Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,379)

Search Parameters:
Keywords = mRNA levels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 720 KiB  
Article
Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
by Cynthia Pimpie, Anne Schninzler, Marc Pocard, Véronique Baud and Martine Perrot-Applanat
Biomedicines 2025, 13(8), 1815; https://doi.org/10.3390/biomedicines13081815 - 24 Jul 2025
Abstract
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and [...] Read more.
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and non-Asian cohorts. The intestinal-subtype GC has declined over the past 50 years. In contrast to the intestinal-subtype adenocarcinoma, the incidence of diffuse-subtype GC, often associated with poor overall survival, has constantly increased in the USA and Europe. The aim of this study was to analyze the expression and clinical significance of steroid hormone receptors, two membrane-bound receptors (ERRγ and GPER), and several genes involved in epigenetic alterations. The findings may contribute to revealing events driving tumorigenesis and may aid prognosis. Methods: Using mRNA from diffuse and intestinal GC tumor samples, the expression level of 11 genes, including those coding for sex hormone receptors (estrogen receptors ERα and ERβ), progesterone receptor (PR) and androgen receptor (AR), and the putative relevant ERRγ and GPER receptor were determined by RT-qPCR. Results: In diffuse GC, the expression of ERα, ERβ, PR and AR differed from their expression in the intestinal subtype. The expression of ERα and ERβ was strongly increased in the diffuse subtype compared to the intestinal subtype (×1.90, p = 0.001 and ×2.68, p = 0.002, respectively). Overexpression of ERα and ERβ was observed in diffuse GC (15 and 42%, respectively). The expression levels of PR and AR were strongly decreased in the intestinal subtype as compared to diffuse GC (×0.48, p = 0.005 and ×0.25, p = 0.003, respectively; 37.5% and 56% underexpression). ERα, ERβ, PR and AR showed notable differences for clinicopathological correlation in the diffuse and intestinal GC. A significant decrease of ERα, ERβ, PR and AR in intestinal GC correlated with the absence of lymphatic invasion and lower TNM (I-II). In diffuse GC, among the hormone receptors, increases of ERs and PR mainly correlated with expression of growth factors and receptors (IGF1, FGF7 and FGFR1), and with genes involved in epithelial-mesenchymal transition (VIM and ZEB2) or cell migration (MMP2). Our results also report the strong decreased expression of ERRγ and GPER (two receptors that bind estrogen or xenoestrogens) in diffuse and intestinal subtypes. Conclusions: Our study identified new target genes, namely hormone receptors and membrane receptors (ERRγ and GPER), whose expression is associated with an aggressive phenotype of diffuse GC, and revealed the importance of epigenetic factors (EZH2, HOTAIR, H19 and DNMT1) in gastric cancers. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

