Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,153)

Search Parameters:
Keywords = m-RNA vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 184 KiB  
Article
HPV E6/E7 mRNA Testing in the Follow-Up of HPV-Vaccinated Patients After Treatment for High-Grade Cervical Intraepithelial Neoplasia
by Adolfo Loayza, Alicia Hernandez, Ana M. Rodriguez, Belen Lopez, Cristina Gonzalez, David Hardisson, Itziar de la Pena, Maria Serrano, Rocio Arnedo and Ignacio Zapardiel
Vaccines 2025, 13(8), 823; https://doi.org/10.3390/vaccines13080823 (registering DOI) - 31 Jul 2025
Abstract
Introduction: Following up on treated high-grade cervical intraepithelial neoplasia (HSIL/CIN) lesions poses a challenge. Cervical cytology often has a high false-negative rate, while high-risk human papillomavirus (HR-HPV) DNA testing, though sensitive, lacks specificity. The detection of messenger RNA of the HR-HPV E6 and [...] Read more.
Introduction: Following up on treated high-grade cervical intraepithelial neoplasia (HSIL/CIN) lesions poses a challenge. Cervical cytology often has a high false-negative rate, while high-risk human papillomavirus (HR-HPV) DNA testing, though sensitive, lacks specificity. The detection of messenger RNA of the HR-HPV E6 and E7 oncoproteins (E6/E7 mRNA) is proposed as an indicator of viral integration, which is crucial for identifying severe lesions. Additionally, HPV vaccination could reduce recurrence rates in patients treated for high-grade cervical intraepithelial neoplasia. Objective: Our study aimed to assess the clinical utility of E6/E7 mRNA determination in the follow-up of HPV-immunized patients who were treated for HSIL/CIN. Methods: We conducted a retrospective observational study including 407 patients treated for HSIL/CIN. The recurrence rate and the validity parameters of E6/E7 mRNA testing were analyzed. Results: The recurrence rate for high-grade lesions was 1.7%. This low percentage might be related to the vaccination of patients who were not immunized before treatment. The sensitivity of the E6/E7 mRNA test was 88% at the first clinical visit, reaching 100% in the second and third reviews. Specificity was 91% at the first visit, 92% at the second, and 85% at the third. Regarding predictive values, the positive predictive value was 18% at the first visit, 10% at the second, and 14% at the third, while the negative predictive value was 100% across all follow-up visits. Conclusions: The E6/E7 mRNA test appears to be an effective tool for ruling out recurrence after treatment for HSIL/CIN lesions in HPV-immunized patients. Full article
19 pages, 4424 KiB  
Article
Humoral and Memory B Cell Responses Following SARS-CoV-2 Infection and mRNA Vaccination
by Martina Bozhkova, Ralitsa Raycheva, Steliyan Petrov, Dobrina Dudova, Teodora Kalfova, Marianna Murdjeva, Hristo Taskov and Velizar Shivarov
Vaccines 2025, 13(8), 799; https://doi.org/10.3390/vaccines13080799 - 28 Jul 2025
Viewed by 168
Abstract
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T [...] Read more.
Background: Understanding the duration and quality of immune memory following SARS-CoV-2 infection and vaccination is critical for informing public health strategies and vaccine development. While waning antibody levels have raised concerns about long-term protection, the persistence of memory B cells (MBCs) and T cells plays a vital role in sustaining immunity. Materials and Methods: We conducted a longitudinal prospective study over 12 months, enrolling 285 participants in total, either after natural infection or vaccination with BNT162b2 or mRNA-1273. Peripheral blood samples were collected at four defined time points (baseline, 1–2 months, 6–7 months, and 12–13 months after vaccination or disease onset). Immune responses were assessed through serological assays quantifying anti-RBD IgG and neutralizing antibodies, B-ELISPOT, and multiparameter flow cytometry for S1-specific memory B cells. Results: Both mRNA vaccines induced robust B cell and antibody responses, exceeding those observed after natural infection. Memory B cell frequencies peaked at 6 months and declined by 12 months, but remained above the baseline. The mRNA-1273 vaccine elicited stronger and more durable humoral and memory B-cell-mediated immunity compared to BNT162b2, likely influenced by its higher mRNA dose and longer prime-boost interval. Class-switched memory B cells and S1-specific B cells were significantly expanded in vaccine recipients. Natural infection induced more heterogeneous immune memory. Conclusions: Both mRNA vaccination and natural SARS-CoV-2 infection induce a comparable expansion of memory B cell subsets, reflecting a consistent pattern of humoral immune responses across all studied groups. These findings highlight the importance of vaccination in generating sustained immunological memory and suggest that the vaccine platform and dosage influence the magnitude and durability of immune responses against SARS-CoV-2. Full article
(This article belongs to the Special Issue Evaluating the Immune Response to RNA Vaccine)
Show Figures

