Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Extracts Preparation
2.3. Polyphenol Identification
2.4. Total Anthocyanins Analysis
2.5. Antioxidant Activity Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolics, Total Phenolic Acids, Total Flavonols, and Total Anthocyanins
3.2. Individual Phenolic Acids
3.3. Individual Flavonoids
3.4. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Zhang, N.; Fu, X.; Zhang, H.; Liu, S.; Pu, X.; Wang, X.; Si, H. StTCP15 regulates potato tuber sprouting by modulating the dynamic balance between abscisic acid and gibberellic acid. Front. Plant Sci. 2022, 13, 1009552. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.; Orena, S.; Medel-Maraboli, M.; Escalona, V.H. Determination of some functional and sensory attributes and suitability of colored-and noncolored-flesh potatoes for different cooking methods. Food Sci. Technol. 2020, 40, 395–404. [Google Scholar] [CrossRef]
- Vaitkevičienė, N.; Jarienė, E.; Kulaitienė, J.; Levickienė, D. The physico-chemical and sensory characteristics of coloured-flesh potato chips: Influence of cultivar, slice thickness and frying temperature. Appl. Sci. 2022, 12, 1211. [Google Scholar] [CrossRef]
- Vaitkevičienė, N.; Kulaitienė, J.; Jarienė, E.; Levickienė, D.; Danilčenko, H.; Srednicka-Tober, D.; Rembiałkowska, E.; Hallmann, E. Characterization of bioactive compounds in Colored potato (Solanum tuberosum L.) cultivars grown with conventional, organic, and biodynamic methods. Sustainability 2020, 12, 2701. [Google Scholar] [CrossRef]
- Vaitkevičienė, N. A comparative study on proximate and mineral composition of coloured potato peel and flesh. J. Sci. Food Agric. 2019, 99, 6227–6233. [Google Scholar] [CrossRef]
- Nayak, B.; Berrios, J.J.; Powers, J.R.; Tang, J.; JI, Y. Colored potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J. Food Process. Preserv. 2011, 35, 571–580. [Google Scholar] [CrossRef]
- Ben Alaya, I.; Alves, G.; Lopes, J.; Silva, L.R. Use of encapsulated polyphenolic compounds in health promotion and disease prevention: Challenges and opportunities. Macromol 2024, 4, 805–842. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. Therapeutic potential of phenolic compounds in medicinal plants—Natural health products for human health. Molecules 2023, 28, 1845. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Smith, N.; Schroeder, D.; Han, J.T.; Lee, C.Y. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Makori, S.I.; Mu, T.-H.; Sun, H.-N. Profiling of polyphenols, flavonoids and anthocyanins in potato peel and flesh from four potato varieties. Potato Res. 2022, 65, 193–208. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Pellegrini, N.; Colombi, B.; Salvatore, S.; Brenna, O.V.; Galaverna, G.; Del Rio, D. Evaluation of antioxidant capacity of some fruit and vegetable foods: Efficiency of extraction of a sequence of solvents. J. Sci. Food Agric. 2007, 87, 103–111. [Google Scholar] [CrossRef]
- Michiels, J.A.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Extractionconditions can greatly influence antioxidant capacity assays in plant foodmatrices. Food Chem. 2012, 130, 986–999. [Google Scholar] [CrossRef]
- Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; He, J. Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules 2019, 24, 3816. [Google Scholar] [CrossRef]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic compounds in the potato and its byproducts: An overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef]
- Mahasuari, N.P.S.; Paramita, N.L.P.V.; Putra, A.A.G.R.Y. Effect of methanol concentration as a solvent on total phenolic and flavonoid content of beluntas leaf extract (Pulchea indica L.). J. Pharm. Sci. Appl. 2020, 2, 77. [Google Scholar] [CrossRef]
- Morales-Olán, G.; Rojas-López, M.; Díaz-Reyes, J.; Rosas-Cárdenas, F.F.; Luna-Suárez, S. Effect of ethanol and methanol on the total phenolic content and antioxidant capacity of chia seeds (Salvia hispanica L.). Sains Malays. 2020, 49, 1283–1292. [Google Scholar]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. the impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef]
- Tonutare, T.; Moor, U.; Szajdak, L. Strawberry anthocyanin determination by pH differential spectroscopic method. How to get true results? Acta Sci. Pol. Hortorum Cultus 2014, 13, 35–47. [Google Scholar]
- Leaves, L.; Leaves, L. Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides. Am. J. Ethnomed. 2014, 1, 244–249. [Google Scholar]
- Navarre, D.A.S.; Pillai, S.; Shakya, R.; Holden, M.J. HPLC profiling of phenolics in diverse potato genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Jarienė, E.; Vaitkevičienė, N.; Danilčenko, H.; Tajner-Czopek, A.; Rytel, E.; Kucharska, A.; Jeznach, M. Effect of biodynamic preparations on the phenolic antioxidants in potatoes with coloured-flesh. Biol. Agric. Hortic. 2017, 33, 172–182. [Google Scholar] [CrossRef]
- Jansen, G.; Flamme, W. Coloured (Solanum tuberosim L.)—Anthocyanin content and tuber quality. Genet. Resour. Crop. Evol. 2006, 53, 1321–1331. [Google Scholar] [CrossRef]
- Reddivari, L.; Hale, A.; Miller, J. Genotype, location, and year influence antioxidant activity, carotenoid content, phenolic content, and composition in specialty potatoes. J. Agric. Food Chem. 2007, 55, 8073–8079. [Google Scholar] [CrossRef]
- Bouterfas, K.; Mehdadi, Z.; Benmansour, D.; Khaled, M.B.; Bouterfas, M.; Latreche, A. Optimization of extraction conditions of somephenolic compounds from white horehound (Marrubium vulgare L.) leaves. Int. J. Org. Chem. 2014, 4, 292–308. [Google Scholar] [CrossRef]
- Xiang, Z.; Liu, L.; Xu, Z.; Kong, Q.; Feng, S.; Chen, T.; Ding, C. Solvent effects on the phenolic compounds and antioxidant activity associated with Camellia polyodonta flower extracts. ACS Omega 2024, 9, 27192–27203. [Google Scholar] [CrossRef]
- D’Amelia, V.; Sarais, G.; Fais, G.; Dessì, D.; Giannini, V.; Garramone, R.; Melito, S. Biochemical characterization and effects of cooking methods on main phytochemicals of red and purple potato tubers, a natural functional food. Foods 2022, 11, 384. [Google Scholar] [CrossRef]
- Cebulak, T.; Krochmal-Marczak, B.; Stryjecka, M.; Krzysztofik, B.; Sawicka, B.; Danilcenko, H.; Jarienè, E. Phenolic Acid Content and Antioxidant Properties of Edible Potato (Solanum tuberosum L.) with Various Tuber Flesh Colours. Foods 2023, 12, 100. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. [Google Scholar] [CrossRef] [PubMed]
