Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = mQueen-2m

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1309 KB  
Article
Distribution and Quantification of Infectious and Parasitic Agents in Managed Honeybees in Central Italy, the Republic of Kosovo, and Albania
by Franca Rossi, Martina Iannitto, Beqe Hulaj, Luciano Ricchiuti, Ani Vodica, Patrizia Tucci, Franco Mutinelli and Anna Granato
Microorganisms 2026, 14(1), 219; https://doi.org/10.3390/microorganisms14010219 - 17 Jan 2026
Viewed by 311
Abstract
This study aimed to determine the presence of relevant infectious and parasitic agents (IPAs) in managed honeybees from Central Italy and the Republic of Kosovo and Albania to assess the overall health status of local apiaries by determining the contamination levels and co-occurrence. [...] Read more.
This study aimed to determine the presence of relevant infectious and parasitic agents (IPAs) in managed honeybees from Central Italy and the Republic of Kosovo and Albania to assess the overall health status of local apiaries by determining the contamination levels and co-occurrence. Therefore, pathogens and parasites such as Paenibacillus larvae, Melissococcus plutonius, Vairimorpha apis, V. ceranae, the acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), deformed wing virus variants DWV-A and DWV-B, and the parasitoid flies Megaselia scalaris and Senotainia tricuspis were detected by quantitative polymerase chain reaction (qPCR) and reverse transcriptase qPCR (RT-qPCR) in clinically healthy adult honeybees collected from 187 apiaries in the Abruzzo and Molise regions of Central Italy, 206 apiaries in the Republic of Kosovo in 2022 and 2023 and 18 apiaries in Albania in 2022. The percentages of positive samples and contamination for V. ceranae, P. larvae and DWV-B were significantly higher in the Republic of Kosovo and Albania, while the percentages of samples positive for M. plutonius, CBPV, DWV-A, and the parasitoid flies were higher in Central Italy. Additionally, P. larvae and some viruses showed significantly different occurrence rates between the two years in Italy and the Republic of Kosovo. The co-occurrence of IPAs also differed between the two geographic areas. Their varying distribution could depend on epidemiological dynamics, climatic factors, and management practices specific to each country, whose relative impact should be defined to guide targeted interventions to reduce honeybee mortality. Full article
(This article belongs to the Special Issue Infectious Diseases in Animals)
Show Figures

Figure 1

15 pages, 4705 KB  
Article
Distribution Patterns, Nesting Ecology and Nest Characteristics of the Stingless Bees (Tetragonula pagdeni Schwarz) in West Bengal, India
by Ujjwal Layek and Prakash Karmakar
Conservation 2025, 5(4), 63; https://doi.org/10.3390/conservation5040063 - 30 Oct 2025
Viewed by 1117
Abstract
Stingless bees, particularly Tetragonula pagdeni, are vital for both ecosystems and the economy due to their pollination services and nest products. However, little is known about their nesting habits. This study investigated the nesting ecology of Tetragonula pagdeni in West Bengal, India. [...] Read more.
Stingless bees, particularly Tetragonula pagdeni, are vital for both ecosystems and the economy due to their pollination services and nest products. However, little is known about their nesting habits. This study investigated the nesting ecology of Tetragonula pagdeni in West Bengal, India. The species was found inhabiting a variety of landscapes, including agricultural, forest, rural, semi-urban, and urban areas, with a greater abundance in rural areas featuring mixed vegetation. Colonies, which were eusocial, perennial, and cavity-nesting, occupied diverse substrates, including tree trunks, building walls, rock crevices, electric poles, and field ridges—tree trunks and walls being the most common. Wild nests were located at heights ranging from 0 to 13.46 m, mostly around 2 m. Nest entrances varied in shape (circular, oval, slit-like, or irregular), with a longest opening axis of 10.50 ± 2.94 mm, and were oriented in multiple directions. Internally, nests measured 198.31 ± 86.36 mm in length and 142.73 ± 17.28 mm in width. Nests featured brood zones surrounded by honey and pollen pots, along with structure-supporting elements like the involucra and pillars. Brood cells were light brown and oval; those for workers and drones were similar, while queen cells were larger. Honey pots were light to dark brown, oval, dome-shaped, or irregular. Each involucrum was a thin, flat sheet, and the pillar was short, narrow, thread-like. These findings offer valuable insights into the distribution, nesting behaviour, and nest architecture of Tetragonula pagdeni, supporting its conservation and sustainable management. Full article
Show Figures

