic materials with biological components such as bacteria, algae, red blood cells, or spermatozoa, capitalizing on [...] Read more.
The development of biohybrid micro-robots represents a groundbreaking advancement in targeted drug delivery for cancer therapy, offering unprecedented precision and reduced systemic toxicity. These microscale robots integrate synthetic materials with biological components such as bacteria, algae, red blood cells, or spermatozoa, capitalizing on the inherent motility, biocompatibility, and targeting capabilities of living organisms. This hybridization enables active navigation through complex biological environments, overcoming physiological barriers such as the blood–brain and endothelial junctions that impede traditional nanoparticle-based systems. In this study, we propose a multi-functional biohybrid micro-robotic platform composed of magnetically actuated synthetic chassis coated with doxorubicin-loaded lipid vesicles and tethered to Magnetospirillum magneticum for propulsion and tumor-homing capabilities. The results underscore the promise of biohybrid micro-robots as intelligent, minimally invasive agents for next-generation oncological therapies, capable of delivering chemotherapeutics with enhanced spatial and temporal accuracy. Future work will focus on clinical translation pathways, biosafety evaluations, and scalability of production under Good Manufacturing Practice (GMP) standards. Full article
(This article belongs to the Proceedings of 8th International Conference on Knowledge Innovation and Invention)
Show Figures

Figure 1

12 pages, 4892 KB  
Article
Fabrication of Spindle-like ZnO@Fe3O4 Nanocarriers for Targeted Drug Delivery and Controlled Release
by Yongfei Guo, Mao Yang, Yan Wang, Zhigang Tian and Tongguo Si
Magnetochemistry 2026, 12(1), 2; https://doi.org/10.3390/magnetochemistry12010002 - 23 Dec 2025
Viewed by 291
Abstract
Developing precise tumor-targeting delivery systems while minimizing off-target toxicity continues to pose significant challenges in medicine application. The integration of two different functional materials has emerged as a promising strategy in current biomedical research. Herein, a hybrid nanocomposite consisting of Fe3O [...] Read more.
Developing precise tumor-targeting delivery systems while minimizing off-target toxicity continues to pose significant challenges in medicine application. The integration of two different functional materials has emerged as a promising strategy in current biomedical research. Herein, a hybrid nanocomposite consisting of Fe3O4 and ZnO was synthesized via a simple approach and employed as a nanoscale drug delivery system to explore the loading capacity and stimuli-responsive release characteristics of the anticancer agent doxorubicin (DOX). Results show that the synthesized nanoparticles (NPs) exhibit a multi-scale nanostructure consisting of the spindle-like ZnO nanorods with a mean length of 280 nm, on which the Fe3O4 NPs with a diameter of around 16 nm are uniformly dispersed. The ZnO@Fe3O4 NPs possess superparamagnetic behavior and a fast response to the external magnet and demonstrate exceptional near-infrared (NIR) photothermal conversion efficiency. In drug release studies, the ZnO@Fe3O4 NPs achieve the controlled DOX release in the simulated acidic tumor microenvironment as well as NIR laser irradiation. Further, the ZnO@Fe3O4-DOX composites significantly suppress the viability of human cervical cancer cells (HeLa) upon laser activation. These findings suggest that ZnO@Fe3O4 NPs are promising candidates for combined photothermal therapy, magnetic-targeted drug delivery, and stimuli-responsive controlled release applications. Full article
Show Figures

Figure 1

16 pages, 2732 KB  
Article
Biocompatibility and Drug Release Properties of Carboxymethyl Cellulose Hydrogel for Carboplatin Delivery
by Hiroyuki Kono, Shion Kinjyo, Ryou Uyama, Sayaka Fujita, Yuko Murayama and Shinya Ikematsu
Gels 2026, 12(1), 5; https://doi.org/10.3390/gels12010005 - 20 Dec 2025
Viewed by 399
Abstract
Carboxymethylcellulose (CMC) is a biocompatible and biodegradable polysaccharide suitable for biomedical applications. Herein, an epichlorohydrin (ECH)-crosslinked CMC hydrogel (CMCG) was developed as a carrier for sustained drug release. Ether-type crosslinking between the hydroxyl groups of CMC and ECH yielded a transparent, highly water-absorbent [...] Read more.
Carboxymethylcellulose (CMC) is a biocompatible and biodegradable polysaccharide suitable for biomedical applications. Herein, an epichlorohydrin (ECH)-crosslinked CMC hydrogel (CMCG) was developed as a carrier for sustained drug release. Ether-type crosslinking between the hydroxyl groups of CMC and ECH yielded a transparent, highly water-absorbent gel. Structural analyses employing Fourier-transform infrared and solid-state 13C nuclear magnetic resonance spectroscopies confirmed successful crosslinking, and the hydrogel exhibited pH-dependent swelling. Carboplatin (CBP), a platinum-based anticancer drug, was incorporated into CMCG to prepare CBP-CMCG. In phosphate-buffered saline (pH 7.4), approximately 70% of CBP was released within 12 h, followed by a plateau phase, indicating diffusion-controlled release. Cytocompatibility assays using WI-38 normal human fibroblasts demonstrated that CMCG was non-cytotoxic, whereas free CBP induced significant cell death. In colorectal cancer HT-29 cells, CBP-CMCG exhibited gradual cytotoxicity, resulting in >80% nonviable cells after 24 h, indicating a sustained antitumor effect compared with free CBP. These results demonstrate that the newly developed ECH-crosslinked CMC hydrogel is a safe and effective platform for controlled drug delivery, enabling sustained release and prolonged therapeutic activity of CBP. Full article
(This article belongs to the Special Issue Design and Optimization of Pharmaceutical Gels (2nd Edition))
Show Figures