- Armonavičius, D.; Stankevičius, M.; Maruška, A. extraction of bioactive compounds and influence of storage conditions of raw material Chamaenerion angustifolium (L.) Holub using different strategies. Molecules 2024, 29, 5530. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.; Ghislain, M.; Bertin, P.; Oufir, M.; del Rosario Herrera, M.; Hoffmann, L.; Hausman, J.; Larondelle, Y.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Deußer, H.; Guignard, C.; Hoffmann, L.; Evers, D. Polyphenol and glycoalkaloid contents in potato cultivars grown in Luxembourg. Food Chem. 2012, 135, 2814–2824. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Liu, Z.; Wang, L.; Bi, Z.; Sun, C.; Zeng, Y. Integrated transcriptomic and metabolomic analysis revealed altitude-related regulatory mechanisms on flavonoid accumulation in potato tubers. Int. Food Res. 2023, 170, 112997. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.; Karimi, E.; Rahmat, A. Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement. Altern. Med. 2014, 14, 318. [Google Scholar] [CrossRef]
- Jakopič, J.; Veberič, R.; Štampar, F. Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agric. Slov. 2009, 93, 11–15. [Google Scholar] [CrossRef]
Cultivar | Concentration of Methanol | TPCs | TPAs | TFs | TAs |
---|---|---|---|---|---|
mg 100 g−1 DM | |||||
‘Blue Star’ | 60% | 399.35 ± 16.59 c | 268.21 ± 18.84 de | 104.43 ± 1.13 c | 26.71 ± 3.05 b |
‘Violet Queen’ | 551.14 ± 27.83 a | 353.85 ± 14.01 a | 111.03 ± 1.03 a | 86.25 ± 9.02 a | |
‘Mulberry Beauty’ | 413.81 ± 26.12 c | 288.98 ± 17.31 cd | 108.92 ± 0.32 a | 15.91 ± 2.99 b | |
‘Blue Star’ | 80% | 371.84 ± 19.13 cd | 246.41 ± 14.01 e | 98.28 ± 1.87 d | 27.15 ± 2.80 b |
‘Violet Queen’ | 575.61 ± 28.98 a | 382.24 ± 10.85 a | 108.06 ± 1.86 ab | 85.30 ± 8.92 a | |
‘Mulberry Beauty’ | 404.29 ± 17.28 c | 283.01 ± 17.23 de | 105.30 ± 2.26 bc | 15.97 ± 2.99 b | |
‘Blue Star’ | 100% | 331.31 ± 12.91 d | 206.24 ± 10.08 f | 98.03 ± 0.26 d | 27.03 ± 2.80 b |
‘Violet Queen’ | 511.91 ± 24.62 b | 321.78 ± 19.17 bc | 104.34 ± 1.49 c | 85.79 ± 8.86 a | |
‘Mulberry Beauty’ | 375.08 ± 19.12 cd | 249.85 ± 11.25 e | 109.19 ± 3.27 a | 16.05 ± 2.31 b | |
p-value | |||||
Cultivar | <0.00001 | <0.00001 | <0.00001 | <0.00001 | |
Concentration of methanol | 0.0063 | 0.0005 | 0.00005 | n.s. | |
Interactions of cultivar × concentration of methanol | n.s. | n.s. | 0.00501 | n.s. |
Cultivar | Concentration of Methanol | Caffeic Acid | Gallic Acid | Ellagic Acid | m-Coumaric Acid | p-Coumaric Acid | o-Coumaric Acid | Chlorogenic Acid |
---|---|---|---|---|---|---|---|---|
mg 100 g−1 DM | ||||||||
‘Blue Star’ | 60% | 97.83 ± 9.48 b | 26.37 ± 1.99 ab | 28.60 ± 0.45 e | 30.54 ± 0.27 g | 23.54 ± 1.14 e | 20.89 ± 0.21 c | 40.45 ± 0.39 a |
‘Violet Queen’ | 122.56 ± 13.94 a | 27.84 ± 1.28 ab | 56.09 ± 0.13 c | 63.13 ± 0.05 a | 30.80 ± 0.10 c | 22.21 ± 0.09 a | 31.21 ± 1.01 d | |
‘Mulberry Beauty’ | 102.16 ± 10.88 b | 26.88 ± 1.52 ab | 39.19 ± 0.59 d | 36.04 ± 0.33 d | 35.68 ± 1.39 a | 21.89 ± 0.35 b | 27.15 ± 0.45 f | |
‘Blue Star’ | 80% | 84.60 ± 8.65 b | 24.52 ± 1.27 b | 29.89 ± 0.50 e | 27.88 ± 0.29 h | 22.34 ± 0.59 e | 19.60 ± 0.14 d | 37.57 ± 0.13 b |
