Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,965)

Search Parameters:
Keywords = machine learning for sustainability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 23907 KiB  
Article
Optimizing Data Pipelines for Green AI: A Comparative Analysis of Pandas, Polars, and PySpark for CO2 Emission Prediction
by Youssef Mekouar, Mohammed Lahmer and Mohammed Karim
Computers 2025, 14(8), 319; https://doi.org/10.3390/computers14080319 (registering DOI) - 7 Aug 2025
Abstract
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon [...] Read more.
This study evaluates the performance and energy trade-offs of three popular data processing libraries—Pandas, PySpark, and Polars—applied to GreenNav, a CO2 emission prediction pipeline for urban traffic. GreenNav is an eco-friendly navigation app designed to predict CO2 emissions and determine low-carbon routes using a hybrid CNN-LSTM model integrated into a complete pipeline for the ingestion and processing of large, heterogeneous geospatial and road data. Our study quantifies the end-to-end execution time, cumulative CPU load, and maximum RAM consumption for each library when applied to the GreenNav pipeline; it then converts these metrics into energy consumption and CO2 equivalents. Experiments conducted on datasets ranging from 100 MB to 8 GB demonstrate that Polars in lazy mode offers substantial gains, reducing the processing time by a factor of more than twenty, memory consumption by about two-thirds, and energy consumption by about 60%, while maintaining the predictive accuracy of the model (R2 ≈ 0.91). These results clearly show that the careful selection of data processing libraries can reconcile high computing performance and environmental sustainability in large-scale machine learning applications. Full article
(This article belongs to the Section Internet of Things (IoT) and Industrial IoT)
Show Figures

Figure 1

60 pages, 8707 KiB  
Review
Automation in Construction (2000–2023): Science Mapping and Visualization of Journal Publications
by Mohamed Marzouk, Abdulrahman A. Bin Mahmoud, Khalid S. Al-Gahtani and Kareem Adel
Buildings 2025, 15(15), 2789; https://doi.org/10.3390/buildings15152789 - 7 Aug 2025
Abstract
This paper presents a scientometric review that provides a quantitative perspective on the evolution of Automation in Construction Journal (AICJ) research, emphasizing its developmental paths and emerging trends. The study aims to analyze the journal’s growth and citation impact over time. It also [...] Read more.
This paper presents a scientometric review that provides a quantitative perspective on the evolution of Automation in Construction Journal (AICJ) research, emphasizing its developmental paths and emerging trends. The study aims to analyze the journal’s growth and citation impact over time. It also seeks to identify the most influential publications and the cooperation patterns among key contributors. Furthermore, the study explores the journal’s primary research themes and their evolution. Accordingly, 4084 articles were identified using the Web of Science (WoS) database and subjected to a multistep analysis using VOsviewer version 1.6.18 and Biblioshiny as software tools. First, the growth and citation of the publications over time are inspected and evaluated, in addition to ranking the most influential documents. Second, the co-authorship analysis method is applied to visualize the cooperation patterns between countries, organizations, and authors. Finally, the publications are analyzed using keyword co-occurrence and keyword thematic evolution analyses, revealing five major research clusters: (i) foundational optimization, (ii) deep learning and computer vision, (iii) building information modeling, (iv) 3D printing and robotics, and (v) machine learning. Additionally, the analysis reveals significant growth in publications (54.5%) and citations (78.0%) from 2018 to 2023, indicating the journal’s increasing global influence. This period also highlights the accelerated adoption of digitalization (e.g., BIM, computational design), increased integration of AI and machine learning for automation and predictive analytics, and rapid growth of robotics and 3D printing, driving sustainable and innovative construction practices. The paper’s findings can help readers and researchers gain a thorough understanding of the AICJ’s published work, aid research groups in planning and optimizing their research efforts, and inform editorial boards on the most promising areas in the existing body of knowledge for further investigation and development. Full article
Show Figures

Figure 1

26 pages, 2444 KiB  
Article
A Multi-Stage Feature Selection and Explainable Machine Learning Framework for Forecasting Transportation CO2 Emissions
by Mohammad Ali Sahraei, Keren Li and Qingyao Qiao
Energies 2025, 18(15), 4184; https://doi.org/10.3390/en18154184 - 7 Aug 2025
Abstract
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure [...] Read more.
The transportation sector is a major consumer of primary energy and is a significant contributor to greenhouse gas emissions. Sustainable transportation requires identifying and quantifying factors influencing transport-related CO2 emissions. This research aims to establish an adaptable, precise, and transparent forecasting structure for transport CO2 emissions of the United States. For this reason, we proposed a multi-stage method that incorporates explainable Machine Learning (ML) and Feature Selection (FS), guaranteeing interpretability in comparison to conventional black-box models. Due to high multicollinearity among 24 initial variables, hierarchical feature clustering and multi-step FS were applied, resulting in five key predictors: Total Primary Energy Imports (TPEI), Total Fossil Fuels Consumed (FFT), Annual Vehicle Miles Traveled (AVMT), Air Passengers-Domestic and International (APDI), and Unemployment Rate (UR). Four ML methods—Support Vector Regression, eXtreme Gradient Boosting, ElasticNet, and Multilayer Perceptron—were employed, with ElasticNet outperforming the others with RMSE = 45.53, MAE = 30.6, and MAPE = 0.016. SHAP analysis revealed AVMT, FFT, and APDI as the top contributors to CO2 emissions. This framework aids policymakers in making informed decisions and setting precise investments. Full article
Show Figures

