Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = magnesium removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9958 KB  
Article
Medial Malleolar Fracture Fixation with Stainless Steel, Titanium, Magnesium, and PLGA Screws: A Finite Element Analysis
by Mehmet Melih Asoglu, Volkan Kızılkaya, Ali Levent, Huseyin Kursat Celik, Ozkan Kose and Allan E. W. Rennie
J. Funct. Biomater. 2026, 17(2), 59; https://doi.org/10.3390/jfb17020059 (registering DOI) - 24 Jan 2026
Abstract
Background: Implant material may influence interfragmentary mechanics in medial malleolar (MM) fracture fixation. This study aimed to compare stainless steel, titanium, magnesium, and PLGA screws under identical conditions using finite element analysis (FEA). Methods: A CT-based ankle model with a unilateral oblique MM [...] Read more.
Background: Implant material may influence interfragmentary mechanics in medial malleolar (MM) fracture fixation. This study aimed to compare stainless steel, titanium, magnesium, and PLGA screws under identical conditions using finite element analysis (FEA). Methods: A CT-based ankle model with a unilateral oblique MM fracture (θ = 60° to the medial tibial plafond) was fixed with two parallel M4 × 35 mm screws placed perpendicular to the fracture plane (inter-axial distance 13 mm). Contacts were defined as nonlinear frictional, and each screw was assigned a pretension force of 2.5 N. Static single-leg stance was simulated with physiologic tibia/fibula load sharing. Four scenarios differed only by screw material. Primary outputs were interfragmentary micromotion (maximum sliding and gap). Secondary measures included fracture interface contact/frictional stresses, screw/bone von Mises stress, global construct displacement, and average tibiotalar cartilage contact pressure. Results: Interfragmentary micromotion increased as screw stiffness decreased. Maximum sliding was 32.2–33.8 µm with stainless steel/titanium, 40.4 µm with magnesium, and 65.0 µm with PLGA; corresponding gaps were 31.2–32.0 µm with stainless steel and titanium, 31.2 µm with magnesium, and 54.1 µm with PLGA, respectively. Interface stresses followed the same pattern: contact pressure (3.18–3.24 MPa for stainless steel/titanium/magnesium vs. 4.29 MPa for PLGA); frictional stress (1.46–1.49 MPa vs. 1.98 MPa). Peak screw von Mises stress was highest in stainless steel (104.1 MPa), then titanium (73.4 MPa), magnesium (47.4 MPa), and PLGA (17.9 MPa). Global axial displacement (0.26–0.27 mm) and average tibiotalar cartilage contact pressure (0.73–0.75 MPa) were essentially unchanged across materials. All conditions remained below commonly cited thresholds for primary bone healing (gap < 100 µm); however, PLGA exhibited a reduced safety margin. Conclusions: Under identical geometry and loading conditions, titanium and stainless steel yielded the most favorable interfragmentary mechanics for oblique MM fixation; magnesium showed intermediate performane, and PLGA produced substantially greater micromotion and interface stresses. These findings support the use of metallic screws when maximal initial stability is required and suggest that magnesium may be a selective alternative when reducing secondary implant removal is prioritized. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

21 pages, 6470 KB  
Article
Highly Efficient Adsorption of Pb(II) by Magnesium-Modified Zeolite: Performance and Mechanisms
by Yuting Yang, Xiong Wang, Sumra Siddique Abbasi, Bin Zhou, Qing Huang, Shujuan Zhang, Xinsheng Xiao, Hao Li, Huayi Chen and Yueming Hu
Toxics 2026, 14(1), 85; https://doi.org/10.3390/toxics14010085 - 17 Jan 2026
Viewed by 224
Abstract
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with [...] Read more.
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with MZ removing over 70% of Pb(II) within the first 3 h. Isotherm data were best described by the Langmuir model (R2 = 0.9686), confirming monolayer chemical adsorption, with a maximum adsorption capacity (qm) of 1656 mg/g. Notably, MZ maintained high adsorption capacity across a pH range of 3.0~5.5, and its performance was largely unaffected by the presence of high concentrations of competing ions (0.1~1.0 M NaNO3). Mechanistic analysis revealed that the loaded MgO facilitates the chemical conversion of Pb(II) to hydroxycarbonate (Pb3(CO3)2(OH)2) via surface complexation, which constitutes the primary removal mechanism. These findings demonstrate that magnesium modification can transform natural zeolites into high-capacity, stable adsorbents, offering promising potential for the treatment of Pb(II)-contaminated water. Full article
Show Figures