Figure 1

16 pages, 2036 KiB  
Article
Adjuvanted Protein Vaccines Boost RNA-Based Vaccines for Broader and More Potent Immune Responses
by Jiho Kim, Jenn Davis, Bryan Berube, Malcolm Duthie, Sean A. Gray and Darrick Carter
Vaccines 2025, 13(8), 797; https://doi.org/10.3390/vaccines13080797 - 28 Jul 2025
Viewed by 182
Abstract
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent [...] Read more.
Background/Objectives: mRNA vaccines introduced during the COVID-19 pandemic were a significant step forward in the rapid development and deployment of vaccines in a global pandemic context. These vaccines showed good protective efficacy, but—due to limited breadth of the immune response—they required frequent boosters with manufactured spike sequences that often lagged behind the circulating strains. In order to enhance the breadth, durability, and magnitude of immune responses, we studied the effect of combining priming with an RNA vaccine technology with boosting with protein/adjuvant using a TLR4-agonist based adjuvant. Methods: Specifically, four proprietary adjuvants (EmT4TM, LiT4QTM, MiT4TM, and AlT4TM) were investigated in combination with multiple modes of SARS-CoV-2 vaccination (protein, peptide, RNA) for their effectiveness in boosting antibody responses to SARS-CoV-2 spike protein in murine models. Results: Results showed significant improvement in immune response strength and breadth—especially against more distant SARS-CoV-2 variants such as Omicron—when adjuvants were used in combination with boosters following an RNA vaccine prime. Conclusions: The use of novel TLR4 adjuvants in combination with protein or RNA vaccinations presents a promising strategy for improving the efficacy of vaccines in the event of future pandemics, by leveraging rapid response using an RNA vaccine prime and following up with protein/adjuvant-based vaccines to enhance the breadth of immunity. Full article
(This article belongs to the Special Issue Novel Adjuvants and Delivery Systems for Vaccines)
Show Figures

Figure 1

6 pages, 1774 KiB  
Perspective
Case Series: Reactivation of Herpetic Keratitis After COVID-19 mRNA Vaccination During Herpetic Prophylaxis
by Michael Tsatsos, Efthymia Prousali, Athanasios Karamitsos and Nikolaos Ziakas
Vision 2025, 9(3), 63; https://doi.org/10.3390/vision9030063 - 28 Jul 2025
Viewed by 152
Abstract
This report presents two cases of herpes simplex keratitis recurrence after COVID-19 mRNA vaccination in patients on herpetic prophylaxis due to recurrent herpetic keratitis. A 58-year-old man with a history of a previous penetrating keratoplasty presented with blurred vision and evidence of corneal [...] Read more.
This report presents two cases of herpes simplex keratitis recurrence after COVID-19 mRNA vaccination in patients on herpetic prophylaxis due to recurrent herpetic keratitis. A 58-year-old man with a history of a previous penetrating keratoplasty presented with blurred vision and evidence of corneal endothelitis 48 h after the first dose of the m-RNA vaccination, and a 24-year-old male student came with a dendritic ulcer 72 h post first vaccination dose. The original prophylactic treatment of 400 mg of acyclovir twice daily was increased to five times per day for a week for both patients. The grafted patient additionally received an increase in Dexamethasone 0.1% from twice daily to four times a day. Improvement was noted within two days and documented at the weekly review, during which both patients returned to their prophylactic antiviral regime without further recurrence. At the time of their second dose of vaccination, both patients followed the same regime with an increase in treatment as per the first dose of vaccination without recurrence. Our findings suggest that patients with recurrent herpetic disease receiving prophylactic treatment need close monitoring when experiencing even subtle symptoms of recurrence and may benefit from an increase in their dose to therapeutic levels during the first days after the COVID-19 mRNA vaccination. Full article
Show Figures

