Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = mAb BM306

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1765 KiB  
Article
Towards Understanding the Basis of Brucella Antigen–Antibody Specificity
by Amika Sood, David R. Bundle and Robert J. Woods
Molecules 2025, 30(14), 2906; https://doi.org/10.3390/molecules30142906 - 9 Jul 2025
Viewed by 354
Abstract
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied [...] Read more.
Brucellosis continues to be a significant global zoonotic infection, with diagnosis largely relying on the detection of antibodies against the Brucella O-polysaccharide (O-PS) A and M antigens. In this study, computational methods, including homology modeling, molecular docking, and molecular dynamics simulations, were applied to investigate the interaction of the four murine monoclonal antibodies (mAbs) YsT9.1, YsT9.2, Bm10, and Bm28 with hexasaccharide fragments of the A and M epitopes. Through stringent stability criteria, based on interaction energies and mobility of the antigens, high-affinity binding of A antigen with YsT9.1 antibody and M antigen with Bm10 antibody was predicted. In both the complexes hydrophobic interactions dominate the antigen–antibody binding. These findings align well with experimental epitope mapping, indicating YsT9.1’s preference for internal sequences of the A epitope and Bm10’s preference for internal elements of the M epitope. Interestingly, no stable complexes were identified for YsT9.2 or Bm28 interacting with A or M antigen. This study provides valuable insights into the mechanism of molecular recognition of Brucella O-antigens that can be applied for the development of improved diagnostics, synthetic glycomimetics, and improved vaccine strategies. Full article
Show Figures

Graphical abstract

8 pages, 3216 KiB  
Communication
A Ku-Band Fully Differential Low-Power High-Input P1dB Low-Noise Amplifier
by Sang-Rok Lee, Joon-Hyung Kim, Min-Seok Baek and Choul-Young Kim
Nanomaterials 2024, 14(23), 1913; https://doi.org/10.3390/nano14231913 - 28 Nov 2024
Viewed by 1292
Abstract
This paper introduces a Ku-band fully differential low-power high-input 1 dB compression point (P1dB) low-noise amplifier (LNA). A fully differential structure is employed to enhance the input P1dB, common-mode noise rejection, and second harmonic cancellation. The first stage adopts large transistors and is [...] Read more.
This paper introduces a Ku-band fully differential low-power high-input 1 dB compression point (P1dB) low-noise amplifier (LNA). A fully differential structure is employed to enhance the input P1dB, common-mode noise rejection, and second harmonic cancellation. The first stage adopts large transistors and is optimized for power consumption and noise figure (NF). The output stage is designed with class AB bias, resulting in improved P1dB, power consumption, and linearity. The proposed two-stage fully differential common-source (CS) LNA was implemented using 65 nm bulk complementary metal oxide semiconductor (CMOS) technology. The fabricated LNA achieved a minimum NF of 2.7 dB at 13.6 GHz. Furthermore, it achieved a maximum gain of 19.92 dB at 12.2 GHz. Additionally, the LNA has an input P1dB of −7.45 dBm and an output power 1 dB compression point (OP1dB) of 10.09 dBm, both measured at 15.6 GHz. The LNA operates with a power consumption of 11 mW at a 1 V supply, and occupies a core size of 0.75 mm × 0.35 mm. Full article
(This article belongs to the Special Issue Integrated Circuit Research for Nanoscale Field-Effect Transistors)
Show Figures

