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Abstract: Due to their high specificity, monoclonal antibodies (mAbs) have garnered significant
attention in recent decades, with advancements in production processes, such as high-seeding-density
(HSD) strategies, contributing to improved titers. This study provides a thorough investigation of
high seeding processes for mAb production in Chinese hamster ovary (CHO) cells, focused on
identifying significant metabolites and their interactions. We observed high glycolytic fluxes, the
depletion of asparagine, and a shift from lactate production to consumption. Using a metabolic
network and flux analysis, we compared the standard fed-batch (STD FB) with HSD cultivations,
exploring supplementary lactate and cysteine, and a bolus medium enriched with amino acids.
We reconstructed a metabolic network and kinetic models based on the observations and explored
the effects of different feeding strategies on CHO cell metabolism. Our findings revealed that the
addition of a bolus medium (BM) containing asparagine improved final titers. However, increasing
the asparagine concentration in the feed further prevented the lactate shift, indicating a need to find a
balance between increased asparagine to counteract limitations and lower asparagine to preserve the
shift in lactate metabolism.

Keywords: intensified fed-batch; mathematical modeling; cellular metabolism; bioprocess optimization;
Chinese hamster ovary

1. Introduction

The need for effective (bio-)pharmaceuticals is rising and fast research and develop-
ment processes become increasingly important to bring innovations rapidly to clinical
applications. On the pharmaceutical market, with a value of USD 330.7 in 2021 and increas-
ing to a predicted value of USD 478.08 billion in 2026 [1], monoclonal antibodies (mAbs)
are one of the best-selling drugs [2].

To meet the growing needs from industry efficiently, the relevant production pro-
cesses involving cell-based systems require thoughtful reconsideration and continuous
improvements. Chinese Hamster Ovary (CHO) cells are a well-established, predominantly
used host system to produce therapeutic mAbs. They are commonly cultivated in fed-
batch processes due to easy handling and flexibility [3], with an extensive increase in titer
in the last years up to 13 g/L [4–6]. Promising approaches for further improvement in
the overall productivity of industrial processes, while complying with the high demands
towards quality, safety, and efficacy of the product [7], are process intensification using
high-seeding-density (HSD) processes and model-based process optimization. Thereby,
higher product titers, reduced costs, and improved facility utilization [8] can be achieved.
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The optimization process relies on various methodologies, including a large number of
experiments [7], statistical methods [9,10], or mechanistic approaches that consider the
dynamics of the system.

Within the realm of mechanistic understanding, different types of metabolic models
exist. Stoichiometric or constraint-based modeling approaches are available that rely on
pseudo-steady-state assumptions of intracellular metabolites [10]. For some constraint-
based modeling approaches, no knowledge about the dynamics of the system is necessary,
which makes them widely applicable and appropriate to be combined with genome-scale
models [11], but also limits their usage [7]. To capture the dynamic responses in cell
culture processes, information on the system kinetics and mechanistic knowledge can be
incorporated into the model. This enables the transition to kinetic metabolic modeling.
which is suitable for model-based process optimization, requiring necessary simplifications
for computational efficiency and identifiability of parameters.

Recent studies have showcased modeling approaches of different complexity and
levels of detail for animal cells like AGE1 and CHO cells (e.g., [7,10,12]) dealing with the
mentioned restrictions and requirements. Constraint-based modeling of CHO cells was, for
example, used for the characterization of the cellular physiology, the development of media
and feeding strategies, the optimization of bioprocess control, and cell engineering [13].
On the other hand, Nolan and Lee conducted pioneer work in kinetic modeling with their
work on dynamic modeling of CHO cell metabolism in a standard fed-batch (STD FB)
process in 2011. Kinetic rate expressions were defined for the cytosolic reactions, and all
other rates were determined by means of metabolic flux analysis [10]. Robitaille et al. built
a model describing four different culture conditions including batch and STD FB processes
with a single set of parameters using multiplicative Michaelis–Menten equations as kinetic
expressions [12]. The more recently published model by Ramos et al. consisted of one segre-
gated cell growth model part and one structured model part of the intracellular metabolism
of AGE1.HN.AAT cells producing α1-antitrypsin cultivated in a batch process [7]. One
recently developed model by Xing et al. includes the central metabolism of CHO cells
as well as the production of the CVA6 VLP vaccine. This model described in detail the
growth, death, and lysis of cells, while also including glucose, lactate, glutamine, and
ammonia, relying on yields for the description of metabolite changes. The authors were
thereby able to predict different conditions in batch cultivations [14]. A hybrid approach
was proposed by Monteiro and Kontoravdi [15]. In their study, the authors combined
a metabolic network and a reactor model to reduce the need for parameter estimation
and increase the predictive power of the model [15]. Another kind of hybrid model was
introduced by Okamura et al. [16]. They included three different modules, namely, a kinetic
metabolic model until cell death is reached, a data-driven module updating parameters
based on changing conditions, and a second kinetic model encompassing protein and DNA
synthesis. To our knowledge, only a few groups developed a model of an HSD process,
while the other published studies focused on batch and/or STD FB processes. Stepper and
co-authors used a mechanistic model to investigate perfusion process data. In their work,
the authors described a process intensification that combines a pre-stage perfusion and
a high-seeding-density fed-batch production stage. The product titer was increased by
1.9-fold, while keeping the product quality at a comparable level. This could be achieved
by optimizing the process, making use of the mentioned mechanistic model and next-
generation sequencing [8]. In another study, a flux balance analysis was performed on a
genome-based model of CHO cells in an HSD process focusing on the reduced viability
in these processes and the effect of a combined addition of lactate and cysteine on the
metabolism [17].