Figure 1

20 pages, 3789 KB  
Article
A Geostatistical Predictive Framework for 3D Lithological Modeling of Heterogeneous Subsurface Systems Using Empirical Bayesian Kriging 3D (EBK3D) and GIS
by Amal Abdelsattar and Ezz El-Din Hemdan
Geomatics 2025, 5(4), 60; https://doi.org/10.3390/geomatics5040060 - 28 Oct 2025
Viewed by 823
Abstract
Predicting subsoil properties accurately is important for engineering tasks like construction, land development, and environmental management. However, traditional approaches that use borehole data often face challenges because the data is sparse and unevenly spread, which can cause uncertainty in understanding the subsurface. This [...] Read more.
Predicting subsoil properties accurately is important for engineering tasks like construction, land development, and environmental management. However, traditional approaches that use borehole data often face challenges because the data is sparse and unevenly spread, which can cause uncertainty in understanding the subsurface. This study introduces a novel geostatistical framework employing Empirical Bayesian Kriging 3D (EBK3D) within a Geographic Information System (GIS), which was developed to construct three-dimensional lithological models. The framework was applied to 265 boreholes from the Queen Mary Reservoir in London. ArcGIS Pro was used to interpolate lithology layers using EBK3D, resulting in voxel-based models that represent both horizontal and vertical lithological variations. Model validation was performed with an independent dataset comprising 30% of the boreholes. The results demonstrated high predictive accuracy for layer elevations (Pearson’s r = 0.99, MAE = 0.31 m). The model achieved 100% accuracy in predicting borehole stratigraphy in homogenous zones and correctly identified 77% of lithological layers in heterogeneous zones. In complex regions, the model accurately predicted the whole borehole in 49% of cases. This framework provides a reliable, repeatable, and cost-effective method for three-dimensional subsurface characterization, enhancing traditional approaches by automating uncertainty quantification and capturing both vertical and horizontal variability. Full article
Show Figures

Figure 1

27 pages, 2308 KB  
Article
Effect of Weather Conditions on Phytochemical Profiles in Organically Grown Cowpea (Vigna unguiculata L. Walp)
by Jamila M. Mweta, Getrude G. Kanyairita, Franklin Quarcoo, Faraja Makwinja, Daniel A. Abugri, Gregory Bernard, Toufic Nashar, Desmond G. Mortley, Melissa Boersma and Conrad K. Bonsi
Plants 2025, 14(20), 3179; https://doi.org/10.3390/plants14203179 - 16 Oct 2025
Viewed by 606
Abstract
Cowpeas are prone to abiotic (heat and drought) and biotic (pathogens and insect pests) stresses, with the former representing the predominant challenge, causing poor growth and reduced yield globally under changing climatic conditions. Cowpea can synthesize phytochemicals to respond to these stresses; however, [...] Read more.
Cowpeas are prone to abiotic (heat and drought) and biotic (pathogens and insect pests) stresses, with the former representing the predominant challenge, causing poor growth and reduced yield globally under changing climatic conditions. Cowpea can synthesize phytochemicals to respond to these stresses; however, there is limited information on the impact of weather on phytochemical biosynthesis in the cowpea phyllosphere. Phytochemical profiles were determined via chromatographic and spectrophotometric analyses of leaf samples from six cowpea varieties grown during 2020–2021. A total of 10 fatty acid methyl esters (FAMEs) and 62 diverse metabolites were identified across varieties and seasons, with higher levels in 2020 under elevated temperatures and rainfall. The Queen Anne (QA) variety exhibited the maximum concentration of elaidic oleic acid (cis + trans), behenate, lignocerate, methyl laurate, and methyl palmitate (with the highest concentration at 258.415 µg/mL), and the Whippoorwill Steele’s Black (WP) variety predominantly exhibited diverse phytochemicals with high peak areas during 2020, including phenolic acids, phytohormones, alkaloids, flavonoids, and amino acids. While higher overall increases were observed in 2020, some compounds and varieties peaked in 2021, including FAMEs in the Colossus (CL) variety and other phytochemicals in QA. Flavonoid, flavone, and flavonol biosynthesis; phenylalanine metabolism; and tyrosine metabolism were significantly affected, leading to the accumulation of metabolites. Understanding plant–climate interactions will help farmers with variety selection and planting decisions. This study suggests that further research on the temperature mechanism for the biosynthetic pathways of these metabolites in the screened cowpea varieties is required. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