Figure 1

15 pages, 848 KB  
Article
Removal of Phenolic Compounds from Wastewater Through an Alternative Process with Zero-Valent Magnesium as Reactive Material
by Giulia Maria Curcio, Jose Luis Cayambe Guaman, Elvis Gribaldo Aucancela Rivera, Tiziana Andreoli, Rosaria Bruno, Carlo Limonti and Alessio Siciliano
Sustainability 2026, 18(2), 631; https://doi.org/10.3390/su18020631 - 8 Jan 2026
Viewed by 208
Abstract
Phenolic compounds are widespread environmental contaminants whose removal from water and wastewater is essential for ecosystem protection. Among the several purification technologies, the use of zero-valent metals has gained increasing interest in recent years. The identification of effective and environmentally friendly materials is [...] Read more.
Phenolic compounds are widespread environmental contaminants whose removal from water and wastewater is essential for ecosystem protection. Among the several purification technologies, the use of zero-valent metals has gained increasing interest in recent years. The identification of effective and environmentally friendly materials is a key issue for the development of this technology. In this study, zero-valent magnesium (ZVMg), a highly reactive non-toxic material, was used for the first time for the degradation of gallic acid (GA), chosen as a model phenolic compound, in an aqueous system. Several tests were conducted in order to identify the effect of pH, ZVMg amount, and temperature on the process performance. Moreover, the reusability of the reactive material in subsequent treatment cycles was assessed. Optimal operational conditions were achieved with a ZVMg amount of 0.3 g, corresponding to a ratio of 0.33 gGA/gMg, reaching a removal efficiency of almost 90% in about 180 min. The performance was clearly favored by an alkaline environment, and yields close to the maximum values were reached under uncontrolled pH conditions. The increase in temperature significantly accelerated the reaction rate, which followed pseudo-first-order kinetic law, achieving high abatement percentages with a reduced quantity of ZVMg. Finally, Mg0 demonstrated good reusability, maintaining high efficiency, close to 78%, for up to four cycles, with the possibility of restoring the material’s activity through acid washing. The detected results confirm that ZVMg is a promising and sustainable reactive material for environmental remediation processes, offering an effective alternative for the treatment of water contaminated by phenolic compounds. Full article
(This article belongs to the Special Issue Sustainable Solutions for Wastewater Treatment and Recycling)
Show Figures

Figure 1

19 pages, 2040 KB  
Article
Towards a Circular Phosphorus Economy: Electroless Struvite Precipitation from Cheese Whey Wastewater Using Magnesium Anodes
by Vasco B. Fernandes, Daliany M. Farinon, Annabel Fernandes, Jefferson E. Silveira, Albertina Amaro, Juan A. Zazo and Carlos Y. Sousa
Appl. Sci. 2026, 16(1), 298; https://doi.org/10.3390/app16010298 - 27 Dec 2025
Viewed by 330
Abstract
Phosphorus recovery from wastewater as struvite via electrochemical magnesium dosing is a promising approach to address the growing demand for fertilizers. However, its large-scale implementation is often constrained by energy requirements. To overcome this limitation, this study investigates electroless struvite precipitation from cheese [...] Read more.
Phosphorus recovery from wastewater as struvite via electrochemical magnesium dosing is a promising approach to address the growing demand for fertilizers. However, its large-scale implementation is often constrained by energy requirements. To overcome this limitation, this study investigates electroless struvite precipitation from cheese whey wastewater using sacrificial magnesium anodes. Under optimal conditions, up to 90% of the phosphorus was recovered within 4–6 h. In this process, spontaneous magnesium dissolution acts as the driving force for phosphorus precipitation and is strongly influenced by the wastewater’s ionic composition. To identify conditions that favor efficient recovery, the effects of ammonium, chloride, and sulfate ions were evaluated by monitoring phosphorus removal and magnesium corrosion behavior. Sulfate ions enhanced magnesium corrosion more strongly than chloride during the initial stages, likely due to stronger coulombic interactions with Mg2+ at the electrode–electrolyte interface, whereas chloride ions were more effective at disrupting the passivation layer that develops over time. Based on these observations, a mechanistic interpretation of ion-specific effects on anodic corrosion is proposed. Solid-phase analyses using multiple characterization techniques confirmed struvite formation, with ammonium sulfate and ammonium chloride systems yielding the highest product purity. Overall, these findings improve the understanding of electroless struvite precipitation and highlight its potential as an energy-efficient approach for nutrient recovery. Full article
Show Figures