The HSD processes differ significantly from those in STD FB processes. The seeding
and the overall cell density is higher in the HSD process, while the cell viability decreases
more rapidly. Due to the pre-stage perfusion, the cells may enter the production stage in a
different cell cycle. Generally, different gene expression patterns were found [8]. Therefore,
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it is likely that the mechanisms inside the cell might be different between STD FB and HSD
processes and might require different model structures and/or parameter sets.

Another challenge in modeling this process is that although CHO cells are well studied
as a production system, some important mechanisms are still unknown. The switch in
lactate metabolism from its production as part of an inefficient overflow metabolism to its
consumption in a more efficient metabolic phase, for example, is a well-known and desired
phenomenon that is not yet fully understood mechanistically [18]. Several hypotheses on
the cause of this phenomenon exist (see e.g., [18–20]) and were included in some models
with different strategies based on the introduction of a redox variable [10] or switching
function [21], the usage of two different kinetics for the lactate dehydrogenase [7], or simply
making the reaction reversible [22].

In this study, we first reconstructed a metabolic network and conducted the constraint-
based modeling to provide a better understanding of the system behavior and flux distri-
bution in different culture conditions. Next, we reduced the network and set up kinetic
expressions for each reaction, analyzed the model structure, and finally set up an ensem-
ble of dynamic model candidates representing the mechanisms inside CHO cells in HSD
processes, including the lactate shift. The initial model fit was evaluated, and further
possible improvements and indications on the mechanisms were discussed. Simulation
studies were performed to gain further knowledge and evaluate the limitations of the
model structure. Optimization strategies for the process were discussed, with a focus on
medium optimization and amino acid content.

2. Materials and Methods
2.1. Cell Line, Cultivation, and Analytics

A suspension CHO cell line was cultivated in intensified fed-batch processes with
seeding densities of 10 Million cells/mL (HSD) in 3 L reactors with chemically defined
media. To establish these seeding densities, the seed train cultures underwent shake flask
processing until the (N-2) stage, followed by an (N-1) pre-stage perfusion as described by
Stepper et al. [8]. In the STD FB processes, the same media were used but were seeded with
0.7 million cells/mL. The cells were cultivated for 12 to 14 days in two duplicate runs with
13 sampling points, starting at day zero (D0) at intervals of around 24 h. The feeding oc-
curred continuously via a peristaltic pump. We maintained the glucose concentration above
a defined threshold with a bolus feed and introduced antifoam agents whenever necessary.

Alongside the HSD control run, additional runs with lactate and cysteine (LAC + CYS) and
bolus medium (BM) addition were performed (based on the work by Krumm et al. [23]).
The BM addition took place from day one to six, while lactate addition occurred over the
whole cultivation duration, and cysteine was added until day four. For the LAC + CYS
supplementation, sodium lactate was added from day 3 to day 13 as a bolus if the concen-
tration fell below 2 to 3 g/L, while cysteine was added as a fixed bolus of 7 mL from day 1
to day 5 [23].

The Cedex HiRes analyzer (Roche Diagnostics, Germany) was employed to ascertain
the viable cell density and viability. The quantification of glucose, lactate, ammonia,
and the protein concentration (immunoglobulin-G) was conducted using the KonelabTM
Prime60i device (Thermo Fisher Scientific Inc., MA, USA). The antibody concentration
was determined with a Protein-A HPLC (Thermo Fisher Scientific Inc., MA, USA). For
amino acids analytics, except for cysteine, the 7890B GC system (Agilent Technologies, CA,
USA) was used. The sample preparation was performed as described by Mohabbat and
Drew [24]. Therefore, first, norvaline as an internal standard and an amino acid standard
were added to the samples. Purification was then performed via an ion exchange resin
solid phase extraction. After elution, the derivatization reagent was added, followed by an
organic solvent. To stop derivatization, an acidic reagent was included. The samples were
then analyzed via a GC-FID using a Faast amino acid analysis kit (Phenomenex Inc., CA,
USA) according to Mohabbat and Drew [24]. For an offset correction, offline pH, pO2, and
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pCO2 were measured with a blood gas analyzer (Siemens Health Care, Germany), and pH
was monitored online with a glass pH electrode (Hamilton Messtechnik, Germany).