29 pages, 7187 KB  
Article
A Novel Framework for Predicting Daily Reference Evapotranspiration Using Interpretable Machine Learning Techniques
by Elsayed Ahmed Elsadek, Mosaad Ali Hussein Ali, Clinton Williams, Kelly R. Thorp and Diaa Eldin M. Elshikha
Agriculture 2025, 15(18), 1985; https://doi.org/10.3390/agriculture15181985 - 20 Sep 2025
Cited by 2 | Viewed by 823
Abstract
Accurate estimation of daily reference evapotranspiration (ETo) is crucial for sustainable water resource management and irrigation scheduling, especially in water-scarce regions like Arizona. The standardized Penman–Monteith (PM) method is costly and requires specialized instruments and expertise, making it generally impractical for [...] Read more.
Accurate estimation of daily reference evapotranspiration (ETo) is crucial for sustainable water resource management and irrigation scheduling, especially in water-scarce regions like Arizona. The standardized Penman–Monteith (PM) method is costly and requires specialized instruments and expertise, making it generally impractical for commercial growers. This study developed 35 ETo models to predict daily ETo across Coolidge, Maricopa, and Queen Creek in Pinal County, Arizona. Seven input combinations of daily meteorological variables were used for training and testing five machine learning (ML) models: Artificial Neural Network (ANN), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Support Vector Machine (SVM). Four statistical indicators, coefficient of determination (R2), the normalized root-mean-squared error (RMSEn), mean absolute error (MAE), and simulation error (Se), were used to evaluate the ML models’ performance in comparison with the FAO-56 PM standardized method. The SHapley Additive exPlanations (SHAP) method was used to interpret each meteorological variable’s contribution to the model predictions. Overall, the 35 ETo-developed models showed an excellent to fair performance in predicting daily ETo over the three weather stations. Employing ANN10, RF10, XGBoost10, CatBoost10, and SVM10, incorporating all ten meteorological variables, yielded the highest accuracies during training and testing periods (0.994 ≤ R2 ≤ 1.0, 0.729 ≤ RMSEn ≤ 3.662, 0.030 ≤ MAE ≤ 0.181 mm·day−1, and 0.833 ≤ Se ≤ 2.295). Excluding meteorological variables caused a gradual decline in ET-developed models’ performance across the stations. However, 3-variable models using only maximum, minimum, and average temperatures (Tmax, Tmin, and Tave) predicted ETo well across the three stations during testing (17.655 ≤ RMSEn ≤ 13.469 and Se ≤ 15.45%). Results highlighted that Tmax, solar radiation (Rs), and wind speed at 2 m height (U2) are the most influential factors affecting ETo at the central Arizona sites, followed by extraterrestrial solar radiation (Ra) and Tave. In contrast, humidity-related variables (RHmin, RHmax, and RHave), along with Tmin and precipitation (Pr), had minimal impact on the model’s predictions. The results are informative for assisting growers and policymakers in developing effective water management strategies, especially for arid regions like central Arizona. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