Figure 1

16 pages, 2619 KiB  
Article
Deciphering Metabolic Pathways in High-Seeding-Density Fed-Batch Processes for Monoclonal Antibody Production: A Computational Modeling Perspective
by Carolin Bokelmann, Alireza Ehsani, Jochen Schaub and Fabian Stiefel
Bioengineering 2024, 11(4), 331; https://doi.org/10.3390/bioengineering11040331 - 28 Mar 2024
Viewed by 2477
Abstract
Due to their high specificity, monoclonal antibodies (mAbs) have garnered significant attention in recent decades, with advancements in production processes, such as high-seeding-density (HSD) strategies, contributing to improved titers. This study provides a thorough investigation of high seeding processes for mAb production in [...] Read more.
Due to their high specificity, monoclonal antibodies (mAbs) have garnered significant attention in recent decades, with advancements in production processes, such as high-seeding-density (HSD) strategies, contributing to improved titers. This study provides a thorough investigation of high seeding processes for mAb production in Chinese hamster ovary (CHO) cells, focused on identifying significant metabolites and their interactions. We observed high glycolytic fluxes, the depletion of asparagine, and a shift from lactate production to consumption. Using a metabolic network and flux analysis, we compared the standard fed-batch (STD FB) with HSD cultivations, exploring supplementary lactate and cysteine, and a bolus medium enriched with amino acids. We reconstructed a metabolic network and kinetic models based on the observations and explored the effects of different feeding strategies on CHO cell metabolism. Our findings revealed that the addition of a bolus medium (BM) containing asparagine improved final titers. However, increasing the asparagine concentration in the feed further prevented the lactate shift, indicating a need to find a balance between increased asparagine to counteract limitations and lower asparagine to preserve the shift in lactate metabolism. Full article
(This article belongs to the Special Issue Metabolic Modeling and Engineering)
Show Figures

Graphical abstract

28 pages, 4005 KiB  
Review
A Comprehensive Computational Insight into the PD-L1 Binding to PD-1 and Small Molecules
by Marialuigia Fantacuzzi, Roberto Paciotti and Mariangela Agamennone
Pharmaceuticals 2024, 17(3), 316; https://doi.org/10.3390/ph17030316 - 28 Feb 2024
Cited by 5 | Viewed by 5346
Abstract
Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein–protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both [...] Read more.
Immunotherapy has marked a revolution in cancer therapy. The most extensively studied target in this field is represented by the protein–protein interaction between PD-1 and its ligand, PD-L1. The promising results obtained with the clinical use of monoclonal antibodies (mAbs) directed against both PD-1 and PD-L1 have prompted the search for small-molecule binders capable of disrupting the protein–protein contact and overcoming the limitations presented by mAbs. The disclosure of the first X-ray complexes of PD-L1 with BMS ligands showed the protein in dimeric form, with the ligand in a symmetrical hydrophobic tunnel. These findings paved the way for the discovery of new ligands. To this end, and to understand the binding mechanism of small molecules to PD-L1 along with the dimerization process, many structure-based computational studies have been applied. In the present review, we examined the most relevant articles presenting computational analyses aimed at elucidating the binding mechanism of PD-L1 with PD-1 and small molecule ligands. Additionally, virtual screening studies that identified validated PD-L1 ligands were included. The relevance of the reported studies highlights the increasingly prominent role that these techniques can play in chemical biology and drug discovery. Full article
(This article belongs to the Special Issue Computational Methods in the Design of Anticancer Drugs)
Show Figures

Figure 1

16 pages, 1559 KiB  
Article
Front-End Development for Radar Applications: A Focus on 24 GHz Transmitter Design
by Tahesin Samira Delwar, Unal Aras, Abrar Siddique, Yangwon Lee and Jee-Youl Ryu
Sensors 2023, 23(24), 9704; https://doi.org/10.3390/s23249704 - 8 Dec 2023
Cited by 1 | Viewed by 2467
Abstract
The proliferation of radar technology has given rise to a growing demand for advanced, high-performance transmitter front-ends operating in the 24 GHz frequency band. This paper presents a design analysis of a radio frequency (RF) transmitter (TX) front-end operated at a 24 GHz [...] Read more.
The proliferation of radar technology has given rise to a growing demand for advanced, high-performance transmitter front-ends operating in the 24 GHz frequency band. This paper presents a design analysis of a radio frequency (RF) transmitter (TX) front-end operated at a 24 GHz frequency and designed using 65 nm complementary metal-oxide-semiconductor (CMOS) technology for radar applications. The proposed TX front-end design includes the integration of an up-conversion mixer and power amplifier (PA). The up-conversion mixer is a Gilbert cell-based design that translates the 2.4 GHz intermediate frequency (IF) signal and 21.6 GHz local oscillator (LO) signal to the 24 GHz RF output signal. The mixer is designed with a novel technique that includes a duplex transconductance path (DTP) for enhancing the mixer’s linearity. The DTP of the mixer includes a primary transconductance path (PTP) and a secondary transconductance path (STP). The PTP incorporates a common source (CS) amplifier, while the STP incorporates an improved cross-quad transconductor (ICQT). The integrated PA in the TX front-end is a class AB tunable two-stage PA that can be tuned with the help of varactors as a synchronous mode to increase the PA bandwidth or stagger mode to obtain a high gain. The PA is tuned to 24 GHz as a synchronous mode PA for the TX front-end operation. The proposed TX front-end showed an excellent output power of 11.7 dBm and dissipated 7.5 mW from a 1.2 V supply. In addition, the TX front-end achieved a power-added efficiency (PAE) of 47% and 1 dB compression point (OP1dB) of 10.5 dBm. In this case, the output power is 10.5 dBm higher than the linear portion of the response. The methodologies presented herein have the potential to advance the state of the art in 24 GHz radar technology, fostering innovations in fields such as autonomous vehicles, industrial automation, and remote sensing. Full article
(This article belongs to the Special Issue Advanced and Intelligent Interface Circuits for Sensor Systems)
Show Figures