Figure 1

22 pages, 4558 KB  
Article
Geochemical Features of Ultramafic Rocks and Formation of Magnesium–Bicarbonate Groundwaters in the Kraka Massif Area (Southern Urals)
by Timur D. Shabutdinov, Rafil F. Abdrakhmanov, Dmitry E. Saveliev, Alexandra O. Poleva, Elena A. Mashkova, Alexander V. Snachev, Ruslan A. Gataullin, Vera N. Durnaeva and Aidar A. Samigullin
Geosciences 2026, 16(1), 8; https://doi.org/10.3390/geosciences16010008 - 22 Dec 2025
Viewed by 343
Abstract
The observed shortage of water resources in the western and southern regions of the Russian Federation may soon affect the territory of the Republic of Bashkortostan. An increase in the share of groundwaters can help to solve this problem. To provide the population [...] Read more.
The observed shortage of water resources in the western and southern regions of the Russian Federation may soon affect the territory of the Republic of Bashkortostan. An increase in the share of groundwaters can help to solve this problem. To provide the population of the republic with water resources, the groundwater of magnesium–bicarbonate-type from the Kraka ophiolite massifs can be used. The massifs occur on the western slope of the Southers Urals. In this work we studied ultramafic rocks and their influence on the formation of the chemical composition of water. The research area is located in the northern part of the Zilair synclinorium, which occurs within the Central Ural megazone. In terms of hydrogeology, of particular importance to the territory of the synclinorium is the Zilair basin of fracture waters of the second order, which is part of the Uralian hydrogeologic folded zone. The ultramafic rocks from the studied area have consistently high CaO/Al2O3 ratios (0.4–1.6), which indicates the widespread development of parageneses with participation of clinopyroxene and a low degree of depletion of the primitive mantle source. Because of the complex geological structure of the area, water samples collected from both water points in the Kraka massifs, and the surrounding Early–Middle Paleozoic rocks were analyzed for major ions using a laboratory method to identify possible hydro-geochemical zoning. A statistical analysis was then conducted based on the obtained anion–cation composition data. From the viewpoint of the hydrolytic concept, the formation of the chemical composition of groundwater takes place due to the removal of Mg2+ from the rock-forming minerals of ultramafic rocks (olivine and pyroxene) and the supply of Na+, K+, Ca2+, and SO42− Cl from atmospheric precipitations. The bicarbonate anion has a complex nature, where both biochemical processes in the soil and atmospheric precipitation play a significant role. Magnesium–bicarbonate-type of waters, due to low mineralization (to 1 g/L) and the majority of other geochemical parameters (pH of the medium, and content of Na, K, Ca, SO4, and Cl), whose values that are within the limits set by the World Health Organization (WHO), can be used as drinking water. The increased values of total hardness (0.20–3.39 mmol/L) in accordance with the regulatory document SanPiN 1.2.3685–21, adopted by the Russian Federation, do not exceed the maximum permissible concentrations (up to 7.00 (10.00) mEq/L or 3.50 (5.00) mmol/L). The high magnesium content, in accordance with GOST (state standard) R 54316–2020, allows the magnesium–bicarbonate waters of the Kraka massifs to be classified as table mineral waters for the treatment of various diseases (including hypomagnesemia). Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 4562 KB  
Article
Composite Modified Clay Mineral Integrated with Microbial Active Components for Restoration of Black-Odorous Water
by Rui Ni, Qian Yang, Bingyang Wang, Gezi Li, Jianqiang Zhao, Houkun Zhang, Xiaoqiu Zhang, Wei Fang, Dong Xu, Hui Gong, Guoliang Bai and Bolin Li
Sustainability 2026, 18(1), 33; https://doi.org/10.3390/su18010033 - 19 Dec 2025
Viewed by 299
Abstract
Black-odorous water pollution presents a serious threat to aquatic ecosystems and severely hinders the sustainable development of the ecological environment, as conventional remediation technologies often fall short in achieving the simultaneous removal of multiple pollutants. In this study, a novel composite remediation agent [...] Read more.
Black-odorous water pollution presents a serious threat to aquatic ecosystems and severely hinders the sustainable development of the ecological environment, as conventional remediation technologies often fall short in achieving the simultaneous removal of multiple pollutants. In this study, a novel composite remediation agent was developed by integrating microbial active components with modified clay minerals—sodium-modified zeolite (Na-Z) and magnesium–aluminum–lanthanum layered ternary hydroxides loaded onto sulfuric acid-modified bentonite (Mg-Al-La-LTHs@SBt)—through gel-embedding immobilization. This integrated system enabled the synergistic remediation of both overlying water and sediment pollutants. The modified clay minerals exhibited strong adsorption capacity for nitrogen and phosphorus compounds in the overlying water. Under 25 °C conditions, the composite agent achieved removal efficiencies of 58.14% for ammonium nitrogen (NH4+-N) and 88.89% for total phosphorus (TP) while significantly reducing sedimentary organic matter and acid volatile sulfide (AVS). Notably, the agent retained substantial remediation efficacy even under low-temperature conditions (5 °C). High-throughput microbial community analysis revealed that the treatment enriched beneficial phyla (e.g., Proteobacteria) and beneficial genera (e.g., Thiobacillus) and suppressed sulfate-reducing groups (e.g., Desulfobacterota), promoting favorable nitrogen and sulfur transformations. These results provide a robust material and methodological basis for efficient, synergistic restoration of black-odorous water and the sustainable development of water resources. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