17 pages, 540 KB  
Article
Kalemia Significantly Influences Clinical Outcomes in Patients with Severe Traumatic Brain Injury (TBI)
by Bharti Sharma, Munirah Hasan, Usha S. Govindarajulu, George Agriantonis, Navin D. Bhatia, Jasmine Dave, Juan Mestre, Shalini Arora, Saad Bhatti, Zahra Shafaee, Suganda Phalakornkul, Kate Twelker and Jennifer Whittington
Diagnostics 2025, 15(15), 1878; https://doi.org/10.3390/diagnostics15151878 - 26 Jul 2025
Viewed by 1137
Abstract
Objective: Potassium levels (KLs) influence clinical outcomes in severe traumatic brain injury (TBI). This study investigates the relationship between KLs and clinical outcomes to improve prognosis and guide management. Method: A retrospective study was conducted at a level 1 trauma center [...] Read more.
Objective: Potassium levels (KLs) influence clinical outcomes in severe traumatic brain injury (TBI). This study investigates the relationship between KLs and clinical outcomes to improve prognosis and guide management. Method: A retrospective study was conducted at a level 1 trauma center in Queens, New York, from January 2020 to December 2023. Patients with an AIS score of 3 or higher were included. KLs were measured at the time of hospital admission, ICU admission, ICU discharge, hospital discharge, and death, if applicable. Clinical outcomes such as age, race, length of hospital stay (H LOS), ICU length of stay (ICU LOS), ventilation days (VDs), Glasgow Coma Scale (GCS), and mortality were assessed. Results: KLs were categorized into five groups: extreme hypokalemia (<2.5 mEq/L), hypokalemia (2.6–3.5 mEq/L), normokalemia (3.5–5.2 mEq/L), hyperkalemia (5.2–7.0 mEq/L), and extreme hyperkalemia (>7.0 mEq/L). Significant correlations were observed between KLs at hospital admission and age (p = 0.0113), race (p = 0.003), and H LOS (p = 0.079). ICU KLs showed positive correlations with AIS head score (p = 0.038), ISS (p = 7.84 × 10−6), and GCS (p = 2.6 × 10−6). ICU KLs were also associated with LOS in the Emergency Department (ED) (p = 6.875 × 10−6) and ICU (p = 1.34 × 10−21), as well as VDs (p = 7.19 × 10−7). ICU discharge KLs correlated with ISS (p = 2.316 × 10−3), GCS (p = 2.201 × 10−3), ED LOS (p = 3.163 × 10−4), and VDs (p = 7.44 × 10−4). KLs at discharge were linked with mortality (p < 0.0001) and H LOS (p = 0.0091). Additionally, KLs at the time of death were correlated with ISS (p = 0.01965), GCS (p = 0.01219), ED LOS (p = 0.00594), ICU LOS (p = 0.049), VDs (p = 0.00005), and mortality (p < 0.0001). Conclusions: Potassium imbalances, especially hypokalemia, significantly affect outcomes in severe TBI patients. Monitoring and managing KLs may improve prognosis. Full article
(This article belongs to the Special Issue Diagnostics in the Emergency and Critical Care Medicine)
Show Figures

Figure 1

12 pages, 751 KB  
Article
Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania
by Nijolė Vaitkevičienė, Jolita Višinskytė, Jūratė Staveckienė, Dovilė Levickienė and Jurgita Kulaitienė
Agriculture 2025, 15(13), 1332; https://doi.org/10.3390/agriculture15131332 - 20 Jun 2025
Viewed by 804
Abstract
Potatoes are a valuable source of diverse bioactive compounds, including phenolics. In recent years, red- and purple-fleshed cultivars have garnered increasing scientific interest due to their higher content of phenolic compounds. The aim of this study was to evaluate the impact of 60%, [...] Read more.
Potatoes are a valuable source of diverse bioactive compounds, including phenolics. In recent years, red- and purple-fleshed cultivars have garnered increasing scientific interest due to their higher content of phenolic compounds. The aim of this study was to evaluate the impact of 60%, 80%, and 100% methanol concentrations on the extraction of bioactive phenolic compounds from three red- and purple-fleshed potato cultivars. The qualitative and quantitative composition of phenolic compounds, the total anthocyanin content, as well as antioxidant activity in the prepared potato extracts were investigated. The results showed that the contents of the tested compounds and antioxidant activity in potato tuber methanolic extracts varied depending on the cultivar and methanol concentration. The potato extract obtained by 60% and 80% methanol showed the significantly highest contents of total phenolics (TPs) and total phenolic acids (TPAs). ‘Violet Queen’ extracts with 60% and 80% methanol had the significantly highest contents of TP, TPA, and caffeic acid. The significantly highest contents of p-coumaric acid were observed in ‘Mulberry Beauty’ extracts using 60% and 80% methanol. The significantly highest contents of epicatechin and quercetin were found in ‘Violet Queen’ extracts with 80% methanol, while the highest contents of myricetin, m-coumaric, and o-coumaric acids as well as the highest antioxidant activity were recorded in ‘Violet Queen’ extracts with 60% methanol. Full article
Show Figures