Figure 1

17 pages, 1676 KiB  
Article
Examining the Effect of ALK and EGFR Mutations on Survival Outcomes in Surgical Lung Brain Metastasis Patients
by Sneha Sai Mannam, David P. Bray, Chibueze D. Nwagwu, Jim Zhong, Hui-Kuo Shu, Bree Eaton, Lisa Sudmeier, Subir Goyal, Christopher Deibert, Edjah K. Nduom, Jeffrey Olson and Kimberly B. Hoang
Cancers 2023, 15(19), 4773; https://doi.org/10.3390/cancers15194773 - 28 Sep 2023
Viewed by 1757
Abstract
In the context of the post-genomic era, where targeted oncological therapies like monoclonal antibodies (mAbs) and tyrosine-kinase inhibitors (TKIs) are gaining prominence, this study investigates whether these therapies can enhance survival for lung carcinoma patients with specific genetic mutations—EGFR-amplified and ALK-rearranged mutations. Prior [...] Read more.
In the context of the post-genomic era, where targeted oncological therapies like monoclonal antibodies (mAbs) and tyrosine-kinase inhibitors (TKIs) are gaining prominence, this study investigates whether these therapies can enhance survival for lung carcinoma patients with specific genetic mutations—EGFR-amplified and ALK-rearranged mutations. Prior to this study, no research series had explored how these mutations influence patient survival in cases of surgical lung brain metastases (BMs). Through a multi-site retrospective analysis, the study examined patients who underwent surgical resection for BM arising from primary lung cancer at Emory University Hospital from January 2012 to May 2022. The mutational statuses were determined from brain tissue biopsies, and survival analyses were conducted. Results from 95 patients (average age: 65.8 ± 10.6) showed that while 6.3% had anaplastic lymphoma kinase (ALK)-rearranged mutations and 20.0% had epidermal growth factor receptor (EGFR)-amplified mutations—with 9.5% receiving second-line therapies—these mutations did not significantly correlate with overall survival. Although the sample size of patients receiving targeted therapies was limited, the study highlighted improved overall survival and progression-free survival rates compared to earlier trials, suggesting advancements in systemic lung metastasis treatment. The study suggests that as more targeted therapies emerge, the prospects for increased overall survival and progression-free survival in lung brain metastasis patients will likely improve. Full article
(This article belongs to the Special Issue Radiation Therapy for Brain Tumors)
Show Figures