24 pages, 5466 KB  
Article
Magnesium Dross and Ground Granulated Blast Furnace Slag Utilisation for Phosphate Elimination from Water
by Reham Alwash, Manolia Andredaki, Iacopo Carnacina, Monower Sadique and Joseph Amoako-Attah
Appl. Sci. 2025, 15(23), 12844; https://doi.org/10.3390/app152312844 - 4 Dec 2025
Viewed by 400
Abstract
It is well known that elevated phosphate concentrations in water bodies trigger the eutrophication process, posing adverse environmental, health, and economic consequences that necessitate effective removal solutions. Phosphate removal has therefore been widely studied using various methods, including chemical precipitation, membrane filtration, and [...] Read more.
It is well known that elevated phosphate concentrations in water bodies trigger the eutrophication process, posing adverse environmental, health, and economic consequences that necessitate effective removal solutions. Phosphate removal has therefore been widely studied using various methods, including chemical precipitation, membrane filtration, and crystallisation. However, most of these methods are often expensive or inefficient for low phosphate concentrations. Therefore, in this study, an eco-friendly, sustainable and biodegradable adsorbent was manufactured by extracting calcium ions from an industrial by-product, ground granulated blast furnace slag (GGBS) and magnesium ions from magnesium dross (MgD), then immobilising them on sodium alginate to form Ca-Mg-SA beads. The new adsorbent was applied to remove phosphate from water under different flow patterns (batch and continuous flow), initial pH levels, contact times, agitation speeds and adsorbent doses. Additionally, the degradation time of the new adsorbent, recycling potential, its morphology, formation of functional groups and chemical composition were investigated. The results obtained from batch experiments demonstrated that the new adsorbent achieved 90.2% phosphate removal efficiency from a 10 mg/L initial concentration, with a maximum adsorption capacity of 1.75 mg P/g at an initial pH of 7, a contact time of 120 min, an agitation speed of 200 rpm and an adsorbent dose of 1.25 g/50 mL. The column experiments demonstrated a 0.82 mg P/g removal capacity under the same optimal conditions as the batch experiments. The findings also showed that the adsorption process fitted well to the Freundlich and Langmuir isotherm models and followed a pseudo-second-order kinetic model. Characterisation of Ca-Mg-SA beads using EDX, SEM and FTIR confirmed successful ion immobilisation and phosphate adsorption. Furthermore, the beads fully biodegraded in soil within 75 days and demonstrated potential recycling as a fertiliser. Full article
(This article belongs to the Special Issue New Technologies for Water Quality: Treatment and Monitoring)
Show Figures