‘Violet Queen’ | 128.85 ± 10.74 a | 27.94 ± 1.37 ab | 80.00 ± 0.66 a | 58.76 ± 0.29 b | 32.45 ± 0.33 b | 21.36 ± 0.24 b | 32.88 ± 0.23 d | |
‘Mulberry Beauty’ | 100.17 ± 9.05 b | 25.07 ± 0.84 b | 39.86 ± 1.53 d | 34.64 ± 0.35 e | 36.06 ± 0.48 a | 21.25 ± 0.27 b | 25.97 ± 0.18 g | |
‘Blue Star’ | 100% | 56.29 ± 5.20 c | 23.96 ± 1.25 b | 29.20 ± 0.49 e | 27.24 ± 0.10 h | 21.17 ± 0.55 e | 19.74 ± 0.14 d | 28.63 ± 0.19 e |
‘Violet Queen’ | 74.81 ± 10.63 c | 35.81 ± 7.50 a | 77.20 ± 0.82 b | 56.68 ± 0.40 c | 28.29 ± 0.22 d | 20.65 ± 0.15 c | 28.35 ± 0.25 e | |
‘Mulberry Beauty’ | 73.30 ± 9.38 c | 25.52 ± 0.73 b | 37.69 ± 0.39 d | 33.48 ± 0.60 f | 32.58 ± 0.68 b | 21.77 ± 0.23 b | 25.50 ± 0.55 h | |
p-value | ||||||||
Cultivar | 0.0174 | n.s. | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Concentration of methanol | 0.0006 | n.s. | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Interactions of cultivar × concentration of methanol | n.s | n.s. | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cultivar | Concentration of Methanol | Myricetin | Quercetin | Epicatechin | Rutin |
---|---|---|---|---|---|
mg 100 g−1 DM | |||||
‘Blue Star’ | 60% | 25.39 ± 0.68 de | 26.19 ± 0.29 d | 27.74 ± 0.31 b | 25.12 ± 0.36 d |
‘Violet Queen’ | 31.12 ± 0.62 a | 26.38 ± 0.31 d | 26.72 ± 0.38 c | 26.81 ± 0.19 c | |
‘Mulberry Beauty’ | 27.30 ± 0.16 bc | 26.79 ± 0.38 cd | 25.58 ± 0.21 d | 29.25 ± 0.24 a | |
‘Blue Star’ | 80% | 23.19 ± 0.90 f | 25.20 ± 0.56 e | 27.06 ± 0.29 b | 22.82 ± 0.27 e |
‘Violet Queen’ | 26.12 ± 0.93 cd | 28.15 ± 0.50 a | 28.09 ± 0.27 a | 25.70 ± 0.34 d | |
‘Mulberry Beauty’ | 26.55 ± 0.96 cd | 26.23 ± 0.69 d | 24.70 ± 0.15 e | 27.83 ± 0.46 b | |
‘Blue Star’ | 100% | 23.02 ± 0.19 f | 24.90 ± 0.39 e | 27.35 ± 0.24 b | 22.76 ± 0.25 e |
‘Violet Queen’ | 24.63 ± 0.22 e | 27.17 ± 0.37 bc | 27.70 ± 0.32 b | 24.84 ± 0.87 d | |
‘Mulberry Beauty’ | 27.57 ± 1.09 b | 27.63 ± 0.83 ab | 26.06 ± 0.34 c | 27.93 ± 1.02 b | |
p-value | |||||
Cultivar | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Concentration of methanol | <0.0001 | n.s. | 0.0003 | <0.0001 | |
Interactions of cultivar × concentration of methanol | <0.0001 | 0.0001 | <0.0001 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaitkevičienė, N.; Višinskytė, J.; Staveckienė, J.; Levickienė, D.; Kulaitienė, J. Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania. Agriculture 2025, 15, 1332. https://doi.org/10.3390/agriculture15131332
Vaitkevičienė N, Višinskytė J, Staveckienė J, Levickienė D, Kulaitienė J. Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania. Agriculture. 2025; 15(13):1332. https://doi.org/10.3390/agriculture15131332
Chicago/Turabian StyleVaitkevičienė, Nijolė, Jolita Višinskytė, Jūratė Staveckienė, Dovilė Levickienė, and Jurgita Kulaitienė. 2025. "Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania" Agriculture 15, no. 13: 1332. https://doi.org/10.3390/agriculture15131332
APA StyleVaitkevičienė, N., Višinskytė, J., Staveckienė, J., Levickienė, D., & Kulaitienė, J. (2025). Effect of Cultivar and Methanol Solvent Concentration on the Extraction of Bioactive Compounds from Colored Potatoes Grown in Lithuania. Agriculture, 15(13), 1332. https://doi.org/10.3390/agriculture15131332