Figure 1

24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

18 pages, 2879 KiB  
Article
Smartphone-Compatible Colorimetric Detection of CA19-9 Using Melanin Nanoparticles and Deep Learning
by Turgut Karademir, Gizem Kaleli-Can and Başak Esin Köktürk-Güzel
Biosensors 2025, 15(8), 507; https://doi.org/10.3390/bios15080507 - 5 Aug 2025
Abstract
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this [...] Read more.
Paper-based colorimetric biosensors represent a promising class of low-cost diagnostic tools that do not require external instrumentation. However, their broader applicability is limited by the environmental concerns associated with conventional metal-based nanomaterials and the subjectivity of visual interpretation. To address these challenges, this study introduces a proof-of-concept platform—using CA19-9 as a model biomarker—that integrates naturally derived melanin nanoparticles (MNPs) with machine learning-based image analysis to enable environmentally sustainable and analytically robust colorimetric quantification. Upon target binding, MNPs induce a concentration-dependent color transition from yellow to brown. This visual signal was quantified using a machine learning pipeline incorporating automated region segmentation and regression modeling. Sensor areas were segmented using three different algorithms, with the U-Net model achieving the highest accuracy (average IoU: 0.9025 ± 0.0392). Features extracted from segmented regions were used to train seven regression models, among which XGBoost performed best, yielding a Mean Absolute Percentage Error (MAPE) of 17%. Although reduced sensitivity was observed at higher analyte concentrations due to sensor saturation, the model showed strong predictive accuracy at lower concentrations, which are especially challenging for visual interpretation. This approach enables accurate, reproducible, and objective quantification of colorimetric signals, thereby offering a sustainable and scalable alternative for point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue AI-Enabled Biosensor Technologies for Boosting Medical Applications)
Show Figures

Figure 1

19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

27 pages, 815 KiB  
Article
Material Flow Analysis for Demand Forecasting and Lifetime-Based Inflow in Indonesia’s Plastic Bag Supply Chain
by Erin Octaviani, Ilyas Masudin, Amelia Khoidir and Dian Palupi Restuputri
Logistics 2025, 9(3), 105; https://doi.org/10.3390/logistics9030105 - 5 Aug 2025
Viewed by 185
Abstract
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined [...] Read more.
Background: this research presents an integrated approach to enhancing the sustainability of plastic bag supply chains in Indonesia by addressing critical issues related to ineffective post-consumer waste management and low recycling rates. The objective of this study is to develop a combined framework of material flow analysis (MFA) and sustainable supply chain planning to improve demand forecasting and inflow management across the plastic bag lifecycle. Method: the research adopts a quantitative method using the XGBoost algorithm for forecasting and is supported by a polymer-based MFA framework that maps material flows from production to end-of-life stages. Result: the findings indicate that while production processes achieve high efficiency with a yield of 89%, more than 60% of plastic bag waste remains unmanaged after use. Moreover, scenario analysis demonstrates that single interventions are insufficient to achieve circularity targets, whereas integrated strategies (e.g., reducing export volumes, enhancing waste collection, and improving recycling performance) are more effective in increasing recycling rates beyond 35%. Additionally, the study reveals that increasing domestic recycling capacity and minimizing dependency on exports can significantly reduce environmental leakage and strengthen local waste management systems. Conclusions: the study’s novelty lies in demonstrating how machine learning and material flow data can be synergized to inform circular supply chain decisions and regulatory planning. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Viewed by 21
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

14 pages, 2532 KiB  
Article
Machine Learning for Spatiotemporal Prediction of River Siltation in Typical Reach in Jiangxi, China
by Yong Fu, Jin Luo, Die Zhang, Lingjia Liu, Gan Luo and Xiaofang Zu
Appl. Sci. 2025, 15(15), 8628; https://doi.org/10.3390/app15158628 (registering DOI) - 4 Aug 2025
Viewed by 118
Abstract
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal [...] Read more.
Accurate forecasting of river siltation is essential for ensuring inland waterway navigability and guiding sustainable sediment management. This study investigates the downstream reach of the Shihutang navigation power hub along the Ganjiang River in Jiangxi Province, China, an area characterized by pronounced seasonal sedimentation and hydrological variability. To enable fine-scale prediction, we developed a data-driven framework using a random forest regression model that integrates high-resolution bathymetric surveys with hydrological and meteorological observations. Based on the field data from April to July 2024, the model was trained to forecast monthly siltation volumes at a 30 m grid scale over a six-month horizon (July–December 2024). The results revealed a marked increase in siltation from July to September, followed by a decline during the winter months. The accumulation of sediment, combined with falling water levels, was found to significantly reduce the channel depth and width, particularly in the upstream sections, posing a potential risk to navigation safety. This study presents an initial, yet promising attempt to apply machine learning for spatially explicit siltation prediction in data-constrained river systems. The proposed framework provides a practical tool for early warning, targeted dredging, and adaptive channel management. Full article
Show Figures