Figure 1

12 pages, 3065 KiB  
Article
Using the Axial Oblique View of Computed Tomography (CT) in Evaluating Femoral Anteversion: A Comparative Cadaveric Study
by Kwang-Soon Song, Chang-Jin Yon, Yu-Ran Heo, Jae-Ho Lee, Seung-Bo Lee, Yeon-Kyoung Ko, Kyung-Jae Lee and Si-Wook Lee
Diagnostics 2022, 12(8), 1820; https://doi.org/10.3390/diagnostics12081820 - 28 Jul 2022
Cited by 3 | Viewed by 3115
Abstract
Twenty-five cadaveric adult femora’s anteversion angles were measured to develop a highly efficient and reproducible femoral anteversion measurement method using computed tomography (CT). Digital photography captured the proximal femur’s two reference lines, head-to-neck (H-N) and head-to-greater trochanter (H-G). Six reference lines (A/B in [...] Read more.
Twenty-five cadaveric adult femora’s anteversion angles were measured to develop a highly efficient and reproducible femoral anteversion measurement method using computed tomography (CT). Digital photography captured the proximal femur’s two reference lines, head-to-neck (H-N) and head-to-greater trochanter (H-G). Six reference lines (A/B in transverse section; C, axial oblique section; D/E, conventional 3D reconstruction; and M, volumetric 3D reconstruction) from CT scans were used. The posterior condylar line was used as a distal femoral reference. As measured with the H-N and H-G lines, the anteversion means were 10.43° and 19.50°, respectively. Gross anteversion measured with the H-G line had less interobserver bias (ICC; H-N = 0.956, H-G = 0.982). The 2D transverse and volumetric 3D CT sections’ B/M lines were consistent with the H-N line (p: B = 0.925, M = 0.122) and the 2D axial oblique section’s C line was consistent with the H-G line (p < 0.1). The D/E lines differed significantly from the actual gross images (p < 0.05). Among several CT scan femoral anteversion measurement methods, the novel anteversion angle measurement method using CT scans’ axial oblique section was approximated with actual gross femoral anteversion angle from the femoral head to the greater trochanter. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Graphical abstract

16 pages, 2753 KiB  
Article
Modeling Analysis on Coupling Mechanisms of Mountain–Basin Human–Land Systems: Take Yuxi City as an Example
by Li Wu, Yanjun Yang and Binggeng Xie
Land 2022, 11(7), 1068; https://doi.org/10.3390/land11071068 - 13 Jul 2022
Cited by 4 | Viewed by 1901
Abstract
The result of a human–land relationship in geographical environment systems is a human–land coupling system, which is a comprehensive process of interaction and infiltration between human economic and social systems and the natural ecosystem. Based on the recognition that the human–land system is [...] Read more.
The result of a human–land relationship in geographical environment systems is a human–land coupling system, which is a comprehensive process of interaction and infiltration between human economic and social systems and the natural ecosystem. Based on the recognition that the human–land system is a nonlinear system coupled by multiple factors, a time delay fractional order dynamics model with a Holling-II-type transformation rate was constructed, the stability analysis of the system was carried out, the transformation times of different land classes were clarified, and the coupled dynamics model parameters of mountainous areas and basin areas were obtained by using the land-use change survey data and socio-economic statistical data in Yuxi City, respectively: the transformation parameter of the production and living land to the unused land in mountainous areas and basin areas (aM, 0.0486 and aB, 0.0126); the transformation parameter of unused land to production and living land in mountainous areas and basin areas (bM 0.0062 and bB, 0.0139); the transformation parameter of unused land to the forest and grass land in mountainous areas and basin areas (sM, 0.0051 and sB, 0.0028); the land area required to maintain the individual unit in mountainous areas and basin areas (hM, 0.0335 and hB, 0.0165); the average reclamation capacity in mountainous areas and basin areas (dM, 0.03 and dB, 0.05); the inherent growth rate of populations in mountainous areas and basin areas (rM, 0.0563 and rB, 0.151). Through analyzing the coupling mechanisms of human–land systems, the countermeasures for the difference between mountainous areas and basin areas in the future development are put forward. The mountainous area should reduce the conversion of forest and grass land to production and living land by reducing the average reclamation or development capacity, reducing the excessive interference of human beings on unused land, and speeding up its natural recovery and succession to forest and grass land. In addition to reducing the average reclamation or development capacity in basin areas, the reclamation or development rate of the idle land and degraded land should be increased, and the conversion of idle land and degraded land into productive and living land should be encouraged by certain scientific and technological means. Full article
(This article belongs to the Special Issue Karst Land System and Sustainable Development)
Show Figures