Graphical abstract

24 pages, 3066 KB  
Article
Physicochemical Characterisation of Ceftobiprole and Investigation of the Biological Properties of Its Cyclodextrin-Based Delivery System
by Dariusz Boczar, Wojciech Bocian, Krystian Małek, Małgorzata Milczarek, Agnieszka Ewa Laudy and Katarzyna Michalska
Int. J. Mol. Sci. 2025, 26(24), 12108; https://doi.org/10.3390/ijms262412108 - 16 Dec 2025
Viewed by 527
Abstract
Ceftobiprole is a novel and promising antibiotic; however, the direct pharmacological use of its native form is limited by its low water solubility. The first part of this study provides a deeper insight into the physicochemical properties of this drug. One- and two-dimensional [...] Read more.
Ceftobiprole is a novel and promising antibiotic; however, the direct pharmacological use of its native form is limited by its low water solubility. The first part of this study provides a deeper insight into the physicochemical properties of this drug. One- and two-dimensional nuclear magnetic resonance (NMR) spectra in D2O were recorded, and a complete assignment of 1H and 13C signals was achieved with the support of quantum mechanical calculations. The combined results from capillary electrophoresis and NMR confirmed the cationic nature of ceftobiprole at pH values well below 3 and the protonation of the secondary amino group, thus supporting the theoretically predicted dominant protonation states. Molecular dynamics simulations revealed that zwitterionic ceftobiprole molecules associate through hydrogen bonding, whereas in the cationic form, the attractive forces involve weaker π-π and stacking interactions. The use of ceftobiprole in its native form in pharmaceutical formulations was made possible through the development of a novel freeze-dried cyclodextrin-based delivery system. Consequently, the second part of this article focuses on evaluating the biological properties of this system (ceftobiprole/maleic acid/sulfobutylether-β-cyclodextrin in a molar ratio of 1:25:4), including its antibacterial activity against the most common pneumonia-causing pathogens and its cytotoxicity towards normal and cancer cells. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Figure 1

38 pages, 2034 KB  
Review
The Application of Nanomaterials in Breast Cancer
by Kexin Guo, Yue Sun and Huihua Xiong
Pharmaceutics 2025, 17(12), 1608; https://doi.org/10.3390/pharmaceutics17121608 - 14 Dec 2025
Viewed by 591
Abstract
Breast cancer is one of the most prevalent malignant tumors worldwide, with the highest incidence and mortality among women. Early precise diagnosis and the development of efficient treatment regimens remain major clinical challenges. Harnessing the programmable size, surface chemistry, and tumor microenvironment (TME) [...] Read more.
Breast cancer is one of the most prevalent malignant tumors worldwide, with the highest incidence and mortality among women. Early precise diagnosis and the development of efficient treatment regimens remain major clinical challenges. Harnessing the programmable size, surface chemistry, and tumor microenvironment (TME) responsiveness of nanomaterials, there is tremendous potential for their applications in breast cancer diagnosis and therapy. In the diagnostic arena, nanomaterials serve as core components of novel contrast agents (e.g., gold nanorods, quantum dots, superparamagnetic iron oxide nanoparticles) and biosensing platforms, substantially enhancing the sensitivity and specificity of molecular imaging modalities—such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging (FLI)—and enabling high-sensitivity detection of circulating tumor cells and tumor-derived exosomes, among various liquid biopsy biomarkers. In therapy, nanoscale carriers (e.g., liposomes, polymeric micelles) improve tumor targeting and accumulation efficiency through passive and active targeting strategies, thereby augmenting anticancer efficacy while effectively reducing systemic toxicity. Furthermore, nanotechnology has spurred the rapid advancement of emerging modalities, including photothermal therapy (PTT), photodynamic therapy (PDT), and immunotherapy. Notably, the construction of theranostic platforms that integrate diagnostic and therapeutic units within a single nanosystem enables in vivo, real-time visualization of drug delivery, treatment monitoring, and therapeutic response feedback, providing a powerful toolkit for advancing breast cancer toward personalized, precision medicine. Despite challenges that remain before clinical translation—such as biocompatibility, scalable manufacturing, and standardized evaluation—nanomaterials are undoubtedly reshaping the paradigm of breast cancer diagnosis and treatment. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