Figure 1

12 pages, 634 KiB  
Article
Impaired Long-Term Quantitative Cellular Response to SARS-CoV-2 Vaccine in Thiopurine-Treated IBD Patients
by Luis Mayorga Ayala, Claudia Herrera-deGuise, Juliana Esperalba, Xavier Martinez-Gomez, Elena Céspedes Martinez, Xavier Serra Ruiz, Virginia Robles, Ernesto Lastiri, Zahira Perez, Elena Oller, Candela Fernandez-Naval, Mónica Martinez-Gallo, Francesc Casellas and Natalia Borruel
Cells 2025, 14(15), 1156; https://doi.org/10.3390/cells14151156 - 26 Jul 2025
Viewed by 233
Abstract
Background: Studies investigating the long-term cellular immune response to SARS-CoV-2 mRNA vaccines in patients with inflammatory bowel disease (IBD) remain limited, particularly among those receiving immunosuppressive therapy. Methods: We prospectively evaluated humoral and cellular immune responses at short-term (4–6 weeks) and [...] Read more.
Background: Studies investigating the long-term cellular immune response to SARS-CoV-2 mRNA vaccines in patients with inflammatory bowel disease (IBD) remain limited, particularly among those receiving immunosuppressive therapy. Methods: We prospectively evaluated humoral and cellular immune responses at short-term (4–6 weeks) and long-term (6–12 months) time points following SARS-CoV-2 mRNA vaccination in patients with IBD receiving anti-TNF agents, thiopurines, or combination therapy. We defined the short-term response as the measurement taken 4–6 weeks after the second vaccine dose and the long-term response as the measurement taken between 6 and 12 months after the first determination. A cohort of healthy controls was included for short-term comparative analysis. Results: At long-term follow-up, quantitative humoral responses were reduced in patients receiving anti-TNF monotherapy. In contrast, a reduced quantitative cellular response was found in the thiopurine (median 0.7 UI/mL, p < 0.05) and anti-TNF combo groups (median 0.4 UI/mL, p < 0.01) compared to anti-TNF monotherapy (median 2.2 UI/mL). Conclusions: There was a robust long-term humoral and cellular response to vaccination, but a diminished quantitative cellular response in patients treated with thiopurines or combo therapy compared to anti-TNF monotherapy. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

26 pages, 542 KiB  
Review
Challenges to the Effectiveness and Immunogenicity of COVID-19 Vaccines: A Narrative Review with a Systematic Approach
by Alexander A. Soldatov, Nickolay A. Kryuchkov, Dmitry V. Gorenkov, Zhanna I. Avdeeva, Oxana A. Svitich and Sergey Soshnikov
Vaccines 2025, 13(8), 789; https://doi.org/10.3390/vaccines13080789 - 24 Jul 2025
Viewed by 527
Abstract
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 [...] Read more.
The COVID-19 pandemic accelerated the rapid development and distribution of various vaccine platforms, resulting in a significant reduction in disease severity, hospitalizations, and mortality. However, persistent challenges remain concerning the durability and breadth of vaccine-induced protection, especially in the face of emerging SARS-CoV-2 variants. This review aimed to evaluate the factors influencing the immunogenicity and effectiveness of COVID-19 vaccines to inform future vaccine advancement strategies. A narrative review with systematic approach was conducted following PRISMA guidelines for narrative review. Literature was sourced from databases including PubMed, Embase, and Web of Science for studies published between December 2019 and May 2025. Encompassed studies assessed vaccine efficacy, immunogenicity, and safety across various populations and vaccine platforms. Data were collected qualitatively, with quantitative data from reviews highlighted where available. We have uncovered a decline in vaccine efficacy over time and weakened protection against novel variants such as Delta and Omicron. Booster doses, specifically heterologous regimens, improved immunogenicity and increased protection. Vaccine-induced neutralizing antibody titers have been found to correlate with clinical protection, although the long-term correlates of immunity remain poorly defined. The induction of IgG4 antibodies after repeated mRNA vaccinations raised concerns about potential modulation of the immune response. COVID-19 vaccines have contributed significantly to pandemic control; however, their efficacy is limited by the evolution of the virus and declining immunity. Forthcoming vaccine strategies should focus on broad-spectrum, variant-adapted formulations and defining robust comparisons of protection. Recognizing the immunological basis of vaccine response, including the role of specific antibody subclasses, is fundamental for optimizing long-term protection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