16 pages, 2379 KiB  
Article
Atractylodes lancea (Thunb.) DC. [Asteraceae] Rhizome-Derived Exosome-like Nanoparticles Suppress Lipopolysaccharide-Induced Inflammation by Reducing Toll-like Receptor 4 Expression in BV-2 Murine Microglial Cells
by Mizusa Hyodo, Kei Kawada, Tomoaki Ishida, Yuki Izawa-Ishizawa, Ryoko Matoba, Rina Okamoto, Kohei Jobu, Io Horikawa, Fuka Aizawa, Kenta Yagi, Takahiro Niimura, Yayoi Kawano, Shinji Abe, Yukihiro Hamada, Mitsuhiro Goda and Keisuke Ishizawa
Pharmaceuticals 2025, 18(8), 1099; https://doi.org/10.3390/ph18081099 - 24 Jul 2025
Abstract
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) [...] Read more.
Background/Objectives: Atractylodes lancea (Thunb.) DC. [Asteraceae] (ALR)-derived exosome-like nanoparticles (ALR-ELNs) exhibit anti-neuroinflammatory effects in microglial cells. However, the associated mechanisms and pathways are unknown. We aimed to characterize the effects of ALR-ELNs on inflammatory responses of BV-2 microglial cells to lipopolysaccharide (LPS) using RNA sequencing. Methods: ALR-ELNs were fractionated from ALR. BV-2 microglial murine cells were stimulated with LPS after treatment with ALR-ELNs. RNA sequencing was performed to analyze variations in mRNA levels. Ingenuity pathway analysis (IPA) was performed to investigate the mechanism of action of ALR-ELNs. mRNA expression was assessed using real-time quantitative polymerase chain reaction (qPCR). Results: The expression of 651 genes was downregulated, whereas that of 1204 genes was upregulated in LPS-stimulated BV2 cells pretreated with ALR-ELNs. The IPA showed that the effects of ALR-ELNs on inflammation took place through pathogen-influenced signaling. Network analysis via IPA showed that the Toll-like receptor (TLR) is involved in the suppression of inflammation by ALR-ELNs. The qPCR analysis showed that pretreatment with ALR-ELNs significantly reduced TLR4 mRNA expression. Conclusions: ALR-ELNs suppress the release of inflammatory mediators by downregulating TLR4 expression, which is a novel mechanism by which ALR-ELNs act on microglia. Identifying active ingredients in ALR-ELNs that downregulate TLR4 expression can advance the development of therapeutic drugs for neuroinflammatory diseases. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

9 pages, 932 KiB  
Brief Report
scaRNA1 Expression Levels Affect Alternative Splicing of mRNA
by Madeleine Brown, Brittnei Earl, Michael Filla, Nataliya Kibiryeva, James E. O’Brien and Douglas C. Bittel
Genes 2025, 16(8), 864; https://doi.org/10.3390/genes16080864 - 24 Jul 2025
Abstract
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play [...] Read more.
Our previous research identified 12 small Cajal body-specific RNAs (scaRNAs) with reduced expression in the right ventricle in infant patients with tetralogy of Fallot. Likewise, we showed that there were significant changes in mRNA processing in the RV in these patients. ScaRNAs play a crucial role in the biochemical maturation of spliceosomal RNAs (pseudouridylation and 2′-O-methylation). We showed that variations in scaRNA1 levels resulted in changes in alternative splicing in human cells. To investigate further the role that scaRNAs play in mRNA processing, we examine here the impact of knocking down scaRNA1 in quail myoblast cells (Coturnix japonica, a well-established animal model for studying embryonic development). Following the knockdown of scaRNA1, transcriptome analysis revealed that the genes Tjp1, Map3k7, and Sppl2a were alternatively spliced. Growing evidence indicates that alternative splicing of mRNA plays an important role in regulating cell differentiation and tissue development. Our data presented here provide additional support for research to clarify the specific roles that individual scaRNAs play in regulating spliceosome function and mRNA splicing. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 1165 KiB  
Brief Report
Serum Amyloid A3 Expression Is Enhanced by Gram-Negative Bacterial Stimuli in Bovine Endometrial Epithelial Cells
by Kazuha Aoyagi, Keishi Owaki, Hiroki Sakai, Ayaka Okada and Yasuo Inoshima
Pathogens 2025, 14(8), 729; https://doi.org/10.3390/pathogens14080729 - 23 Jul 2025
Abstract
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an [...] Read more.
Bovine endometritis is a common postpartum disease that significantly impairs reproductive performance and reduces economic sustainability in dairy and beef cattle. It is primarily caused by gram-negative and -positive bacteria, triggering strong inflammatory responses in the endometrium. Serum amyloid A (SAA) is an acute-phase protein and precursor of amyloid A (AA) in AA amyloidosis. In cattle, multiple SAA isoforms have been identified; however, the biological functions of SAA3 remain unclear. Hence, this study investigated the role of SAA3 in bovine endometrial epithelial cells (BEnEpCs) following stimulation with gram-negative or -positive bacterial antigens. BEnEpCs were treated with lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and, subsequently, the expression levels of SAA3 and SAA1 mRNA were compared by real-time PCR. To further investigate protein-level changes, immunocytochemistry (ICC) was performed to assess the expressions of SAA3 and SAA1. These analyses revealed that SAA3 mRNA expression was significantly enhanced by LPS and LTA, whereas SAA1 mRNA remained undetectable or showed only minimal responsiveness. Notably, only SAA3 protein expression increased in response to stimulation. These results indicate that SAA3 plays a crucial role in the innate immune response of BEnEpCs against gram-negative bacteria. Our in vitro findings may facilitate understanding of the innate immune activity in bovine uterus. Full article
Show Figures