2.2. Model Reconstruction and Analysis

For the reconstruction of a central carbon metabolism model, we used the genome-
scale model iCHOv1_K1_final developed by Hefzi et al. [11] and the model established by
Schaub et al. [25] as references. Supplementary to these, we integrated insights from other
central carbon metabolic models [26,27] and information from the databases KEGG [28] for
the organism Cricetulus griseus (Chinese Hamster), ExPASy [29], and PubChem [30]. All
reactions included in the network are given in Table S1 in the Supporting Material.

Conducting the flux balance analysis (FBA) entailed pre-processing steps to convert
the concentration measurements to fluxes, identify and remove outliers, and filter the
data with the LOWESS (linear locally weighted scatterplot smoother) filtering [31]. The
constraints of the flux values were chosen as ±10% of the measured data, and reversibility
was included by setting the lower boundaries to either 0 or −1000 for unmeasured fluxes.
The objective of the FBA was to maximize the biomass or the product, respectively. Taking
the results of the FBA as a starting values of a metabolic flux analysis (MFA), the model was
fitted to experimental fluxes to obtain the intracellular flux distribution. Finally, the network
was validated (based on R2 > 0.98, results not shown here). For the standard fed-batch
(STD FB) process, the FBA included the days 4 to 13 to prevent disturbance due to the lag
phase. Given that the HSD process lasted only 11 days, the FBA was, correspondingly,
only executed in this period, while for the other processes, it was based on the results of
days 2 to 13.

In establishing the kinetic model, our focus was on identifying significant metabolites.
We therefore reduced the list of metabolites to the main carbon source glucose, pyruvate as
an important intermediate, lactate and ammonia as the pivotal by-products, biomass, and
the product (mAb), as well as key amino acids, namely, asparagine, aspartate, glutamate,
serine, isoleucine, and leucine. In order to streamline and establish connections between
these metabolites, we lumped and simplified the reactions of the metabolic network.
Multiplicative Michaelis–Menten equations provided the foundation for the kinetic rates
in the model. Kinetic parameters were obtained from literature [12,32–38], derived from
experiments, or chosen arbitrarily. To account for the metabolic shift from lactate production
to lactate consumption, diverse hypotheses on the regulation based on literature and
experimental results were examined to identify the best-fitting models.

We executed the simulations of the kinetic model in MATLAB R2019a (The MathWorks
Inc., Natick, MA, USA) by formulating it as a system of ordinary differential equations. For
model calibration to the experimental data, we used the enhanced scatter search, readily
implemented in the MEIGO toolbox [39]. In pursuit of greater validity, we considered
the fluxes observed before and results of a global sensitivity analysis to revise the model
structures. Upon observing several well-fitting models, we selected the most suitable
models for the given data with the Akaike information criterion [40] and combined those in
an ensemble of models. To ascertain the viable parameter space of each model structure, we
employed an algorithm combining a coarse-grained global search, the out-of-equilibrium
adaptive Metropolis Monte Carlo method, and a finer local search, the multiple ellipsoid-
based sampling implemented in the HYPERSPACE toolbox [41]. In the ensemble model,
only the five parameter sets yielding the lowest cost function values were incorporated
to finally obtain combined predictions. A visualization of the kinetic model structure can
be found in Figure 1. The model reactions, kinetics, and parameter sets are listed in the
Supporting Material (Tables S3–S5).
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Figure 1. Visualization of the mechanistic model of central carbon metabolism of CHO cells. This
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in the HSD process derived from the metabolic network. Reactions that differ in the different model
structures are shown in grey.

3. Results
3.1. Flux Balance Analysis—Effect of Supplements on the Metabolism
3.1.1. Extracellular Fluxes

To better understand the effects of different fermentation conditions, extracellular as
well as intracellular fluxes were analyzed. Extracellular fluxes were directly derived from
concentration measurements and then used to derive constraints for a flux balance analysis
(FBA). Experimental data in Figure 2, as well as previous studies [8,17], revealed that the
HSD process increased the overall titer compared to the STD FB process. This improvement
was attributed to the HSD process reaching the production phase faster and exhibiting
elevated cell-specific productivities [8,17]. However, the viability of the cells dropped after
a few days, leading to a decrease in biomass early in the process [23]. To address this issue,
the effects of introducing additional lactate and cysteine (LAC + CYS) and bolus medium
(BM) were investigated [23] (see Figure 2).