Figure 1

12 pages, 1922 KB  
Article
Nosemosis in Russian Apis mellifera L. Populations: Distribution and Association with Hybridization
by Milyausha Kaskinova, Luisa Gaifullina, Gleb Zaitsev, Alexandr Davydychev and Elena Saltykova
Insects 2025, 16(6), 641; https://doi.org/10.3390/insects16060641 - 18 Jun 2025
Viewed by 1209
Abstract
One of the common causes of mass death in bee colonies is the infectious disease nosemosis, which is caused by two types of microsporidia, Nosema apis and Nosema ceranae. Of the many factors contributing to the spread of nosemosis, in this paper [...] Read more.
One of the common causes of mass death in bee colonies is the infectious disease nosemosis, which is caused by two types of microsporidia, Nosema apis and Nosema ceranae. Of the many factors contributing to the spread of nosemosis, in this paper we consider the hybridization of subspecies of Apis mellifera L. In most of Russia, the native subspecies is the dark forest bee Apis mellifera mellifera, which is representative of the evolutionary lineage M. The export of bee packages and queens from the southern regions of Russia and other countries has led to the fragmentation of the range of these subspecies. First, we determined the maternal and paternal ancestry of 349 honey bee colonies across 12 beekeeping regions of Russia using the mitochondrial tRNAleu-COII locus and nine nuclear SSR markers (Ap243, 4a110, A024, A008, A43, A113, A088, Ap049, and A028). Among them, 140 colonies belonged to subspecies A. m. mellifera, 58 colonies were of hybrid origin, and 151 colonies belonged to evolutionary lineage C. Then, using microscopy and PCR analysis, we performed diagnostics of nosemosis in the studied colonies: N. apis was detected in 87 colonies, N. ceranae in 102 colonies, and coinfection was observed in 36 colonies. The results of our study indicate that the main reservoir of Nosema microsporidia was bees of evolutionary lineage C. Full article
(This article belongs to the Special Issue Recent Advances in Bee Parasite, Pathogen, and Predator Interactions)
Show Figures

Figure 1

15 pages, 2846 KB  
Article
Anti-Senescence and Anti-Photoaging Activities of Mangosteen Pericarp Extract on UVA-Induced Fibroblasts
by Kunlathida Luangpraditkun, Piyachat Kasemkiatsakul, Tanikan Sangnim, Somnathtai Yammen, Jinnipha Pajoubpong and Boonyadist Vongsak
Cosmetics 2025, 12(3), 108; https://doi.org/10.3390/cosmetics12030108 - 23 May 2025
Cited by 1 | Viewed by 3457
Abstract
Waste products from agricultural crops can become valuable if their benefits are discovered. Mangosteen, known as the “queen of fruits”, has a pericarp extract that has been reported to possess various biological activities, including antioxidation, anti-inflammation, antimicrobial activity, and UVB protection (in vitro [...] Read more.
Waste products from agricultural crops can become valuable if their benefits are discovered. Mangosteen, known as the “queen of fruits”, has a pericarp extract that has been reported to possess various biological activities, including antioxidation, anti-inflammation, antimicrobial activity, and UVB protection (in vitro and in vivo). In this work, we revealed that mangosteen pericarp extract (MPE) exhibits photoprotective properties in primary human dermal fibroblasts (PHDFs) exposed to ultraviolet A (UVA). The α-mangostin content, a major compound in MPE, was determined to be 60.9 ± 1.2% using HPLC. In an in vitro, cell-based assay, we first assessed the cytotoxicity of MPE on PHDFs using the MTT assay. The highest concentration of MPE that showed no cytotoxicity was 50.0 µg/mL. For antioxidative effects, MPE reduced intracellular ROS levels induced by H2O2, compared to H2O2-treated PHDFs. To assess the photoprotective effect of MPE, cells were pretreated with MPE for 24 h before exposure to UVA at an intensity of 5 J/cm2. Our data demonstrated that MPE pretreatment reduced the accumulation of senescent cells compared to UVA-induced senescent cells (7.1 ± 2.4% vs. 12.0 ± 0.2%, respectively). In addition, we examined key aging-related markers, including matrix metalloproteinase 1 (MMP-1) and collagen type I. The expression level of MMP-1 levels was 23,873.4 ± 5498.1 pg/mL in MPE-treated, UVA-induced PHDFs, compared to 38,929.1 ± 6971.4 pg/mL in untreated UVA-induced PHDFs. Meanwhile, procollagen type I in MPE-pretreated PHDFs was 56,443.3 ± 3623.8 pg/mL, compared to 37,137.4 ± 4614.8 pg/mL in UVA-induced PHDFs. These experimental results highlight the photoprotective properties of Garcinia mangostana peel extract, which contains α-mangostin as a major compound, and suggest its potential as an active ingredient in cosmeceuticals for protecting against UVA-induced aging. To the best of our knowledge, this is the first study to report the photoprotective effects of MPE on UVA-induced senescent cells. Full article
Show Figures