Figure 1

16 pages, 2282 KiB  
Article
Comparison of LC-PUFAs Biosynthetic Characteristics in Male and Female Tilapia at Different Ontogenetic Stages
by Fang Chen, Liuling Gao, Junfeng Guan, Chao Xu, Deshou Wang, Yuanyou Li and Dizhi Xie
Life 2025, 15(8), 1167; https://doi.org/10.3390/life15081167 - 23 Jul 2025
Abstract
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil [...] Read more.
Tilapia possess the ability to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA); however, variations in this capacity across different growth stages and between sexes remain poorly understood. This study evaluated the LC-PUFA biosynthetic capacity in male and female tilapia fed two distinct diets—perilla oil (rich in α-linolenic acid, ALA) and peanut oil (rich in linoleic acid, LA)—over 24 weeks, spanning four growth stages (I-IV, from fry to adult). The results revealed that during stages I to III, both diets produced similar final body weights. However, in stage IV, male tilapia fed the peanut oil diet exhibited significantly higher body weight compared to those fed perilla oil, whereas females showed no significant differences between diets. Throughout stages III and IV, males were consistently heavier than females. LC-PUFA levels in the liver and intestine varied across growth stages, with the lowest levels at stage II and the highest at stage III. Notably, male tilapia exhibited higher expression levels of fads2 and elovl5 compared to the females across stages II to IV. The hepatic and intestinal mRNA levels increased by up to 6.40-fold and 3.85-fold, respectively, indicating a greater LC-PUFA biosynthetic capacity in males. This study provides valuable insights into the biosynthesis of LC-PUFA in tilapia, highlighting the influence of growth stage, sex and dietary fatty acid composition on this process, and laying a foundation for further evaluating the functional significance of dietary lipid sources in aquaculture. Full article
(This article belongs to the Special Issue Nutrition–Physiology Interactions in Aquatic Species)
Show Figures

Figure 1

18 pages, 8559 KiB  
Article
Recombinant Type XVII Collagen Promotes Hair Growth by Activating the Wnt/β-Catenin and SHH/GLI Signaling Pathways
by Yuyao Zhang, Shiyu Yin, Ru Xu, Jiayu Xiao, Rui Yi, Jiahui Mao, Zhiguang Duan and Daidi Fan
Cosmetics 2025, 12(4), 156; https://doi.org/10.3390/cosmetics12040156 - 23 Jul 2025
Abstract
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the [...] Read more.
(1) Background: As society progresses, increasing numbers of individuals are experiencing hair loss, which can be attributed to factors such as unhealthy diets, insufficient sleep, stress, and hormonal imbalances. Currently available pharmacological treatments for hair loss often cause undesirable side effects, highlighting the urgent need to explore safer and more effective agents to promote hair restoration. This study investigated the role of recombinant human type XVII collagen derived from the α1 chain (rhCOL17A1) in facilitating hair growth and restoration. (2) Methods: We analyzed the impact of rhCOL17A1 on the mRNA expression of several growth factors, as well as Bcl-2 and Bax, at the cellular level. Moreover, the effects of rhCOL17A1 on the expression of key proteins in the Wnt/β-catenin and Sonic Hedgehog (SHH)/GLI signaling pathways were examined by Western blotting (WB). At the organismal level, we established a model in C57BL/6 mice through chronic subcutaneous administration of 5% testosterone propionate. We subsequently assessed the effect of rhCOL17A1 on hair regrowth via histological analysis using hematoxylin and eosin (H&E) staining and immunofluorescence staining. (3) Results: rhCOL17A1 contributes to the resistance of hair follicle dermal papilla cells (HFDPCs) to apoptosis. rhCOL17A1 activates the Wnt/β-catenin and SHH/GLI signaling pathways, and increases the expression of type XVII collagen (COLXVII), thereby creating a favorable environment for hair growth. Furthermore, rhCOL17A1 exerts a significant growth-promoting effect at the animal level. (4) Conclusions: rhCOL17 promotes hair growth by activating the Wnt/β-catenin and SHH/GLI signaling pathways and upregulating COLXVII expression. Full article
Show Figures