Both LAC + CYS supplementation, as well as the introduction of BM, resulted in 30%
increase in viability compared to the control HSD, leading to a higher viable cell density
over an extended period. This effect was more pronounced in the run with BM, extending
the production phase and resulting in even higher final titers.

Based on these experiments, the FBA was performed (see Figure 2b) to investigate the
effect of the additions on the cell metabolism, using the HSD control and LAC + CYS run
for calibration and the HSD + BM run for validation.

Comparing the fluxes in STD FB with the HSD process, the STD FB process exhibited
higher exponential growth with lower productivity, a characteristic that was shifted to the
(N-1) stage in the HSD process. Within the exponential growth phase in the STD FB process,
glucose consumption reached higher levels than in the production phase. In the context of
this early growth phase, the cells consumed asparagine and isoleucine, while glutamate
and aspartate were produced. Remarkably, asparagine consumption was higher than in
the other fermentation conditions. Overall, the HSD process showed a different dynamic
with divergent trends compared to the STD FB with lower biomass production, higher
productivity until day nine, less glucose consumption, and higher lactate production.

Introducing additional BM during day one to six resulted in lower productivity
compared to the control condition. However, following the cessation of this addition,
productivity notably increased leading to an increased final titer. The addition also slightly
increased the lactate uptake while concurrently lowering the glucose uptake and resulted
in the uptake of glutamate and aspartate in the second half of the cultivation. Compared
to the control HSD condition, the LAC + CYS cultivation strategy exhibited an overall
higher productivity with a strong decrease after day 12 (D12). In the initial metabolic phase,
the LAC + CYS approach outperformed even the BM addition. Upon addition of lactate
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and cysteine, lactate uptake increased while the glucose uptake reduced in the subsequent
metabolic phase. This observation agrees well with findings in previous studies [42]. The
uptake fluxes of amino acids were generally lower than those observed in the BM runs.
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Figure 2. Comparison of viable cell density, viability, titer, and extracellular fluxes between different
cultivation conditions. (a) Normalized viable cell density (VCD), viability, and titer, as well as
(b) fluxes derived from concentration measurements for the biomass (growth), the mAb (productivity),
glucose (Glc), lactate (Lac), asparagine (Asn), glutamine (Gln), aspartate (Asp), and isoleucine (Ile)
formation of the standard fed-batch (STD FB) and high-seeding-density (HSD) processes without
additions (control) and with additional lactate and cysteine feed (LAC + CYS) or bolus medium
addition (BM) over 12 to 14 days are shown. Negative fluxes indicate consumption while positive
fluxes signify secretion.

During the initial phase of cultivation, a high consumption of asparagine ([µmol/gDW/h])
was observed across all conditions, with particularly pronounced levels in the STD FB run.
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In the STD FB process, large amounts of asparagine were consumed during the lag and
growth phase. In the HSD conditions, the main part of the growth phase—and thereby
the associated asparagine consumption—was shifted to the (N-1) stage of the cultivation.
However, the cells grew exponentially in the first part of the HSD cultivation, leading to
high demands for replication and maintenance. This resulted in amino acid limitations
and thereby limited uptake rates in the second half of the cultivation. Since additional
asparagine was supplied within the BM, the uptake rates sustained higher rates for an
extended period leading to the highest maximal viable cell density (see Figure 2). In the
LAC + CYS process, where amino acids consumption was generally less extensive, the
asparagine consumption remained comparable to that observed in the other processes.

3.1.2. Intracellular Fluxes

The flux distributions derived from FBA, obtained by maximizing the biomass dur-
ing the cellular growth phase and maximizing mAb production during the production
phase, were used for fitting to measurements of metabolites in a metabolic flux analysis.
This approach enabled successful validation of the stoichiometric model. Next, we inves-
tigated intracellular fluxes by making use of the validated model (see Figure S1 in the
Supporting Material).

In the STD FB, the exponential phase was discernible at D4 to D6 by high glycolytic
fluxes. These values aligned with the uptake fluxes shown in Figure 2, indicating that a
significant portion of glucose was channeled into glycolysis and did not enter the pentose
phosphate pathway. After D6, the observed fluxes decreased, which indicated the shift to
the production phase.