Figure 1

18 pages, 4989 KB  
Article
Hydrothermal Surface Treatment of Mg AZ31 SPF Alloy: Immune Cell Biocompatibility and Antibacterial Potential for Orthopaedic Applications
by Angela De Luca, Alessandro Presentato, Rosa Alduina, Lavinia Raimondi, Daniele Bellavia, Viviana Costa, Luca Cavazza, Aurora Cordaro, Lia Pulsatelli, Angela Cusanno, Gianfranco Palumbo, Matteo Pavarini, Roberto Chiesa and Gianluca Giavaresi
Metals 2025, 15(12), 1328; https://doi.org/10.3390/met15121328 - 2 Dec 2025
Viewed by 416
Abstract
Biodegradable magnesium (Mg) alloys are promising materials for temporary orthopaedic implants, combining favourable mechanical properties and superplastic behaviour with in vivo resorption. This enables (i) prolonged implant duration, (ii) fabrication of complex-shaped prostheses via superplastic forming (SPF), (iii) elimination of removal surgery, and [...] Read more.
Biodegradable magnesium (Mg) alloys are promising materials for temporary orthopaedic implants, combining favourable mechanical properties and superplastic behaviour with in vivo resorption. This enables (i) prolonged implant duration, (ii) fabrication of complex-shaped prostheses via superplastic forming (SPF), (iii) elimination of removal surgery, and (iv) reduced risk of long-term complications. However, rapid corrosion under physiological conditions remains a major limitation, highlighting the need for surface treatments that slow degradation while preserving implant integrity. This study investigates the effects of hydrothermal surface treatment on MgAZ31-SPF alloys, focusing on immunomodulatory responses, antibacterial potential, and degradation behaviour. Hydrothermally treated MgAZ31-SPF (MgAZ31-SPF-HT) extracts released lower Mg2+ concentrations (29.2 mg/dL) compared to untreated MgAZ31-SPF (47.5 mg/dL) while maintaining slightly alkaline pH (7–8.7), indicating improved control of early degradation. In vitro assays with human peripheral blood mononuclear cells (hPBMCs) and normal human dermal cells (NHDCs) showed that MgAZ31-SPF-HT extracts maintained higher cell viability over 24–72 h. Gene expression analysis revealed significant downregulation of pro-inflammatory markers CTSE and TNF-α, while protein quantification via ELISA and BioPlex confirmed reduced secretion of TNF-α, TGF-β1, TGF-β2, IL-6, and IL-8, suggesting mitigation of early immune activation. Antibacterial assays demonstrated limited Staphylococcus aureus colonisation on both MgAZ31-SPF and MgAZ31-SPF-HT scaffolds, with CFU counts (~105–106) well below the threshold for mature biofilm formation (~108), and SEM analysis confirmed sparse bacterial distribution without dense EPS-rich layers. Overall, hydrothermal treatment improves Mg alloy biocompatibility by controlling Mg2+ release, modulating early immune responses, and limiting bacterial adhesion, highlighting its potential to enhance clinical performance of Mg-based implants. Full article
(This article belongs to the Special Issue Surface Engineering and Properties of Metallic Biomaterials)
Show Figures

Figure 1

17 pages, 9527 KB  
Article
Analysis of the Material Removal Process in Precision Milling of AZ91D Magnesium Alloy
by Jarosław Korpysa
Micromachines 2025, 16(11), 1283; https://doi.org/10.3390/mi16111283 - 13 Nov 2025
Viewed by 406
Abstract
The study investigated the material removal process during precision milling of AZ91D magnesium alloy. A high-speed camera enabling high-frequency image recording was used to observe the cutting zone. In effect, it was possible to observe the mechanism of the chip formation process at [...] Read more.
The study investigated the material removal process during precision milling of AZ91D magnesium alloy. A high-speed camera enabling high-frequency image recording was used to observe the cutting zone. In effect, it was possible to observe the mechanism of the chip formation process at different stages of the cutting flutes performance. Experiments were conducted with different feeds per tooth in order to detect the occurrence of ploughing. Results showed that the both cutting flutes of the end mill did not perform in a uniform manner. Material was predominantly removed by first flute, as a result of which chips formed by this flute were much larger than those generated by the other flute. Nevertheless, the shearing process proceeded effectively even at low feed values. Results also showed that large burrs were formed when machining was conducted with low feed per tooth, which confirmed a significant contribution of plastic deformation to burrs formation. An increase in feed per tooth, however, made it possible to minimize the phenomenon of burrs formation. Full article
Show Figures