Figure 1

20 pages, 1692 KiB  
Article
Molecular Mechanism of Metformin Regulating the Regeneration of Planarian Dugesia japonica Through miR-27b
by Kexin Yang, Minmin Feng, Chunmei Zhang, Zelong Zhao, Dandan Yin, Linxia Song and Zhenbiao Xu
Int. J. Mol. Sci. 2025, 26(15), 7092; https://doi.org/10.3390/ijms26157092 - 23 Jul 2025
Abstract
Metformin is one of the most commonly used medications to treat type 2 diabetes. In addition to lowering blood sugar, it can also promote the regeneration of certain organs or tissues. Planarian Dugesia japonica, with its remarkable regenerative capacity, has become an [...] Read more.
Metformin is one of the most commonly used medications to treat type 2 diabetes. In addition to lowering blood sugar, it can also promote the regeneration of certain organs or tissues. Planarian Dugesia japonica, with its remarkable regenerative capacity, has become an important model organism for studying pharmacology and regenerative medicine. Planarian eyespot regeneration involves precise tissue regeneration via mechanisms like cell proliferation, differentiation, and gene regulation following body damage. Experiments on planarian eyespot regeneration have confirmed that 1 mM metformin significantly promotes regeneration. Through analysis of the regenerating planarian miRNA database and the metformin-treated transcriptome database, combined with target gene prediction by TargetScan, the DjmiR-27b/DjPax6 axis was finally determined as the research focus. qPCR showed that metformin significantly affects the expression levels of DjmiR-27b and DjPax6. DjPax6 was identified as the target gene of DjmiR-27b through dual luciferase reporter gene analysis. Functional experiments revealed that metformin regulates the expression of DjPax6 via DjmiR-27b, thereby influencing the regeneration of planarian eyespots. In situ hybridization showed that both DjmiR-27b and DjPax6 are expressed throughout the entire body. This study reveals the molecular mechanism of metformin regulating planarian regeneration through miRNA, providing further insights into its role in the field of regeneration. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 15835 KiB  
Article
Gut Microbial Metabolites of Tryptophan Augment Enteroendocrine Cell Differentiation in Human Colonic Organoids: Therapeutic Potential for Dysregulated GLP1 Secretion in Obesity
by James Hart, Hassan Mansour, Harshal Sawant, Morrison Chicko, Subha Arthur, Jennifer Haynes and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(15), 7080; https://doi.org/10.3390/ijms26157080 - 23 Jul 2025
Abstract
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) [...] Read more.
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) have been implicated in obesity-associated metabolic complications. Gut microbial metabolites of dietary tryptophan (TRP) were recently shown to modulate ISC proliferation and differentiation. However, their specific effects on EEC differentiation are not known. We hypothesized that the gut microbial metabolites of dietary tryptophan counteract impaired GLP1 production and function in obesity by stimulating EEC differentiation from ISCs. We utilized complementary models of human and rat intestines to determine the effects of obesity or TRP metabolites on EEC differentiation. EEC differentiation was assessed by the EEC marker chromogranin A (CHGA) levels in the intestinal mucosa of normal versus obese rats. The effects of TRP metabolites on EEC differentiation were determined in human intestinal organoids treated with indole, a primary TRP metabolite, or the culture supernatant of Lactobacillus acidophilus grown in TRP media (LA-CS-TRP). Our results showed that the mRNA and protein levels of CHGA, the EEC marker, were significantly decreased (~60%) in the intestinal mucosa of high-fat-diet-induced obese rat intestines. The expression of the transcription factors that direct the ISC differentiation towards the EEC lineage was also decreased in obesity. In human organoids, treatment with indole or LA-CS-TRP significantly increased (more than 2-fold) CHGA levels, which were blocked by the aryl hydrocarbon receptor (AhR) antagonist CH-223191. Thus, the stimulation of EEC differentiation by colonic microbial metabolites highlights a novel therapeutic role of TRP metabolites in obesity and associated metabolic disorders. Full article
Show Figures