11 pages, 479 KiB  
Article
Association of TMEM173/STING1 Gene Variants with Severe COVID-19 Among Fully Vaccinated vs. Non-Vaccinated Individuals
by Daniel Vázquez-Coto, Marta García-Clemente, Guillermo M. Albaiceta, Laura Amado, Lorena M. Vega-Prado, Claudia García-Lago, Rebeca Lorca, Juan Gómez and Eliecer Coto
Life 2025, 15(8), 1171; https://doi.org/10.3390/life15081171 - 23 Jul 2025
Viewed by 268
Abstract
Background. The STING protein is activated by the second messenger cGAMP to promote the innate immune response against infections. Beyond this role, a chronically overactive STING signaling has been described in several disorders. Patients with severe COVID-19 exhibit a hyper-inflammatory response (the cytokine [...] Read more.
Background. The STING protein is activated by the second messenger cGAMP to promote the innate immune response against infections. Beyond this role, a chronically overactive STING signaling has been described in several disorders. Patients with severe COVID-19 exhibit a hyper-inflammatory response (the cytokine storm) that is in part mediated by the cGAS-STING pathway. Several STING inhibitors may protect from severe COVID-19 by down-regulating several inflammatory cytokines. This pathway has been implicated in the establishment of an optimal antiviral vaccine response. STING agonists as adjuvants improved the IgG titers against the SARS-CoV-2 Spike protein vaccines. Methods. We investigated the association between two common functional STING1/TMEM173 polymorphisms (rs78233829 C>G/p.Gly230Ala and rs1131769C>T/p.His232Arg) and severe COVID-19 requiring hospitalization. A total of 801 non-vaccinated and 105 fully vaccinated (mRNA vaccine) patients, as well as 300 population controls, were genotyped. Frequencies between the groups were statistically compared. Results. There were no differences for the STING1 variant frequencies between non-vaccinated patients and controls. Vaccinated patients showed a significantly higher frequency of rs78233829 C (230Gly) compared to non-vaccinated patients (CC vs. CG + GG; p = 0.003; OR = 2.13; 1.29–3.50). The two STING1 variants were in strong linkage disequilibrium, with the rs78233829 C haplotypes being significantly more common in the vaccinated (p = 0.02; OR = 1.66; 95%CI = 1.01–2.55). We also studied the LTZFL1 rs67959919 G/A polymorphism that was significantly associated with severe COVID-19 (p < 0.001; OR = 1.83; 95%CI = 1.28–2.63). However, there were no differences between the non-vaccinated and vaccinated patients for this polymorphism. Conclusions. We report a significant association between common functional STING1 polymorphisms and the risk of developing severe COVID-19 among fully vaccinated patients. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3415 KiB  
Article
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses
by Johnathan D. Guest, Yi Zhang, Daniel Flores, Emily Atkins, Kuishu Ren, Yingyun Cai, Kim Rosenthal, Zimeng Wang, Kihwan Kim, Charles Chen, Richard Roque, Bei Cheng, Marianna Yanez Arteta, Liping Zhou, Jason Laliberte and Joseph R. Francica
Vaccines 2025, 13(8), 778; https://doi.org/10.3390/vaccines13080778 - 22 Jul 2025
Viewed by 924
Abstract
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD [...] Read more.
Background/Objectives: SARS-CoV-2 vaccine candidates comprising the receptor binding domain (RBD) of the spike protein have been shown to confer protection against infection. Previous research evaluating vaccine candidates with SARS-CoV-2 RBD fused to ferritin (RBD-ferritin) and other scaffolds suggested that multimeric assemblies of RBD can enhance antigen presentation to improve the potency and breadth of immune responses. Though RBDs directly fused to a self-assembling scaffold can be delivered as messenger RNA (mRNA) formulated with lipid nanoparticles (LNPs), reports of SARS-CoV-2 vaccine candidates that combine these approaches remain scarce. Methods: Here, we designed RBD fused to AP205 or TIP60 self-assembling nanoparticles following a search of available structures focused on several scaffold properties. RBD-AP205 and RBD-TIP60 were tested for antigenicity following transfection and for immunogenicity and neutralization potency when delivered as mRNA in mice, with RBD-ferritin as a direct comparator. Results: All scaffolded RBD constructs were readily secreted to transfection supernatant and showed antigenicity in ELISA, though clear heterogeneity in assembly was observed. RBD-AP205 and RBD-TIP60 also exhibited robust antibody binding and neutralization titers in mice that were comparable to those elicited by RBD-ferritin or a full-length membrane-bound spike. Conclusions: These data suggest that AP205 and TIP60 can present RBD as effectively as ferritin and induce similar immune responses. By describing additional scaffolds for multimeric display that accommodate mRNA delivery platforms, this work can provide new tools for future vaccine design efforts. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Correlates of SARS-CoV-2 Breakthrough Infections in Kidney Transplant Recipients Following a Third SARS-CoV-2 mRNA Vaccine Dose
by Miriam Viktov Thygesen, Charlotte Strandhave, Jeanette Mølgaard Kiib, Randi Berg, Malene Söth Andersen, Emma Berggren Dall, Bodil Gade Hornstrup, Hans Christian Østergaard, Frank Holden Mose, Jon Waarst Gregersen, Søren Jensen-Fangel, Jesper Nørgaard Bech, Henrik Birn, Marianne Kragh Thomsen and Rasmus Offersen
Vaccines 2025, 13(8), 777; https://doi.org/10.3390/vaccines13080777 - 22 Jul 2025
Viewed by 218
Abstract
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in [...] Read more.
Background: Kidney transplant recipients (KTRs) exhibit a significantly diminished immune response to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) vaccines compared with the general population, primarily due to ongoing immunosuppressive therapy. This study evaluated the immunogenicity of a third SARS-CoV-2 mRNA vaccine dose in KTRs and assessed the association between antibody response and protection against SARS-CoV-2 breakthrough infection. Additionally, the clinical and immunological correlates of post-vaccination SARS-CoV-2 infection were examined. Methods: A prospective cohort of 135 KTRs received a third vaccine dose approximately six months following the second dose. Plasma samples were collected at baseline (pre-vaccination), six months after the second dose, and six weeks following the third dose. Humoral responses were assessed using SARS-CoV-2-specific Immunoglobulin G (IgG) titers and virus neutralization assays against wild-type (WT) and viral strains, including multiple Omicron sub-lineages. Results: After the third vaccine dose, 74% of the KTRs had detectable SARS-CoV-2-specific IgG antibodies, compared with 48% following the second dose. The mean IgG titers increased approximately ten-fold post-booster. Despite this increase, neutralizing activity against the Omicron variants remained significantly lower than that against the WT strain. KTRs who subsequently experienced a SARS-CoV-2 breakthrough infection demonstrated reduced neutralizing antibody activity across all variants tested. Additionally, individuals receiving triple immunosuppressive therapy had a significantly higher risk of SARS-CoV-2 breakthrough infection compared with those on dual or monotherapy. A multivariate machine learning analysis identified age and neutralizing activity against WT, Delta, and Omicron BA.2 as the most robust correlates of SARS-CoV-2 breakthrough infection. Conclusions: A third SARS-CoV-2 mRNA vaccine dose significantly improves SARS-CoV-2-specific IgG levels in KTRs; however, the neutralizing response against Omicron variants remains suboptimal. Diminished neutralizing capacity and intensified immunosuppression are key determinants of SARS-CoV-2 breakthrough infection in this immunocompromised population. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