Figure 1

16 pages, 1860 KiB  
Article
Blocking the PCNA/NKp44 Checkpoint to Stimulate NK Cell Responses to Multiple Myeloma
by Muhammed Iraqi, Avishay Edri, Yariv Greenshpan, Oron Goldstein, Noa Ofir, Priyanka Bolel, Muhammad Abu Ahmad, Miri Zektser, Kerry S. Campbell, Ory Rouvio, Roi Gazit and Angel Porgador
Int. J. Mol. Sci. 2022, 23(9), 4717; https://doi.org/10.3390/ijms23094717 - 25 Apr 2022
Cited by 10 | Viewed by 3039
Abstract
Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells’ functions. Here we studied in vitro the expression and function of PCNA on MM [...] Read more.
Multiple Myeloma (MM) is a devastating malignancy that evades immune destruction using multiple mechanisms. The NKp44 receptor interacts with PCNA (Proliferating Cell Nuclear Antigen) and may inhibit NK cells’ functions. Here we studied in vitro the expression and function of PCNA on MM cells. First, we show that PCNA is present on the cell membrane of five out of six MM cell lines, using novel anti-PCNA mAb developed to recognize membrane-associated PCNA. Next, we stained primary bone marrow (BM) mononuclear cells from MM patients and showed significant staining of membrane-associated PCNA in the fraction of CD38+CD138+ BM cells that contain the MM cells. Importantly, blocking of the membrane PCNA on MM cells enhanced the activity of NK cells, including IFN-γ-secretion and degranulation. Our results highlight the possible blocking of the NKp44-PCNA immune checkpoint by the mAb 14-25-9 antibody to enhance NK cell responses against MM, providing a novel treatment option. Full article
(This article belongs to the Special Issue NK Cells, Immune Response in Pathology and Cancer)
Show Figures

Figure 1

23 pages, 8888 KiB  
Article
Discovery of Novel Small-Molecule Inhibitors of PD-1/PD-L1 Interaction via Structural Simplification Strategy
by Hongbo Zhang, Yu Xia, Chunqiu Yu, Huijie Du, Jinchang Liu, Hui Li, Shihui Huang, Qihua Zhu, Yungen Xu and Yi Zou
Molecules 2021, 26(11), 3347; https://doi.org/10.3390/molecules26113347 - 2 Jun 2021
Cited by 24 | Viewed by 6107
Abstract
Blockade of the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction is currently the focus in the field of cancer immunotherapy, and so far, several monoclonal antibodies (mAbs) have achieved encouraging outcomes in cancer treatment. Despite this achievement, mAbs-based therapies are [...] Read more.
Blockade of the programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) interaction is currently the focus in the field of cancer immunotherapy, and so far, several monoclonal antibodies (mAbs) have achieved encouraging outcomes in cancer treatment. Despite this achievement, mAbs-based therapies are struggling with limitations including poor tissue and tumor penetration, long half-life time, poor oral bioavailability, and expensive production costs, which prompted a shift towards the development of the small-molecule inhibitors of PD-1/PD-L1 pathways. Even though many small-molecule inhibitors targeting PD-1/PD-L1 interaction have been reported, their development lags behind the corresponding mAb, partly due to the challenges of developing drug-like small molecules. Herein, we report the discovery of a series of novel inhibitors targeting PD-1/PD-L1 interaction via structural simplification strategy by using BMS-1058 as a starting point. Among them, compound A9 stands out as the most promising candidate with excellent PD-L1 inhibitory activity (IC50 = 0.93 nM, LE = 0.43) and high binding affinity to hPD-L1 (KD = 3.64 nM, LE = 0.40). Furthermore, A9 can significantly promote the production of IFN-γ in a dose-dependent manner by rescuing PD-L1 mediated T-cell inhibition in Hep3B/OS-8/hPD-L1 and CD3-positive T cells co-culture assay. Taken together, these results suggest that A9 is a promising inhibitor of PD-1/PD-L1 interaction and is worthy for further study. Full article
(This article belongs to the Special Issue Medicinal Chemistry in China)
Show Figures