Figure 1

10 pages, 1098 KiB  
Article
Zyxin Gene Expression in Patients with Varying Degrees of Coronary Artery Disease
by Joanna Głogowska-Ligus, Józefa Dąbek, Agata Wypych-Ślusarska, Klaudia Oleksiuk, Karolina Krupa-Kotara, Ewelina Sobecko, Elżbieta Czech and Jerzy Słowiński
Int. J. Mol. Sci. 2025, 26(15), 7072; https://doi.org/10.3390/ijms26157072 - 23 Jul 2025
Abstract
Acute coronary syndrome (ACS) remains the leading cause of mortality in developed countries. Although recent advances have improved our understanding of the pathophysiology of ACS and its primary consequence, myocardial infarction, many questions remain regarding the molecular and cellular changes occurring during and [...] Read more.
Acute coronary syndrome (ACS) remains the leading cause of mortality in developed countries. Although recent advances have improved our understanding of the pathophysiology of ACS and its primary consequence, myocardial infarction, many questions remain regarding the molecular and cellular changes occurring during and after an infarction. This study aimed to evaluate the expression levels of the zyxin (ZYX) gene in patients with ACS, stable coronary artery disease (stable CAD), and healthy controls. RNA was extracted from PBMCs and analyzed by quantitative real-time PCR (qRT-PCR). Gene expression was measured using TaqMan Gene Expression Assays and the number of ZYX mRNA molecules was quantified based on qRT-PCR kinetics. Kruskal–Wallis was used to compare gene expression levels among the three groups. A significantly higher number of ZYX gene copies was observed in both the ACS and stable CAD groups than in healthy controls (p < 0.0001 and p < 0.001, respectively). A statistically significant difference was also observed between the ACS and stable CAD groups (p = 0.004). The increased expression of zyxin observed in patients with ACS and stable CAD may reflect cellular repair mechanisms activated in response to myocardial injury. Full article
Show Figures