16 pages, 4826 KiB  
Article
Formulation-Driven Optimization of PEG-Lipid Content in Lipid Nanoparticles for Enhanced mRNA Delivery In Vitro and In Vivo
by Wei Liu, Meihui Zhang, Huiyuan Lv and Chuanxu Yang
Pharmaceutics 2025, 17(8), 950; https://doi.org/10.3390/pharmaceutics17080950 - 22 Jul 2025
Viewed by 310
Abstract
Background: Lipid nanoparticles (LNPs) represent one of the most effective non-viral vectors for nucleic acid delivery and have demonstrated clinical success in siRNA therapies and mRNA vaccines. While considerable research has focused on optimizing ionizable lipids and helper lipids, the impact of [...] Read more.
Background: Lipid nanoparticles (LNPs) represent one of the most effective non-viral vectors for nucleic acid delivery and have demonstrated clinical success in siRNA therapies and mRNA vaccines. While considerable research has focused on optimizing ionizable lipids and helper lipids, the impact of PEGylated lipid content on LNP-mediated mRNA delivery, especially in terms of in vitro transfection efficiency and in vivo performance, remains insufficiently understood. Methods: In this study, LNPs were formulated using a self-synthesized ionizable lipid and varying molar ratios of DMG-PEG2000. Nanoparticles were prepared via nanoprecipitation, and their physicochemical properties, mRNA encapsulation efficiency, cellular uptake, and transfection efficiency were evaluated in HeLa and DC2.4 cells. In vivo delivery efficiency and organ distribution were assessed in mice following intravenous administration. Results: The PEGylated lipid content exerted a significant influence on both the in vitro and in vivo performance of LNPs. A bell-shaped relationship between PEG content and transfection efficiency was observed: 1.5% DMG-PEG2000 yielded optimal mRNA transfection in vitro, while 5% DMG-PEG2000 resulted in the highest transgene expression in vivo. This discrepancy in optimal PEG content may be attributed to the trade-off between cellular uptake and systemic circulation: lower PEG levels enhance cellular internalization, whereas higher PEG levels improve stability and in vivo bioavailability at the expense of cellular entry. Furthermore, varying the PEG-lipid content enabled the partial modulation of organ distribution, offering a formulation-based strategy to influence biodistribution without altering the ionizable lipid structure. Conclusions: This study highlights the critical role of PEGylated lipid content in balancing nanoparticle stability, cellular uptake, and in vivo delivery performance. Our findings provide valuable mechanistic insights and suggest a straightforward formulation-based strategy to optimize LNP/mRNA systems for therapeutic applications. Full article
Show Figures