Graphical abstract

14 pages, 1818 KB  
Article
Pesticide Pollution Provokes Histopathological Alterations in Apis mellifera (Linnaeus, 1758) Drone Gonads
by Stela Stoyanova, Elenka Georgieva, Plamen Petrov, Vesela Yancheva, László Antal, Dóra Somogyi, Krisztián Nyeste and Evgeniya N. Ivanova
Environments 2025, 12(6), 173; https://doi.org/10.3390/environments12060173 - 22 May 2025
Cited by 1 | Viewed by 1045
Abstract
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with [...] Read more.
Honey bees are one of the most significant pollinators and contribute to the pollination of various crops. The honey bee, Apis mellifera (Linnaeus, 1758), has unique characteristics that could be successfully used to improve biomonitoring approaches in assessing environmental interactions. Three apiaries with different rates of honey bee colony losses were included in the study—Dimovtsi, Plovdiv, and Krasnovo, Bulgaria. Male individuals (immature and mature) were collected from five colonies for each of the three apiaries and studied for histopathological changes in the gonads. The results concerning the rate of honey bee colony losses in the studied apiaries from 2022 and 2023 showed honey bee losses in the tested colonies due to queen problems, which were reported for Plovdiv, as well as the death of honey bees or a reduction in their number to a few hundred bees in the colony. The chemical analysis showed the presence of different organic substances, such as Coumaphos, DEET (N, N-diethyl-M-toluamide), Fluvalinate, and Piperonyl-butoxide, in the alive and dead honey bee samples and those of food stocks (wax, pollen, and honey) within the hives. Among the sample types, those of the dead honey bees contained the greatest variety of pesticide residues, particularly in Plovdiv and Dimovtsi, reinforcing the link between pesticide exposure and honey bee mortality. The histopathological alterations were mainly associated with the thinning of the covering epithelium of the seminiferous tubules and the detachment of the basement membrane of the seminiferous tubules. The more severe histopathological lesion, necrosis, was observed in a higher degree of expression in the drones from Plovdiv, indicating a higher pollution level in this region. Full article
Show Figures

Graphical abstract

17 pages, 1593 KB  
Review
Conservation of Apis mellifera mellifera L. in the Middle Ural: A Review of Genetic Diversity, Ecological Adaptation, and Breeding Perspectives
by Olga Frunze, Alexander V. Petukhov, Anna Z. Brandorf, Mikhail K. Simankov, Hyunjee Kim and Hyung-Wook Kwon
Insects 2025, 16(5), 512; https://doi.org/10.3390/insects16050512 - 11 May 2025
Viewed by 1678
Abstract
The European dark bee is well adapted to cold winters and short summers. However, threats from habitat loss, pests, and hybridization with southern bees pose significant challenges to its populations. The Perm region (Middle Ural, Russia) hosts a distinct population of Apis mellifera [...] Read more.
The European dark bee is well adapted to cold winters and short summers. However, threats from habitat loss, pests, and hybridization with southern bees pose significant challenges to its populations. The Perm region (Middle Ural, Russia) hosts a distinct population of Apis mellifera mellifera, known as Prikamskaya. Despite extensive local research, a comprehensive analysis remains lacking. This review presents an analysis based on selected historical, ecological, genetic, and regulatory sources relevant to honey bee populations in northern climates. Inclusion criteria prioritized peer-reviewed scientific literature, regional monographs, institutional reports, and expert contributions published from the 20th century onward. Preference was given to studies addressing environmental conditions, queen-rearing practices, population structure, and conservation strategies. At the northern limit of honey bee distribution, the region has diverse forest zones and a growing season of 145–190 days, influencing nectar availability from lime, honeysuckle, and willow. Although the region’s potential honey yield is estimated at 390,919,300 kg, only 6.7% of its 3,007,200 colonies are commercially utilized, largely due to the low number of apiaries specializing in local honey bees. Distinct northern and southern types of A. m. mellifera have been identified based on morphological (cubital index) and physiological (cold resistance) traits, although links to genetic diversity remain underexplored. This study underscores the importance of regional conservation efforts in preserving the genetic diversity of A. m. mellifera, emphasizing the need for targeted breeding strategies to address climate change and hybridization, ensuring the sustainability of agriculture and natural ecosystems worldwide Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Graphical abstract