Graphical abstract

14 pages, 1902 KiB  
Review
Overcoming the Immunosuppressive Tumor Microenvironment in Multiple Myeloma
by Fatih M. Uckun
Cancers 2021, 13(9), 2018; https://doi.org/10.3390/cancers13092018 - 22 Apr 2021
Cited by 41 | Viewed by 7736
Abstract
SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alternatively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells [...] Read more.
SeverFigurel cellular elements of the bone marrow (BM) microenvironment in multiple myeloma (MM) patients contribute to the immune evasion, proliferation, and drug resistance of MM cells, including myeloid-derived suppressor cells (MDSCs), tumor-associated M2-like, “alternatively activated” macrophages, CD38+ regulatory B-cells (Bregs), and regulatory T-cells (Tregs). These immunosuppressive elements in bidirectional and multi-directional crosstalk with each other inhibit both memory and cytotoxic effector T-cell populations as well as natural killer (NK) cells. Immunomodulatory imide drugs (IMiDs), protease inhibitors (PI), monoclonal antibodies (MoAb), adoptive T-cell/NK cell therapy, and inhibitors of anti-apoptotic signaling pathways have emerged as promising therapeutic platforms that can be employed in various combinations as part of a rationally designed immunomodulatory strategy against an immunosuppressive tumor microenvironment (TME) in MM. These platforms provide the foundation for a new therapeutic paradigm for achieving improved survival of high-risk newly diagnosed as well as relapsed/refractory MM patients. Here we review the scientific rationale and clinical proof of concept for each of these platforms. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Exacerbation Mechanism in Multiple Myeloma)
Show Figures

Figure 1

14 pages, 1692 KiB  
Review
Anti-BCMA Immunotoxins: Design, Production, and Preclinical Evaluation
by Tapan K. Bera
Biomolecules 2020, 10(10), 1387; https://doi.org/10.3390/biom10101387 - 29 Sep 2020
Cited by 8 | Viewed by 4820
Abstract
Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to [...] Read more.
Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to the restricted expression and being a cell surface membrane protein, BCMA is an ideal target for immunotherapy approaches in MM. Recombinant immunotoxins (RITs) are a novel class of protein therapeutics that are composed of the Fv or Fab portion of an antibody fused to a cytotoxic agent. RITs were produced by expressing plasmids encoding the components of the anti-BCMA RITs in E. coli followed by inclusion body preparation, solubilization, renaturation, and purification by column chromatography. The cytotoxic activity of RITs was tested in vitro by WST-8 assays using BCMA expressing cell lines and on cells isolated from MM patients. The in vivo efficacy of RITs was tested in a xenograft mouse model using BCMA expressing multiple myeloma cell lines. Anti-BCMA recombinant immunotoxins are very effective in killing myeloma cell lines and cells isolated from myeloma patients expressing BCMA. Two mouse models of myeloma showed that the anti-BCMA immunotoxins can produce a long-term complete response and warrant further preclinical development. Full article
(This article belongs to the Special Issue Immunotoxins: From Design to Clinical Application)
Show Figures