Figure 1

20 pages, 1073 KB  
Article
Developing Insights into Pretreatment Optimization: Effects of Eliminating Lime and Soda Ash in Groundwater RO Desalination
by Yazeed Algurainy, Ashraf Refaat and Omar Alrehaili
Water 2025, 17(22), 3186; https://doi.org/10.3390/w17223186 - 7 Nov 2025
Viewed by 921
Abstract
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which [...] Read more.
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which increase chemical consumption and sludge generation, prompting the need for alternative low-chemical strategies. This study evaluates the technical, operational, and economic implications of transitioning a full-scale brackish groundwater desalination plant, from lime–soda ash softening (old plan) to a low-chemical pretreatment strategy based on antiscalant dosing (new plan) upstream of reverse osmosis (RO). Key parameters, including pH, total hardness, calcium and magnesium hardness, silica, iron, alkalinity, and total dissolved solids (TDS), were measured and compared at multiple locations within the treatment plant under both the old and new plans. Removing lime and soda ash caused higher levels of hardness, alkalinity, and silica in the water before RO treatment, increasing the risk of scaling. Operationally, the feed pressure increased from 11.43 ± 0.16 bar (old plan) to a peak of 25.50 ± 0.10 bar in the new plan, accompanied by a decline in water production. Chemical cleaning effectively restored performance, reducing feed pressure to 13.13 ± 0.05 bar, confirming that fouling and scaling were the primary, reversible causes. Despite these challenges, the plant consistently produced water that complied with Saudi Standards for Unbottled Drinking Water (e.g., pH = 7.18 ± 0.09, TDS = 978.27 ± 9.26 mg/L). Economically, the new strategy reduced operating expenditure by approximately 54% (0.295 → 0.135 $/m3), largely due to substantial reductions in chemical and sludge handling costs, although these savings were partially offset by higher energy consumption and more frequent membrane maintenance. Overall, the findings emphasize the importance of systematic performance evaluation during operational transitions, providing guidance for utilities seeking to optimize pretreatment design while maintaining compliance, long-term membrane protection, and environmental sustainability. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 5806 KB  
Article
High-Performance Fluoride Removal from Water Using MgO Nanoparticles Synthesized via DMF-NH4+ Co-Precipitation
by José Antonio Pérez-Tavares, Rocio Casado-Guerrero, Daniel Ramírez-de-Alba, Efrén González-Aguiñaga, Pablo Eduardo Cardoso-Avila, Quetzalcoatl Enrique Saavedra-Arroyo and Rita Patakfalvi
Inorganics 2025, 13(11), 370; https://doi.org/10.3390/inorganics13110370 - 4 Nov 2025
Viewed by 903
Abstract
Fluoride contamination in groundwater is a pressing environmental and public health issue, with chronic exposure linked to skeletal and dental fluorosis. Here, we report the synthesis of magnesium oxide nanoparticles via a controlled co-precipitation method employing dimethylformamide (DMF) as solvent and either ammonium [...] Read more.
Fluoride contamination in groundwater is a pressing environmental and public health issue, with chronic exposure linked to skeletal and dental fluorosis. Here, we report the synthesis of magnesium oxide nanoparticles via a controlled co-precipitation method employing dimethylformamide (DMF) as solvent and either ammonium hydroxide (MgO-1) or ammonium carbonate (MgO-2) as precipitating agents. The resulting materials were comprehensively characterized using thermogravimetric analysis (TGA/DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). Additionally, BET surface area and porosity analyses revealed mesoporous structures, with MgO-1 showing a slightly higher surface area (14.12 m2 g−1) than MgO-2 (13.87 m2 g−1). Both MgO-1 and MgO-2 exhibited high crystallinity, nanoscale particle sizes (81.6 nm and 128.1 nm, respectively), and distinct morphological features. Batch adsorption studies revealed maximum fluoride uptake capacities of 117.6 mg/g (MgO-1) and 94.5 mg/g (MgO-2) at neutral pH, with MgO-1 exhibiting superior performance due to its smaller particle size and higher specific surface area. Fluoride removal remained above 98% between pH 3–9, confirming stability across a wide pH range, with a minor decline at pH 11 due to OH competition. Adsorption equilibrium data were best described by the Temkin isotherm model, suggesting heterogeneous surface interactions and an exothermic process, while kinetic analyses indicated pseudo-second-order behavior for MgO-1 and pseudo-first-order for MgO-2. Both materials maintained high fluoride selectivity in the presence of competing anions and successfully reduced fluoride in tap water from 2.11 mg/L to below the WHO limits without altering water hardness. These findings underscore the potential of engineered MgO nanomaterials as efficient, selective, and sustainable adsorbents for water defluoridation, offering a promising pathway toward scalable remediation technologies in fluoride-affected regions. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