16 pages, 5233 KB  
Article
Effects of Colony Breeding System and Nest Architecture on Soil Microbiome and Fertility in the Fungus-Growing Termite Macrotermes barneyi Light
by Jiachang Zhou, Wenquan Qin, Yang Zeng, Xin Huang, Jing Yuan, Yuting Yin, Paike Xu, Xiaohong Fan, Runfeng Zhang, Ganghua Li and Yinqi Zhang
Insects 2025, 16(5), 470; https://doi.org/10.3390/insects16050470 - 29 Apr 2025
Viewed by 1317
Abstract
Macrotermes barneyi is a typical fungus-growing termite that forms both monogynous (single queen) and polygynous (multiple queen) colonies in nature. This species influences the local soil fertility in part by redistributing nutrients across the landscape in its habitats. However, how the colony structure [...] Read more.
Macrotermes barneyi is a typical fungus-growing termite that forms both monogynous (single queen) and polygynous (multiple queen) colonies in nature. This species influences the local soil fertility in part by redistributing nutrients across the landscape in its habitats. However, how the colony structure of M. barneyi affects nutrient cycling and microbial communities within the nest is not well understood. In this study, we compared the physicochemical properties and microbial communities across nest parts between monogynous and polygynous colonies of M. barneyi. Our results showed that the fungus garden is the most nutrient-rich part of the nest, with higher soil moisture, organic matter, ammonium nitrogen, nitrate nitrogen, available sulfur, available potassium, available silicon, and available boron than other nest parts. Notably, the fungus garden in monogynous colonies had higher nitrate nitrogen, available sulfur, and available silicon than those in the polygynous colonies. The microbial α-diversity in the fungus garden was lower than that in other parts of the nest. β-diversity analysis revealed a clear separation of microbial communities between monogynous and polygynous colonies across nest parts. Furthermore, the relative abundance of functional genes associated with “cell cycle control, cell division, and chromosome partitioning” was higher in the fungus garden of polygynous colonies compared to monogynous colonies. Our results suggest that the fungus garden plays a crucial role in maintaining colony stability in M. barneyi colonies. The rapid depletion of nutrients in the fungus garden to sustain the larger population in polygynous colonies likely influences microbial community dynamics and nutrient cycling. Full article
(This article belongs to the Section Social Insects and Apiculture)
Show Figures