Figure 1

24 pages, 48949 KiB  
Article
Co-Construction Mechanisms of Spatial Encoding and Communicability in Culture-Featured Districts—A Case Study of Harbin Central Street
by Hehui Zhu and Chunyu Pang
Sustainability 2025, 17(15), 7059; https://doi.org/10.3390/su17157059 - 4 Aug 2025
Viewed by 170
Abstract
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial [...] Read more.
During the transition of culture-featured district planning from static conservation to innovation-driven models, existing research remains constrained by mechanistic paradigms, reducing districts to functional containers and neglecting human perceptual interactions and meaning-production mechanisms. This study explores and quantifies the generative mechanisms of spatial communicability and cultural dissemination efficacy within human-centered frameworks. Grounded in humanistic urbanism, we analyze Harbin Central Street as a case study integrating historical heritage with contemporary vitality, developing a tripartite communicability assessment framework comprising perceptual experience, infrastructure utility, and behavioral dynamics. Machine learning-based threshold analysis reveals that spatial encoding elements govern communicability through significant nonlinear mechanisms. The conclusion shows synergies between street view-quantified greenery visibility and pedestrian accessibility establish critical human-centered design thresholds. Spatial data analysis integrating physiologically sensed emotional experiences and topologically analyzed spatial morphology resolves metric fragmentation while examining spatial encoding’s impact on interaction efficacy. This research provides data-driven decision support for sustainable urban renewal and enhanced cultural dissemination, advancing heritage sustainability. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

38 pages, 2159 KiB  
Review
Leveraging Big Data and AI for Sustainable Urban Mobility Solutions
by Oluwaleke Yusuf, Adil Rasheed and Frank Lindseth
Urban Sci. 2025, 9(8), 301; https://doi.org/10.3390/urbansci9080301 - 4 Aug 2025
Viewed by 202
Abstract
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts [...] Read more.
Urban population growth is intensifying pressure on mobility systems, with road transportation contributing to environmental and sustainability challenges. Policymakers must navigate complex uncertainties in addressing rising mobility demand while pursuing sustainability goals. Advanced technologies offer promise, but their real-world effectiveness in urban contexts remains underexplored. This meta-review comprised three complementary studies: a broad analysis of sustainable mobility with Norwegian case studies, and systematic literature reviews on digital twins and Big Data/AI applications in urban mobility, covering the period of 2019–2024. Using structured criteria, we synthesised findings from 72 relevant articles to identify major trends, limitations, and opportunities. The findings show that mobility policies often prioritise technocentric solutions that unintentionally hinder sustainability goals. Digital twins show potential for traffic simulation, urban planning, and public engagement, while machine learning techniques support traffic forecasting and multimodal integration. However, persistent challenges include data interoperability, model validation, and insufficient stakeholder engagement. We identify a hierarchy of mobility modes where public transit and active mobility outperform private vehicles in sustainability and user satisfaction. Integrating electrification and automation and sharing models with data-informed governance can enhance urban liveability. We propose actionable pathways leveraging Big Data and AI, outlining the roles of various stakeholders in advancing sustainable urban mobility futures. Full article
(This article belongs to the Special Issue Sustainable Urbanization, Regional Planning and Development)
Show Figures

Figure 1

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 208
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

22 pages, 1566 KiB  
Review
Multi-Objective Evolutionary Algorithms in Waste Disposal Systems: A Comprehensive Review of Applications, Case Studies, and Future Directions
by Saad Talal Alharbi
Computers 2025, 14(8), 316; https://doi.org/10.3390/computers14080316 - 4 Aug 2025
Viewed by 212
Abstract
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, and facility location and allocation. Real-world case studies from cities like Braga, Lisbon, Uppsala, and Cyprus demonstrate how MOEAs can enhance operational efficiency, boost energy recovery, and reduce environmental impacts. While these algorithms offer significant advantages, challenges remain in computational complexity, adapting to dynamic environments, and integrating with emerging technologies. Future research directions highlight the potential of combining MOEAs with machine learning and real-time data to create more flexible and responsive waste management strategies. By leveraging these advancements, MOEAs can play a pivotal role in developing sustainable, efficient, and adaptive waste disposal systems capable of meeting the growing demands of urbanization and stricter environmental regulations. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Graphical abstract

Back to TopTop