12 pages, 3075 KB  
Article
Impact of Intramedullary Implants on Metallic Element Homeostasis in Children with Forearm Fractures
by Kacper Sowa, Anna Danielewicz, Magdalena Wójciak, Jan Sawicki, Sławomir Dresler, Katarzyna Warda, Michał Latalski and Ireneusz Sowa
J. Clin. Med. 2025, 14(21), 7829; https://doi.org/10.3390/jcm14217829 - 4 Nov 2025
Viewed by 500
Abstract
Background/Objectives: Childhood is marked by frequent musculoskeletal injuries, with fractures representing a major cause of pediatric trauma admissions. Unstable long-bone fractures often require surgical stabilization, commonly achieved using elastic stable intramedullary nailing (ESIN). Although this method ensures effective fixation and early mobilization, [...] Read more.
Background/Objectives: Childhood is marked by frequent musculoskeletal injuries, with fractures representing a major cause of pediatric trauma admissions. Unstable long-bone fractures often require surgical stabilization, commonly achieved using elastic stable intramedullary nailing (ESIN). Although this method ensures effective fixation and early mobilization, concerns remain regarding potential metal ion release in growing children. This study aimed to assess changes in calcium, magnesium, copper, zinc, titanium, and aluminum concentrations in blood and material from the medullary cavity of forearm fractures following intramedullary fixation. Methods: A prospective study was conducted on 40 patients aged 4–15 years treated with ESIN at the University Children’s Hospital in Lublin. Peripheral blood and material from the medullary cavity were collected before implantation and at implant removal. Elemental concentrations were determined using high-resolution ICP-OES, and statistical analyses included paired comparisons, delta values, and multivariate methods. Results: No significant systemic changes were found for calcium, magnesium, copper, zinc, or aluminum. A modest but significant increase in blood titanium levels was observed after treatment (p = 0.0075), especially in patients with two rods. Multivariate analysis confirmed overall stability of elemental profiles, with titanium contributing most strongly to post-treatment variation. Conclusions: Intramedullary titanium fixation in children does not significantly disrupt systemic mineral homeostasis. The slight increase in circulating titanium reflects implant exposure rather than toxicity, supporting the safety of ESIN, although continued monitoring of metallic elements may be warranted. Full article
(This article belongs to the Special Issue New Progress in Pediatric Orthopedics and Pediatric Spine Surgery)
Show Figures

Figure 1

16 pages, 2580 KB  
Article
Titanium Versus Bioabsorbable Magnesium Headless Compression Screw Fixation for Tibial Tubercle Osteotomy
by Mehmet Baris Ertan, Oguzhan Uslu, Firat Dogruoz, Omer Faruk Celik and Ozkan Kose
J. Funct. Biomater. 2025, 16(11), 404; https://doi.org/10.3390/jfb16110404 - 29 Oct 2025
Viewed by 1046
Abstract
Purpose: This retrospective study aimed to compare the clinical and radiological outcomes of Fulkerson tibial tubercle osteotomy (TTO) fixed with either bioabsorbable magnesium (Mg) or titanium (Ti) headless compression screws, particularly focusing on the need for implant removal. Materials and Methods: 29 patients [...] Read more.
Purpose: This retrospective study aimed to compare the clinical and radiological outcomes of Fulkerson tibial tubercle osteotomy (TTO) fixed with either bioabsorbable magnesium (Mg) or titanium (Ti) headless compression screws, particularly focusing on the need for implant removal. Materials and Methods: 29 patients (19 Ti, 10 Mg screws) who underwent TTO between 2013 and 2023 were included. The primary outcome was implant removal; secondary outcomes included Kujala and Lysholm scores, complication rates, and radiographic union. Rehabilitation protocols were standardized, but early weight-bearing was delayed in the Mg group to mitigate potential implant degradation effects. Results: Both groups demonstrated significant improvements in Kujala and Lysholm Knee scores postoperatively, with no statistically significant differences between the groups. No cases of implant removal, fixation failure, nonunion, or significant range of motion loss were observed. Radiographically, persistent remnants of Mg screws were detected even after more than five years, raising concerns about incomplete bioabsorption. The Ti screws maintained mechanical stability without evidence of loss of fixation or the need for revision. Patient satisfaction and cosmetic outcomes were similar. Conclusion: The use of bioabsorbable Mg screws in TTO did not confer additional clinical or radiological benefits compared to headless Ti screws. Given the higher cost, the incomplete resorption observed at long-term follow-up, and the absence of an implant removal requirement in either group, the routine use of Mg screws cannot be recommended. Ti headless compression screws offer a cost-effective, reliable fixation method, achieving stable osteotomy healing without the need for secondary surgery. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