Figure 1

12 pages, 1443 KB  
Article
Systemic Acquired Resistance: Plant Priming for Ecological Management of Mealybug-Induced Wilt in MD2 and Queen Victoria Pineapples
by Alain Soler, Corentin Pochat, Marie Perrin, Jessica Mendoza and Flora Latchimy
Agriculture 2025, 15(3), 264; https://doi.org/10.3390/agriculture15030264 - 26 Jan 2025
Viewed by 1655
Abstract
Pineapples are highly susceptible to “Wilt disease”, caused by the biotrophic insect Dysmicoccus brevipes that also transmits several Wilt-associated viruses (PMWaVs). Conventional farms manage mealybugs and Wilt disease using chemicals. However, many of these chemicals have been banned in Europe due to safety [...] Read more.
Pineapples are highly susceptible to “Wilt disease”, caused by the biotrophic insect Dysmicoccus brevipes that also transmits several Wilt-associated viruses (PMWaVs). Conventional farms manage mealybugs and Wilt disease using chemicals. However, many of these chemicals have been banned in Europe due to safety concerns, leading to a critical need for studies on pesticide-free control methods. During their evolution, plants have developed natural defences, such as systemic acquired resistance (SAR), against pathogens and pests. In this study, salicylic acid (10−3 M) was applied to MD2 and Queen Victoria pineapple plants as a foliar spray or soil drench, followed by mealybug infestation. This treatment enhanced defences, assessed through mealybug multiplication rates, and biochemical and molecular responses of tissue-cultured plantlets under controlled conditions. Phenylalanine ammonia-lyase activity (PAL) was measured as a potential SAR signalling enzymatic marker. Additionally, the expression levels of four genes were analyzed, which included AcPAL and AcICS2, both linked to salicylic acid synthesis; AcMYB-like, a transcription factor regulating salicylic acid biosynthesis; and AcCAT, which is involved in H2O2 level control in plants. SA elicitation reduced the mealybug multiplication rate by 70% on pineapples compared to untreated plants. In this study, the biochemical marker (PAL) and three molecular markers (AcPAL, AcICS2, and AcCAT) showed significant differences between primed and unprimed plants, indicating SAR induction and its role in the pineapple–mealybug interaction. In MD2 and Queen Victoria, PAL increased by 2.3 and 1.5, respectively, while AcPAL increased by 4 and more than 10. The other molecular markers, AcICS2, AcCAT, and AcMYB-like (a transcription factor), increased by 3, except for the last one in Queen Victoria. The reduction in mealybug populations with SAR is less effective than with pesticides, but it provides a valuable alternative on Réunion Island, where the only remaining insecticide will soon be banned. In addition, SAR priming offers a promising, eco-friendly strategy for managing mealybug populations and reducing Wilt disease in pesticide-free pineapple cropping systems. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

12 pages, 1221 KB  
Article
Megaselia scalaris and Senotainia tricuspis Infesting Apis mellifera: Detection by Quantitative PCR, Genotyping, and Involvement in the Transmission of Microbial Pathogens
by Franca Rossi, Martina Iannitto, Beqe Hulaj, Paola Manocchio, Francesca Gentile, Ilaria Del Matto, Massimiliano Paoletti, Lucio Marino and Luciano Ricchiuti
Insects 2024, 15(10), 786; https://doi.org/10.3390/insects15100786 - 9 Oct 2024
Cited by 1 | Viewed by 1792
Abstract
The Megaselia scalaris and Senotainia tricuspis parasitoid flies of the honeybee Apis mellifera were found to infest apiaries of different European and Mediterranean countries but their prevalence and impact on apiary health are little known. Therefore, in this study, quantitative PCR (qPCR)-based methods [...] Read more.
The Megaselia scalaris and Senotainia tricuspis parasitoid flies of the honeybee Apis mellifera were found to infest apiaries of different European and Mediterranean countries but their prevalence and impact on apiary health are little known. Therefore, in this study, quantitative PCR (qPCR)-based methods were developed for their rapid detection directly in hive matrices. The newly developed qPCR assays were targeted at the mitochondrial cytochrome oxidase subunit I (COI) gene for the M. scalaris and the cytochrome B (cytB) gene for the S. tricuspis. The tests were preliminarily applied to 64 samples of adult honeybees and hive debris collected in the Abruzzo and Molise regions, Central Italy, and the Republic of Kosovo showing that both flies occur in the two countries and more frequently in Italy. The positive apiaries in Italy were re-sampled by capturing viable forager bees and isolating emerging flies to carry out the genotyping and analyses aimed at defining if these flies can transmit honeybee pathogens. Genotyping based on the COI and cytB gene sequencing for M. scalaris and S. tricuspis, respectively, identified one S. tricuspis genotype and diverse genotypes of M. scalaris highly similar to those from distant countries. Some fly isolates harbored the DNA or RNA of honeybee microbial pathogens Paenibacillus larvae, deformed wing viruses A and B (DWVA and B), black queen cell virus (BQCV), chronic paralysis virus (CBPV), and Nosema ceranae. The results indicated that these parasites should be efficiently controlled in apiaries by using rapid detection methods to facilitate the large screening studies and early detection. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

17 pages, 1311 KB  
Article
Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells
by Yuanyuan Tian, Xiaoqing Liu, Jie Wang, Chuang Zhang and Wenchao Yang
Pharmaceuticals 2024, 17(8), 1088; https://doi.org/10.3390/ph17081088 - 20 Aug 2024
Cited by 4 | Viewed by 4214
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects [...] Read more.
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein–protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation. Full article
Show Figures

Figure 1

Back to TopTop