In the next step, the distinct HSD conditions were compared. The addition of LAC + CYS
led to lower glycolytic fluxes from D8 to D11, during which a low glucose level prevailed.
Cysteine was only added until D4, so the changes, for example, in the reaction from
3-phosphoglycerate to phosphoenolpyruvate can be attributed solely to lactate. The gly-
colytic fluxes were generally lower for this condition. For the process with BM addition,
the glycolytic activity remained subdued from D4 to D7 and increased afterwards. Directly
after D7, the productivity elevated, potentially due to the higher energy provision by
glucose uptake. Furthermore, we observed that lactate consumption coincided with low
glycolytic activity. To further investigate the role of the carbon source, we calculated the
glucose/lactate ratio (see Figure 3)—an indicator of the energetic and metabolic efficiency.
A ratio within the range of zero and one indicates a high efficiency [32].
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Figure 3. Carbon source and effect on productivity: (a) ratio of lactate to glucose determined as the
ratio of the uptake fluxes, and (b) the mAb productivity accordingly for the standard fed-batch (STD
FB) and the three high-seeding-density (HSD) processes. A positive ratio suggests that the cells take
up glucose and lactate in parallel, while a negative ratio suggests that glucose is consumed while
lactate is produced. The background colors indicate two different metabolic phases.
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From Figure 3, it is evident that the STD FB process led to an overflow metabolism,
where around half of the consumed glucose was flowing into lactate at D4 and D5. Starting
from D6 onwards, across the STD FB, HSD control, and HSD + BM conditions, the ratios
were between zero and one on most days, indicating glucose as the main carbon source.
The addition of the LAC + CYS supplement, on the other hand, led to a ratio exceeding
one, signifying lactate as the primary carbon source. This condition led to high mAb
productivity. The findings agree with earlier studies [43] wherein lactate was identified as
the main carbon source in later stages of cultivation.

All previous results led to the conclusion that the lactate metabolism plays an im-
portant role in the production of mAb and its regulation. Therefore, we investigated the
individual pathways involved in this part of the metabolism in more detail. Trying to
identify a certain switching point in metabolism during the cultivation, the observations
from intracellular and extracellular fluxes led to a shift at D7 or D9, respectively. These
demarcations were determined based on the ratio between TCA cycle and glycolysis fluxes.
In the initial phase, anaplerosis promoted lactate formation, whereas in the subsequent
phase, the process shifted to lactate consumption with a more reliable carbon transfer into
the TCA cycle. Further details regarding this phenomenon are discussed in Section 4.

These results suggest a connection between the lactate shift and the interplay between
the glycolysis and the TCA cycle. Next, we used the findings presented to set up a kinetic
model to study a further feeding strategy and present one plausible implementation of the
influences revealed so far.

3.2. Ensemble Model Calibration

For setting up a kinetic mechanistic model, regulations drawn upon diverse sources
from the literature on different organisms and from experimental data were tested. The
most probable models according to the data also considering the number of parameters were
selected. The three most probable models identified all relied on the same regulation of the
lactate shift. This framework encompasses the activation of glycolysis by asparagine, feedback
inhibition of lactate dehydrogenase by the product lactate, a link between decreasing glycolysis
and increasing lactate uptake, and an inhibition of the entry of pyruvate into the TCA by
asparagine (see Figure S2 in the Supporting Material). It is notable that the inclusion of extra
asparagine alongside the BM led to an increase in lactate uptake, which gave a first indication
that asparagine might be involved in the regulation of the shift. Therefore, we included this
kind of regulation. Further discussion around it follows in Section 4.

As described in the method section, an ensemble of models was set up. Combining the
selected model structures and parameter sets for the kinetic models, the combined predic-
tions shown in Figure 4 were found. For most metabolites, all models predicted a similar
development. Only for lactate, glutamate, and aspartate, the discrepancies were larger.
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All models overestimated the biomass concentration at the peak. The lactate shift, al-
though underestimated in some cases, could be reproduced trend-wise by all of the models.
The same observation applies to glutamate, where discrepancies were also apparent in the
final concentrations. For the combined prediction, which corresponds to the average of
the individual model predictions, Pearson’s linear correlation coefficients were between
0.553 for glutamate and 0.998 for mAb, indicating a satisfactory fit.

3.3. Room for Improvement—The Lactate Shift

As one important indicator of metabolic efficiency, influencing the productivity, in-
hibition, and connectivity of metabolic pathways, lactate is of central importance for the
metabolism of CHO cells. The mechanistic understanding of the shift from lactate produc-
tion in the context of inefficient overflow metabolism to the more efficient consumption
and utilization as a carbon source remains incomplete. Insights gleaned through the FBA
unveiled that lactate consumption is interconnected with the glycolytic activity, the con-
nectivity of the glycolysis and the TCA cycle, and the uptake of several other metabolites
including amino acids. In our ensemble model, we modeled the lactate shift by combining
these regulations. The derived metabolic expression is given in the Supporting Material
Equations (S16), (S17), and (S24) for model 1, as well as in the according rate expressions
of the other models. To incorporate the feedback inhibition of the conversion of pyruvate
to lactate, an inhibition kinetic with a parametric exponent was chosen. Additionally, the
rate from lactate to pyruvate is inversely proportional to the glycolytic rate (S17). This
rate is limited not only by glucose but also by asparagine (S16). The further metabolism of
pyruvate is also influenced by asparagine, represented by an inhibition (S24).