Figure 1

17 pages, 2774 KiB  
Article
Chronic Morphine Treatment Leads to a Global DNA Hypomethylation via Active and Passive Demethylation Mechanisms in mESCs
by Manu Araolaza, Iraia Muñoa-Hoyos, Itziar Urizar-Arenaza, Irune Calzado and Nerea Subirán
Int. J. Mol. Sci. 2025, 26(15), 7056; https://doi.org/10.3390/ijms26157056 - 22 Jul 2025
Abstract
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect [...] Read more.
Epigenetic regulation, particularly DNA methylation, plays a crucial role in embryonic development by controlling gene expression patterns. The disruption of this regulation by environmental factors can have long-lasting consequences. Opioid drugs, such as morphine, are known to cross the placental barrier and affect the developing central nervous system, yet their precise epigenetic effects during early development remain unclear. This study aimed to elucidate the impact of chronic morphine exposure on the DNA methylation landscape and gene expression in mouse embryonic stem cells (mESCs). mESCs were chronically exposed to morphine (10 μM for 24 h). Genome-wide bisulfite sequencing was performed to identify DNA methylation changes, while RNA sequencing (RNA-Seq) assessed corresponding gene expression alterations. Global levels of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) were quantified using mass spectrometry. Morphine exposure induced global DNA hypomethylation and identified 16,808 differentially methylated genes (DMGs) related to development, cell signalling, metabolism, and transcriptional regulation. Integrative transcriptomic analysis with RNA-Seq data revealed 651 overlapping genes, including alterations in key epigenetic regulators involved on DNA methylation machinery. Specifically, Tet1 was upregulated with promoter hypomethylation, while Dnmt1 was downregulated, without changes in promoter methylation after morphine exposiure. Mass spectrometry results confirmed a global decrease in 5mC levels alongside increased 5hmC, indicating the involvement of both passive and active demethylation pathways. These findings demonstrate for the first time that morphine disrupts the epigenetic homeostasis of mESCs by promoting global and gene-specific DNA demethylation, which might be key to the phenotypic changes that occur in adulthood. This work provides novel mechanistic insights into how opioid exposure during early development may lead to persistent epigenetic alterations, with potential long-term implications for neurodevelopment and disease susceptibility. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Correlates of SARS-CoV-2 Breakthrough Infections in Kidney Transplant Recipients Following a Third SARS-CoV-2 mRNA Vaccine Dose
by Miriam Viktov Thygesen, Charlotte Strandhave, Jeanette Mølgaard Kiib, Randi Berg, Malene Söth Andersen, Emma Berggren Dall, Bodil Gade Hornstrup, Hans Christian Østergaard, Frank Holden Mose, Jon Waarst Gregersen, Søren Jensen-Fangel, Jesper Nørgaard Bech, Henrik Birn, Marianne Kragh Thomsen and Rasmus Offersen
Vaccines 2025, 13(8), 777; https://doi.org/10.3390/vaccines13080777 - 22 Jul 2025
Abstract
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in [...] Read more.
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in KTRs and assessed the association between antibody response and protection against SARS-CoV-2 breakthrough infection. Additionally, the clinical and immunological correlates of post-vaccination SARS-CoV-2 infection were examined. Methods: A prospective cohort of 135 KTRs received a third vaccine dose approximately six months following the second dose. Plasma samples were collected at baseline (pre-vaccination), six months after the second dose, and six weeks following the third dose. Humoral responses were assessed using SARS-CoV-2-specific Immunoglobulin G (IgG) titers and virus neutralization assays against wild-type (WT) and viral strains, including multiple Omicron sub-lineages. Results: After the third vaccine dose, 74% of the KTRs had detectable SARS-CoV-2-specific IgG antibodies, compared with 48% following the second dose. The mean IgG titers increased approximately ten-fold post-booster. Despite this increase, neutralizing activity against the Omicron variants remained significantly lower than that against the WT strain. KTRs who subsequently experienced a SARS-CoV-2 breakthrough infection demonstrated reduced neutralizing antibody activity across all variants tested. Additionally, individuals receiving triple immunosuppressive therapy had a significantly higher risk of SARS-CoV-2 breakthrough infection compared with those on dual or monotherapy. A multivariate machine learning analysis identified age and neutralizing activity against WT, Delta, and Omicron BA.2 as the most robust correlates of SARS-CoV-2 breakthrough infection. Conclusions: A third SARS-CoV-2 mRNA vaccine dose significantly improves SARS-CoV-2-specific IgG levels in KTRs; however, the neutralizing response against Omicron variants remains suboptimal. Diminished neutralizing capacity and intensified immunosuppression are key determinants of SARS-CoV-2 breakthrough infection in this immunocompromised population. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