Graphical abstract

19 pages, 357 KiB  
Review
Advances in the Management of Pancreatic Cancer: Current Strategies and Emerging Therapies
by Supriya Peshin, Ehab Takrori, Naga Anvesh Kodali, Faizan Bashir and Sakshi Singal
Int. J. Mol. Sci. 2025, 26(15), 7055; https://doi.org/10.3390/ijms26157055 - 22 Jul 2025
Viewed by 621
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a formidable malignancy with rising incidence and dismal long-term survival, largely due to late-stage presentation and intrinsic resistance to therapy. Recent advances in the multidisciplinary management of PDAC have reshaped treatment paradigms across disease stages. For localized disease, [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) remains a formidable malignancy with rising incidence and dismal long-term survival, largely due to late-stage presentation and intrinsic resistance to therapy. Recent advances in the multidisciplinary management of PDAC have reshaped treatment paradigms across disease stages. For localized disease, innovations in surgical techniques and the adoption of neoadjuvant strategies have improved resection rates and survival outcomes. In metastatic settings, multiagent chemotherapy regimens and precision therapies targeting BRCA mutations and rare gene fusions are expanding treatment options. Immunotherapeutic modalities, including checkpoint inhibitors, adoptive cell therapies, and mRNA vaccines, show emerging promise despite PDAC’s traditionally immunosuppressive microenvironment. This review synthesizes the current evidence on established therapies and critically evaluates novel and investigational approaches poised to redefine the therapeutic landscape of pancreatic cancer. Full article
(This article belongs to the Special Issue Recent Advances in Gastrointestinal Cancer, 2nd Edition)
16 pages, 14493 KiB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 157
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