As described in the existing literature, during the initial growth phase, metabolic
inefficiency prevails due to the high uptake of glucose and production of lactate, a waste
product that has inhibitory effects. This pathway is further discussed in the subsequent
section. By implementing elevated seeding densities for the process, lactate production
was reduced markedly in our experiments. Concurrently, lactate was consumed in later
cultivation phases.

Several studies have delved into the lactate shift, giving hypotheses on the mechanisms
behind it (refer, for instance, to [10,18–20,44–47]). In the process of model development
undertaken in this study, a range of hypotheses on the mechanism was implemented. The
hypothesis selected as the most probable here has, to our knowledge, never been stated
in this combination before. It includes the combined effect of asparagine on glycolysis
and on the link between glycolysis and the TCA cycle with the inhibition of the lactate
dehydrogenase. We were able to reproduce the lactate shift with these mechanisms. Making
use of dynamic metabolic models like the one constructed here facilitates model-based
process optimization. Since we assume a large impact of asparagine on the lactate shift, the
effect of changed asparagine concentrations in the feeding media was investigated using
the model and further measurements.

3.4. Effect of Changing Media Composition on the Metabolism of CHO Cells

We were able to demonstrate that the addition of a BM containing asparagine improved
the performance of the HSD process. Building upon this advancement, the next logical
progression involves exploring the potential of a bolus medium with even higher amino
acid concentrations. Since asparagine decreased strongly in the beginning and was almost
depleted, the investigation in this study focuses on asparagine. For this purpose, we
harnessed our model to predict the influence of changing asparagine concentrations in the
feed (see Figure 5).
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Figure 5. Comparison of the concentration curves for cultivations with different asparagine ratios in
the feed media. The simulated development of the concentrations for the original feeding medium,
a feeding medium with reduced asparagine concentration, and a feeding medium with elevated
asparagine concentration compared to the original medium are shown.

When reducing the asparagine concentration in the feeding medium, we noted only
marginal changes in the concentration profiles predicted by the ensemble model compared
to the unchanged feeding medium (refer to Figure 5). While there was a slight alteration
in biomass development, it should be noted that the model could not predict this state
stably, so this change is difficult to analyze. Additionally, lactate depletion occurred earlier
due to the more pronounced shift to lactate consumption. However, the trend of the
asparagine concentration curve remained unchanged. Given that only a modest reduction
in asparagine concentration was applied, only small changes were to be expected. On the
other hand, when increasing the asparagine concentration by a larger percentage, the lactate
shift did not occur. The validation experiments that were conducted based on these findings
could verify this phenomenon in the cell; with increased asparagine in the feed, no lactate
switch was observed (see Figure S4 in the Supporting Material). For further validation of
the results, the ratios between the lactate concentration in the enhanced asparagine and
control run for the exponential growth phase and production phase (D0 to D10) of the
simulations and the experiments were compared, as well as the lactate production rates
(see Figure 6). The comparisons showed good agreement with the experiments.
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For further analysis, the reaction rates of the kinetic model for the original, higher, and
lower asparagine content in the feed were extracted and analyzed on D2 and D5, with time
points marking different metabolic phases [23] (see Figure S3 in the Supporting Material).
Lower asparagine content in the feed fostered a more pronounced lactate shift reducing the
inhibition by lactate, accompanied by an enhanced growth rate. Higher asparagine reduced
limitations and depletion of important amino acids, also resulting in elevated growth. The
production of mAb was predicted to be higher with enhanced asparagine level. However,
this contradicts experimental findings (see Figure S4 in the Supporting Material). Notably,
the rates once again showed that lactate production did not switch to lactate production for
the simulations with higher asparagine content in the feed.

4. Discussion

In this study, the metabolic behavior of CHO cells underwent deeper investigation
using experimental and computational tools. One distinct characteristic of CHO cell
metabolism during the exponential growth phase is the metabolic overflow, commonly
referred to as the Warburg effect [48], resulting in high lactate production. This path only
yields 2 ATP molecules, while the complete oxidation in the TCA cycle fueling the oxida-
tive phosphorylation leads to an ATP gain of 36 molecules [49,50]. As mentioned before,
under certain conditions, the metabolism can switch to a more efficient state. In that state,
glycolysis rates are low, and lactate is produced less [49,51], or even consumed [44,49]. In
the context of the mAb production process, the lactate shift is highly desirable if the lactate
production itself cannot be avoided in the first place since the reduction of extracellular lac-
tate reduces inhibitory effects, leading to higher viable cell densities and product yields [49].
Additionally, the decrease in the pH by high extracellular lactate concentrations, or the in-
crease in the osmolality in a pH-controlled environment by addition of a base to counteract
the pH decrease [44], is reduced. Strategies to enhance CHO cell metabolism involve either
preventing this glucose metabolism route or shifting this part from the production stage to
the (N-1) stage of fermentation as was undertaken in the HSD condition.