24 pages, 1024 KB  
Review
Recent Updates on Molecular and Physical Therapies for Organ Fibrosis
by Michał Filipski, Natalia Libergal, Maksymilian Mikołajczyk, Daria Sznajderowicz, Vitalij Novickij, Augustinas Želvys, Paulina Malakauskaitė, Olga Michel, Julita Kulbacka and Anna Choromańska
Molecules 2025, 30(24), 4766; https://doi.org/10.3390/molecules30244766 - 13 Dec 2025
Viewed by 779
Abstract
Organ fibrosis is a progressive and often irreversible pathological process characterized by excessive deposition of extracellular matrix, leading to tissue dysfunction and failure. Despite its significant impact on various organ systems, available antifibrotic therapies remain limited. This review focuses on novel therapeutic approaches [...] Read more.
Organ fibrosis is a progressive and often irreversible pathological process characterized by excessive deposition of extracellular matrix, leading to tissue dysfunction and failure. Despite its significant impact on various organ systems, available antifibrotic therapies remain limited. This review focuses on novel therapeutic approaches to inhibit fibrosis and improve clinical outcomes. Current strategies include small molecule inhibitors, monoclonal antibodies targeting fibrosis mediators, gene therapies, and cell-based approaches, including mesenchymal stem cells and induced pluripotent stem cells. In addition, the development of innovative drug delivery systems and combination therapies involving pulsed magnetic fields (PMFs) opens new possibilities for increasing the precision and efficacy of treatment. In recent years, multiomic approaches have enabled a better understanding of fibrosis mechanisms, facilitating the personalization of therapy. The role of artificial intelligence in drug discovery has also increased, as exemplified by models that support the design of small-molecule inhibitors currently undergoing clinical evaluation. This review discusses key signaling pathways involved in fibrosis progression, such as TGF-β, p38 MAPK, and fibroblast activation, as well as novel therapeutic targets. Although clinical trial results indicate promising potential for new therapies, challenges remain in optimizing drug delivery, considering patient heterogeneity, and ensuring long-term safety. The future of fibrosis therapy relies on integrating precision medicine, combination therapies, and molecularly targeted strategies to inhibit or even reverse the fibrosis process. Further intensive interdisciplinary collaboration is required to successfully implement these innovative solutions in clinical practice. Full article
Show Figures

Figure 1

74 pages, 18738 KB  
Review
Nanoparticle Detection in Biology and Medicine: A Review
by Olga A. Kolesnikova, Dmitry A. Shikvin, Arina O. Antonova, Anna M. Iureva, Elena N. Komedchikova, Anastasiia S. Obozina, Valeryia S. Kachan, Anna V. Svetlakova, Ilya D. Kukushkin and Victoria O. Shipunova
Biosensors 2025, 15(12), 809; https://doi.org/10.3390/bios15120809 - 11 Dec 2025
Cited by 1 | Viewed by 2238
Abstract
Background/Objectives: Nanoparticles have emerged as indispensable tools in modern biomedicine, enabling precise diagnostics, targeted therapy, and controlled drug delivery. Despite their rapid progress, the translation of nanoparticle-based systems critically depends on the ability to detect, quantify, and track them across complex biological environments. [...] Read more.
Background/Objectives: Nanoparticles have emerged as indispensable tools in modern biomedicine, enabling precise diagnostics, targeted therapy, and controlled drug delivery. Despite their rapid progress, the translation of nanoparticle-based systems critically depends on the ability to detect, quantify, and track them across complex biological environments. Over the past two decades, a wide spectrum of detection modalities has been developed, encompassing optical, magnetic, acoustic, nuclear, cytometric, and mass spectrometric principles. Yet, no comprehensive framework has been established to compare these methods in terms of sensitivity, spatial resolution, and clinical applicability. Methods: Here we show a systematic analysis of all broadly applicable nanoparticle detection strategies, outlining their mechanisms, advantages, and drawbacks, and providing illustrative examples of practical applications. Results: This comparison reveals that each modality occupies a distinct niche: optical methods offer high sensitivity but limited penetration depth; magnetic and acoustic modalities enable repeated non-invasive tracking; nuclear imaging ensures quantitative, whole-body visualization; and invasive biochemical or histological assays achieve ultimate detection limits at the cost of tissue integrity. These findings redefine how each technique contributes to nanoparticle biodistribution and mechanistic studies, clarifying which are best suited for translational and clinical use. Conclusions: Placed in a broader context, this review bridges fundamental nanotechnology with biomedical applications, outlining a unified methodological framework that will guide the rational design, validation, and clinical implementation of nanoparticle-based therapeutics and diagnostics. By synthesizing the field into a single comparative framework, it also provides an accessible entry point for newcomers in nanotechnology and related biomedical sciences. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

Back to TopTop