16 pages, 4826 KiB  
Article
Formulation-Driven Optimization of PEG-Lipid Content in Lipid Nanoparticles for Enhanced mRNA Delivery In Vitro and In Vivo
by Wei Liu, Meihui Zhang, Huiyuan Lv and Chuanxu Yang
Pharmaceutics 2025, 17(8), 950; https://doi.org/10.3390/pharmaceutics17080950 - 22 Jul 2025
Abstract
Background: Lipid nanoparticles (LNPs) represent one of the most effective non-viral vectors for nucleic acid delivery and have demonstrated clinical success in siRNA therapies and mRNA vaccines. While considerable research has focused on optimizing ionizable lipids and helper lipids, the impact of [...] Read more.
Background: Lipid nanoparticles (LNPs) represent one of the most effective non-viral vectors for nucleic acid delivery and have demonstrated clinical success in siRNA therapies and mRNA vaccines. While considerable research has focused on optimizing ionizable lipids and helper lipids, the impact of PEGylated lipid content on LNP-mediated mRNA delivery, especially in terms of in vitro transfection efficiency and in vivo performance, remains insufficiently understood. Methods: In this study, LNPs were formulated using a self-synthesized ionizable lipid and varying molar ratios of DMG-PEG2000. Nanoparticles were prepared via nanoprecipitation, and their physicochemical properties, mRNA encapsulation efficiency, cellular uptake, and transfection efficiency were evaluated in HeLa and DC2.4 cells. In vivo delivery efficiency and organ distribution were assessed in mice following intravenous administration. Results: The PEGylated lipid content exerted a significant influence on both the in vitro and in vivo performance of LNPs. A bell-shaped relationship between PEG content and transfection efficiency was observed: 1.5% DMG-PEG2000 yielded optimal mRNA transfection in vitro, while 5% DMG-PEG2000 resulted in the highest transgene expression in vivo. This discrepancy in optimal PEG content may be attributed to the trade-off between cellular uptake and systemic circulation: lower PEG levels enhance cellular internalization, whereas higher PEG levels improve stability and in vivo bioavailability at the expense of cellular entry. Furthermore, varying the PEG-lipid content enabled the partial modulation of organ distribution, offering a formulation-based strategy to influence biodistribution without altering the ionizable lipid structure. Conclusions: This study highlights the critical role of PEGylated lipid content in balancing nanoparticle stability, cellular uptake, and in vivo delivery performance. Our findings provide valuable mechanistic insights and suggest a straightforward formulation-based strategy to optimize LNP/mRNA systems for therapeutic applications. Full article
Show Figures

Graphical abstract

8 pages, 548 KiB  
Article
Differential NF-κB mRNA Expression in Blood and Buccal Mucosa of Pediatric Patients with RSV Bronchiolitis
by Francesco Savino, Cristina Calvi, Stefano Gambarino, Maddalena Dini, Anna Pau, Paola Montanari, Anna Clemente, Ilaria Galliano and Massimiliano Bergallo
Genes 2025, 16(8), 851; https://doi.org/10.3390/genes16080851 - 22 Jul 2025
Abstract
Background: Respiratory syncytial virus (RSV) bronchiolitis is a leading cause of lower respiratory tract infections in children under two years of age. NF-κB is a key transcription factor in antiviral and inflammatory responses. This study investigates the expression of NF-κB mRNA in both [...] Read more.
Background: Respiratory syncytial virus (RSV) bronchiolitis is a leading cause of lower respiratory tract infections in children under two years of age. NF-κB is a key transcription factor in antiviral and inflammatory responses. This study investigates the expression of NF-κB mRNA in both blood and buccal swab samples of pediatric patients hospitalized for RSV bronchiolitis, comparing levels at admission and discharge. Methods: Paired peripheral blood and buccal swab samples were collected from pediatric patients (n = 85) at hospital admission and discharge. Quantitative real-time PCR was used to assess NF-κB mRNA levels. Results: NF-κB mRNA levels significantly decreased in blood between admission and discharge (p < 0.05), while no significant change was observed in buccal swabs. Conclusions: These results suggest a compartment-specific regulation of NF-κB, with systemic inflammatory resolution at discharge and persistent or distinct mucosal immune activity. Understanding these dynamics may improve our approach to monitoring and treating RSV bronchiolitis. Full article
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Postmortem Changes in mRNA Expression and Tissue Morphology in Brain and Femoral Muscle Tissues of Rat
by Sujin Choi, Minju Jung, Mingyoung Jeong, Sohyeong Kim, Dong Geon Lee, Kwangmin Park, Xianglan Xuan, Heechul Park, Dong Hyeok Kim, Jungho Kim, Min Ho Lee, Yoonjung Cho and Sunghyun Kim
Int. J. Mol. Sci. 2025, 26(15), 7059; https://doi.org/10.3390/ijms26157059 - 22 Jul 2025
Abstract
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s [...] Read more.
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s nomogram, which uses rectal temperature measurement; livor mortis; rigor mortis; and forensic entomology. However, these methods are usually affected by various conditions in the surrounding environment. The purpose of the present study was to compare molecular genetics and histological changes in the brain and skeletal muscle tissues of SD rats over increasing periods of time after death. For the PMIs, we considered 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 4 days, 6 days, 8 days, 10 days, 14 days, and 21 days and compared them at 4 °C and 26 °C. Hematoxylin and Eosin (H&E) staining was performed to observe tissue changes. Morphological tissue changes were observed in cells for up to 21 days at 4 °C, and cell destruction was visually confirmed after 14 days at 26 °C. Total RNA (tRNA) was isolated from each tissue sample, and complementary DNA (cDNA) was synthesized. A reverse transcription quantitative PCR (RT-qPCR) SYBR Green assay targeting three types of housekeeping genes, including Gapdh, Sort1, B2m, and 5S rRNA, was performed. The results showed that Gapdh and 5S rRNA were highly stable and could be better RNA targets for estimating the PMI in brain and skeletal muscle tissues. Conversely, Sort1 and B2m showed poor stability and low expression levels. In conclusion, these molecular biomarkers could be used as auxiliary indicators of the PMI in human, depending on the stability of the marker. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