In addition to the control HSD condition, fermentation runs with additional lactate
and cysteine and an additional BM were conducted. In a previous study in the same
group by Brunner et al., it was shown that the introduction of lactate aimed to increase
productivity and reduce reactive oxygen species (ROS) formation. Cysteine, typically
added to maintain cell growth, exhibited the capability to actively reduce ROS [17] and
might also have an influence on the glycolytic and TCA cycle activity [48] and product
quality [42]. The BM contained a combination of amino acids thought to reduce limitations.
Higher lactate, glutamate, and aspartate uptake in the HSD + BM cultivation led to higher
carbon availability, which had a positive effect on the productivity in that condition. The
observed impact of BM could potentially also be attributed to a reduction in DNA damage
and apoptosis by the presence of higher amounts of asparagine and higher transport
activities triggered by higher isoleucine concentrations that prevents the depletion of other
amino acids [32,52]. In the LAC + CYS cultivation, the amplification of lactate uptake,
leading to high amounts of pyruvate entering the mitochondrion and the TCA cycle, might
explain the lower uptake fluxes of amino acids since these are not necessary to fulfill carbon
requirements. This phenomenon aligned with the outcomes of the FBA.

The high asparagine consumption across all conditions in the first phase of cultivation
was one important finding. From the results of the FBA, considering the additional BM,
one possible conclusion is that asparagine is limiting in the HSD cultivations. Therefore,
if more asparagine were available, the growth phase would be extended. Additionally,
under these conditions, cells co-consumed asparagine, glutamate, and aspartate in the later
cultivation phase to fulfill the lifted carbon demand for enhanced productivity. Overall,
asparagine appeared to be a critical metabolite for the cells.

Further analysis of intracellular fluxes revealed a potential connection between gly-
colytic activity and the lactate shift. In the initial phase, anaplerosis was active, manifesting
in the generation of lactate and the entering of pyruvate into the TCA cycle via oxaloacetate
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and malate. This phenomenon signifies overflow metabolism and an inefficient usage
of pyruvate. In the subsequent phase, lactate was taken up and pyruvate could directly
enter the mitochondrion, leading to a more reliable carbon transfer in the TCA cycle. It is
worth noting that anaplerosis energetically involves ATP expenditure for the conversion of
pyruvate into oxaloacetate. One reason for the use of this pathway could be the cytosolic
accumulation of lactate before its export inducing an acidic milieu that might have hindered
pyruvate transport through the mitochondrial membrane due to a diminished potential
across this membrane [53]. Lactate consumption and utilization within the cell could have
facilitated the restoration of the membrane potential. Compared to the STD FB approach,
the HSD process improved the efficiency and led to less anaplerosis. In the STD FB process,
higher glycolytic fluxes are present while having less and later lactate consumption. The
most pronounced lactate consumption flux was observed for the LAC + CYS, which, at
the same time, showed the lowest glycolytic fluxes. In the same condition, the lactate-to-
glucose-uptake ratio showed significant differences compared to the other runs. The higher
availability of lactate in the medium led to the shift to lactate as the main carbon source
although glucose was still present. This run resulted in higher titers than the control HSD
cultivation, so one might conclude that processes solely relying on lactate might be an
option for future cultivations. However, CHO cells cannot solely rely on lactate as a carbon
source since glycolytic intermediates also contribute to other metabolic pathways, so cells
abstain from lactate consumption in the absence of glucose [54].

Considering the results of the cultivation runs with LAC + CYS and BM addition,
further optimization of the feeding strategy in the process is possible. Notably, lactate
was highly consumed until D9 in the LAC + CYS case and at the same time point, the BM
condition surpassed the LAC + CYS condition in terms of mAb productivity. Finding an
appropriate way to combine these two processes, the benefits of each condition could lead
to an even higher titer.