Figure 1

27 pages, 6901 KiB  
Article
Molecular Profile of Barrett’s Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies
by Edyta Korbut, Vincent T Janmaat, Mateusz Wierdak, Jerzy Hankus, Dagmara Wójcik, Marcin Surmiak, Katarzyna Magierowska, Tomasz Brzozowski, Maikel P Peppelenbosch and Marcin Magierowski
Int. J. Mol. Sci. 2020, 21(17), 6436; https://doi.org/10.3390/ijms21176436 - 3 Sep 2020
Cited by 11 | Viewed by 5528
Abstract
Barrett’s esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to [...] Read more.
Barrett’s esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to screen Gene Expression Omnibus 2R (GEO2R) databases to establish whether clinical BE molecular profile was comparable with animal and optimized human esophageal squamous cell lines-based in vitro models. The GEO2R tool and selected databases were used to establish human BE molecular profile. BE-specific mRNAs in human esophageal cell lines (Het-1A and EPC2) were determined after one, three and/or six-day treatment with acidified medium (pH 5.0) and/or 50 and 100 µM bile mixture (BM). Wistar rats underwent microsurgical procedures to generate esophagogastroduodenal anastomosis (EGDA) leading to BE. BE-specific genes (keratin (KRT)1, KRT4, KRT5, KRT6A, KRT13, KRT14, KRT15, KRT16, KRT23, KRT24, KRT7, KRT8, KRT18, KRT20, trefoil factor (TFF)1, TFF2, TFF3, villin (VIL)1, mucin (MUC)2, MUC3A/B, MUC5B, MUC6 and MUC13) mRNA expression was assessed by real-time PCR. Pro/anti-inflammatory factors (interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, tumor necrosis factor α, interferon γ, granulocyte-macrophage colony-stimulating factor) serum concentration was assessed by a Luminex assay. Expression profile in vivo reflected about 45% of clinical BE with accompanied inflammatory response. Six-day treatment with 100 µM BM (pH 5.0) altered gene expression in vitro reflecting in 73% human BE profile and making this the most reliable in vitro tool taking into account two tested cell lines. Our optimized and established combined in vitro and in vivo BE models can improve further physiological and pharmacological studies testing pathomechanisms and novel therapeutic targets of this disorder. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4177 KiB  
Article
Preparation of Biphenyl-Conjugated Bromotyrosine for Inhibition of PD-1/PD-L1 Immune Checkpoint Interactions
by Eun-Hye Kim, Masuki Kawamoto, Roopa Dharmatti, Eiry Kobatake, Yoshihiro Ito and Hideyuki Miyatake
Int. J. Mol. Sci. 2020, 21(10), 3639; https://doi.org/10.3390/ijms21103639 - 21 May 2020
Cited by 11 | Viewed by 4191
Abstract
Cancer immunotherapy has been revolutionized by the development of monoclonal antibodies (mAbs) that inhibit interactions between immune checkpoint molecules, such as programmed cell-death 1 (PD-1), and its ligand PD-L1. However, mAb-based drugs have some drawbacks, including poor tumor penetration and high production costs, [...] Read more.
Cancer immunotherapy has been revolutionized by the development of monoclonal antibodies (mAbs) that inhibit interactions between immune checkpoint molecules, such as programmed cell-death 1 (PD-1), and its ligand PD-L1. However, mAb-based drugs have some drawbacks, including poor tumor penetration and high production costs, which could potentially be overcome by small molecule drugs. BMS-8, one of the potent small molecule drugs, induces homodimerization of PD-L1, thereby inhibiting its binding to PD-1. Our assay system revealed that BMS-8 inhibited the PD-1/PD-L1 interaction with IC50 of 7.2 μM. To improve the IC50 value, we designed and synthesized a small molecule based on the molecular structure of BMS-8 by in silico simulation. As a result, we successfully prepared a biphenyl-conjugated bromotyrosine (X) with IC50 of 1.5 μM, which was about five times improved from BMS-8. We further prepared amino acid conjugates of X (amino-X), to elucidate a correlation between the docking modes of the amino-Xs and IC50 values. The results suggested that the displacement of amino-Xs from the BMS-8 in the pocket of PD-L1 homodimer correlated with IC50 values. This observation provides us a further insight how to derivatize X for better inhibitory effect. Full article
Show Figures

Graphical abstract

22 pages, 3030 KiB  
Review
Antibodies for the Treatment of Brain Metastases, a Dream or a Reality?
by Marco Cavaco, Diana Gaspar, Miguel ARB Castanho and Vera Neves
Pharmaceutics 2020, 12(1), 62; https://doi.org/10.3390/pharmaceutics12010062 - 13 Jan 2020
Cited by 40 | Viewed by 7445
Abstract
The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors [...] Read more.
The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors due to their inherent targeting specificity. However, the use of mAbs in the treatment of CNS tumors is restricted by the blood–brain barrier (BBB) that hinders the delivery of either small-molecules drugs (sMDs) or therapeutic proteins (TPs). To overcome this limitation, active research is focused on the development of strategies to deliver TPs and increase their concentration in the brain. Yet, their molecular weight and hydrophilic nature turn this task into a challenge. The use of BBB peptide shuttles is an elegant strategy. They explore either receptor-mediated transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) to cross the BBB. The latter is preferable since it avoids enzymatic degradation, receptor saturation, and competition with natural receptor substrates, which reduces adverse events. Therefore, the combination of mAbs properties (e.g., selectivity and long half-life) with BBB peptide shuttles (e.g., BBB translocation and delivery into the brain) turns the therapeutic conjugate in a valid approach to safely overcome the BBB and efficiently eliminate metastatic brain cells. Full article
(This article belongs to the Special Issue Drug Delivery across Biological Barriers)
Show Figures

Graphical abstract

Back to TopTop