22 pages, 4544 KiB  
Article
Aspirin Eugenol Ester Ameliorates HFD-Induced NAFLD in Mice via the Modulation of Bile Acid Metabolism
by Zhi-Jie Zhang, Qi Tao, Ji Feng, Qin-Fang Yu, Li-Ping Fan, Zi-Hao Wang, Wen-Bo Ge, Jian-Yong Li and Ya-Jun Yang
Int. J. Mol. Sci. 2025, 26(15), 7044; https://doi.org/10.3390/ijms26157044 - 22 Jul 2025
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This study investigated the ameliorative effects of AEE on glucose and lipid metabolism disorders by in vitro and in vivo experiments. In the cellular model, TC increased to 0.104 μmol/mg and TG increased to 0.152 μmol/mg in the model group, while TC decreased to 0.043 μmol/mg and TG decreased to 0.058 μmol/mg in the AEE group. In the model group, the area occupied by lipid droplets within the visual field was significantly elevated to 17.338%. However, the administration of AEE resulted in a substantial reduction in this area to 10.064%. AEE significantly reduced the lipid droplet area and TC and TG levels (p < 0.05), increased bile acids in the cells and in the medium supernatant (p < 0.05), and significantly up-regulated the expression of LRH-1, PPARα, CYP7A1, and BSEP mRNA levels (p < 0.05) compared to the model group. In the animal model, different doses of AEE administration significantly down-regulated the levels of TC, TG, LDL, GSP, and FBG (p < 0.05) compared to the high-fat-diet (HFD) group, and 216 mg/kg of AEE significantly improved hepatocellular steatosis, attenuated liver injury, and reduced the area of glycogen staining (p < 0.05). In the HFD group, the glycogen area within the visual field exhibited a significant increase to 18.250%. However, the administration of AEE resulted in a notable reduction in the glycogen area to 13.314%. Liver and serum metabolomics results show that AEE can reverse the metabolite changes caused by a HFD. The major metabolites were involved in seven pathways, including riboflavin metabolism, glycerophospholipid metabolism, tryptophan metabolism, primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, nicotinate and nicotinamide metabolism, and tryptophan metabolism. In conclusion, AEE had a positive regulatory effect on NAFLD. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

Back to TopTop