After intensively studying the fluxes in the metabolism of CHO cells, a kinetic model
was constructed. The presented mechanisms for the regulation of the metabolism within
the organisms cannot be definitively asserted. The hypothesis, albeit constructed based
on diverse literature findings across various organisms, emerged as the most plausible
among the range of hypotheses tested. It was notable that the inclusion of extra asparagine
alongside the BM led to an increase in lactate uptake, which gave a first indication that as-
paragine might be involved in the regulation. In the FBA, we could observe high asparagine
uptake rates at the beginning in parallel to lactate production. Further insights emerged
from concentration measurements, unveiling a concurrent reduction in asparagine levels
alongside the occurrence of the lactate shift. While this does not definitively demonstrate
causation, it might give a further indication on the regulation mechanism. Findings by Pan
et al. support this conclusion [20]. They reported an inhibition of the reaction from lactate
to pyruvate by asparagine. The activation of the glycolysis by asparagine can be derived
from the activation of the enzyme hexokinase by TCA cycle intermediates in yeast [55,56],
which can be provided by asparagine. The feedback inhibition of lactate dehydrogenase
by lactate was described before [57], and it was indicated that lactate consumption could
be triggered by low glycolytic rates [58]. Furthermore, the hypothesis that the entry of
pyruvate into the TCA cycle is inhibited by asparagine was deduced from the inhibition of
pyruvate dehydrogenase in pig by TCA cycle intermediates [59], which, once again, can be
provided by asparagine. An overview of the different activations and inhibitions is given
in Figure S2 in the Supporting Material. The fact that the lactate switch could be accurately
predicted using this regulatory framework suggests its applicability within the scope of
our purposes.

The constructed model was further used for simulation studies and was the foundation
for extended experiments. The most interesting finding was that when increasing the
asparagine concentration by a larger percentage, the lactate shift did not occur. This
means that a compromise between increased asparagine to prevent limitations and lower
asparagine to prevent its effect on the lactate metabolism is needed. Due to the mechanisms
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implemented in the model, an increase in asparagine led to an elevated glycolytic rate
that, in turn, inhibits lactate consumption. At the same time, less pyruvate enters the TCA
cycle, leading to an accumulation of pyruvate that shifts the equilibrium of the reaction
from pyruvate to lactate to the side of lactate. Experiments could verify this phenomenon,
indicating that the regulation assumed here might indeed hold relevance in the biological
context. In contrast to the simulation results, in the experimental values, no increased final
titer was observed for enhanced asparagine feed, leading to the conclusion that relevant
regulations involved in mAb production might be missing in the model. This regulation
could be connected to the extracellular lactate concentration that was increased due to
elevated asparagine concentrations. The higher availability of asparagine and the higher
inhibition by lactate might balance each other out, leading to an unchanged final titer.
In contrast to these findings, Lao and Toth reported that increased lactate concentration
elevated the specific productivity slightly [60]. However, the increased osmolarity, which
comes with higher lactate concentration in a pH-controlled environment, was reported
to decrease the protein production [60]. Cruz et al. also found a decrease in productivity
attributed to the combined effect of elevated lactate and higher osmolarity [61]. These
findings underscore the necessity of incorporating a regulation governing mAb production
that accounts for regulation by lactate and/or osmolarity. The further improvement of the
ensemble of models is out of the scope of this study, but the findings here can pave the way
for more reliable models in the future.

5. Conclusions

With a combination of experimental and computational tools, in-depth analysis of
metabolism in high-seeding-density fed-batch processes for mAb production was con-
ducted. We developed a stoichiometric and an ensemble of kinetic models of CHO cell
central carbon metabolism, validated them, and analyzed them under standard and high-
density conditions with various feeding strategies. Our kinetic model, rooted in an inter-
play of glycolytic activity, lactate feedback inhibition, and asparagine influence, aimed to
reproduce the lactate metabolism shift. Our study focused on diverse cultivation modali-
ties and feeding strategies, revealing increased titers under high-density conditions and
additional lactate/cysteine or bolus medium feed. These additives improved lactate utiliza-
tion, enhancing metabolic efficiency. However, contrary to predictions, highly increased
asparagine did not elevate product titers endlessly, suggesting additional not modeled
regulatory mechanisms, possibly involving lactate or osmolarity.

Upon identifying a model capable of projecting the influence of the media composition
on the metabolism, it becomes a valuable tool for further process development. Given
that its predictions are solely based on extracellular measurements, a straightforward
integration of the model into a digital twin of the process is feasible. This enables real-time
predictions of concentration changes, providing insights into the ongoing process and
allowing prompt adaptations if necessary.

While the models developed in this study have advanced our understanding of CHO
cell metabolism, there remains an opportunity for further refinement and exploration.
Future work should include additional iterations of experiments, revision of model struc-
ture, and model calibration to enhance the accuracy and predictive power of the models.
Moreover, a more granular investigation into the relationship between asparagine and the
lactate shift could yield valuable insights, potentially unlocking new paths for process opti-
mization. This iterative and investigative approach will not only deepen our understanding
of the complex mechanisms at play but also provide a robust foundation for the continual
improvement of bioprocesses. It is important to note that this work did not consider the
variations in product quality. Therefore, a significant step in future studies would be to
investigate how these variations influence quality, providing another layer of depth to our
understanding and optimization of the bioprocess.
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