27 pages, 4821 KB  
Article
Experimental Investigation and Machine Learning Modeling of Electrical Discharge Machining Characteristics of AZ31/B4C/GNPs Hybrid Composites
by Dhanunjay Kumar Ammisetti, Satya Sai Harish Kruthiventi, Krishna Prakash Arunachalam, Victor Poblete Pulgar, Ravi Kumar Kottala, Seepana Praveenkumar and Pasupureddy Srinivasa Rao
Crystals 2025, 15(10), 844; https://doi.org/10.3390/cryst15100844 - 27 Sep 2025
Viewed by 568
Abstract
Magnesium alloys, like AZ31, possess a desirable low weight and high specific strength, which make them favorable for aerospace and auto applications, yet their difficulty to machine limits their broader implementation for the industry. Electrical discharge machining (EDM) is an effective technology for [...] Read more.
Magnesium alloys, like AZ31, possess a desirable low weight and high specific strength, which make them favorable for aerospace and auto applications, yet their difficulty to machine limits their broader implementation for the industry. Electrical discharge machining (EDM) is an effective technology for machining difficult-to-machine materials, particularly when the materials are reinforced with ceramic and graphene-based fillers. This study examines the impact of reinforcement percentage (R) and different electrical discharge machining (EDM) parameters such as current (I), pulse on time (Ton) and pulse off time (Toff) on the material removal rate (MRR) and surface roughness (SR) of AZ31/B4C/GNPs composites. The combined reinforcement range varies from 2 wt.% to 4 wt.%. The Taguchi design (L27) is utilized to conduct the experiments in this study. ANOVA of the experimental data indicated that current (I) significantly affects MRR and SR, exhibiting the greatest contribution of 44.93% and 51.39% on MRR and SR, respectively, among the variables analyzed. The surface integrity properties of EDMed surfaces are examined using SEM under both higher and lower material removal rate settings. Diverse machine learning techniques, including linear regression (LR), polynomial regression (PR), Random Forest (RF), and Gradient Boost Regression (GBR), are employed to construct an efficient predictive model for outcome estimation. The built models are trained and evaluated using 80% and 20% of the total data points, respectively. Statistical measures (MSE, RMSE, and R2) are utilized to evaluate the performance of the models. Among all the developed models, GBR exhibited superior performance in predicting MRR and SR, achieving high accuracy (exceeding 92%) and lower error rates compared to the other models evaluated in this work. This work demonstrated the synergy between techniques in optimizing EDM performance for hybrid composites using a statistical design and machine learning strategies that will facilitate greater use of hybrid composites in high-precision engineering applications and advanced manufacturing sectors. Full article
Show Figures

Figure 1

22 pages, 4398 KB  
Article
Abrasive Waterjet Machining of r-GO Infused Mg Fiber Metal Laminates: ANFIS Modelling and Optimization Through Antlion Optimizer Algorithm
by Devaraj Rajamani, Mahalingam Siva Kumar and Arulvalavan Tamilarasan
Materials 2025, 18(19), 4480; https://doi.org/10.3390/ma18194480 - 25 Sep 2025
Viewed by 572
Abstract
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content [...] Read more.
This research proposes an intelligent modeling and optimization strategy for abrasive waterjet machining (AWJM) of magnesium-based fiber metal laminates (FMLs) reinforced with reduced graphene oxide (r-GO). Experiments were designed using the Box–Behnken method, considering waterjet pressure, stand-off distance, traverse speed, and r-GO content as inputs, while kerf taper (Kt), surface roughness (Ra), and material removal rate (MRR) were evaluated as outputs. Adaptive Neuro-Fuzzy Inference System (ANFIS) models were developed for each response, with their critical optimized hyperparameters such as cluster radius, quash factor, and training data split through the dragonfly optimization (DFO) algorithm. The optimized ANFIS networks yielded a high predictive accuracy, with low RMSE and MAPE values and close agreement between predicted and measured results. Four metaheuristic algorithms including particle swarm optimization (PSO), salp swarm optimization (SSO), whale optimization algorithm (WOA), and the antlion optimizer (ALO) were applied for simultaneous optimization, using a TOPSIS-based single-objective formulation. ALO outperformed the others, identifying 325 MPa waterjet pressure, 2.5 mm stand-off, 800 mm/min traverse speed, and 0.00602 wt% r-GO addition in FMLs as optimal conditions. These settings produced a kerf taper of 2.595°, surface roughness of 8.9897 µm, and material removal rate of 138.13 g/min. The proposed ANFIS-ALO framework demonstrates strong potential for achieving precision and productivity in AWJM of hybrid laminates. Full article
Show Figures

Figure 1

Back to TopTop