19 pages, 12443 KiB  
Article
Multivalent Immune-Protective Effects of Egg Yolk Immunoglobulin Y (IgY) Derived from Live or Inactivated Shewanella xiamenensis Against Major Aquaculture Pathogens
by Jing Chen, Pan Cui, Huihui Xiao, Xiaohui Han, Ziye Ma, Xiaoqing Wu, Juan Lu, Guoping Zhu, Yong Liu and Xiang Liu
Int. J. Mol. Sci. 2025, 26(14), 7012; https://doi.org/10.3390/ijms26147012 - 21 Jul 2025
Viewed by 158
Abstract
Egg yolk immunoglobulin Y (IgY) possesses advantages such as low cost, easy availability, simple preparation, high antigen specificity, absence of drug residues, and compliance with animal welfare standards, making it an environmentally friendly and safe alternative to antibiotics. This research utilizes IgY antibody [...] Read more.
Egg yolk immunoglobulin Y (IgY) possesses advantages such as low cost, easy availability, simple preparation, high antigen specificity, absence of drug residues, and compliance with animal welfare standards, making it an environmentally friendly and safe alternative to antibiotics. This research utilizes IgY antibody technology to develop a multivalent passive immune vaccine for major pathogenic bacteria in aquaculture. In this study, IgY antibodies against live Shewanella xiamenensis (LSX-IgY) and inactivated S. xiamenensis (ISX-IgY) were prepared by immunizing laying hens, and passive immunization protection experiments were conducted in Carassius auratus infected with S. xiamenensis and Aeromonas hydrophila. The passive immunization protection rates of LSX-IgY and ISX-IgY against S. xiamenensis were 63.64% and 72.73%, respectively, and the passive cross-protection rates against A. hydrophila were 50% and 71.43%, respectively. Further, C. auratus sera could specifically bind to S. xiamenensis or A. hydrophila in vitro, and the phagocytic activity of leukocytes was increased. LSX-IgY and ISX-IgY could reduce the bacterial load in the C. auratus kidneys. Meanwhile, they could significantly reduce the levels of antioxidant factors in serum and inhibit the mRNA expression of inflammation-related factors in the kidneys and spleens. Additionally, histopathology and immunofluorescence analysis showed that both IgY preparations preserved tissue integrity and reduced the expression of apoptosis factor (p53) and DNA damage factor (γH2A.X) of visceral organs, respectively. In summary, LSX-IgY and ISX-IgY can combat various bacterial infections, with no significant difference between the two. Additionally, inactivated bacterial immunization is more aligned with animal welfare standards for laying hens. Therefore, ISX-IgY is expected to serve as a multivalent vaccine against major aquaculture pathogens. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

12 pages, 1656 KiB  
Article
mRNA-LNP Vaccines Targeting SmpA-PLD and OmpK-Omp22 Induce Protective Immunity Against Acinetobacter baumannii
by Cong Liu, Xingyun Wang, Yueling Zheng, Xingyue Gao, Jiahui Jin, Xing Cheng, Yunjiao He and Peng George Wang
Vaccines 2025, 13(7), 764; https://doi.org/10.3390/vaccines13070764 - 19 Jul 2025
Viewed by 388
Abstract
Background: Acinetobacter baumannii (A. baumannii) has emerged as a critical human pathogen, causing high mortality rates among hospitalized patients and frequently triggering nosocomial outbreaks. The increasing prevalence of multidrug-resistant (MDR) A. baumannii poses a pressing threat to public health. To date, [...] Read more.
Background: Acinetobacter baumannii (A. baumannii) has emerged as a critical human pathogen, causing high mortality rates among hospitalized patients and frequently triggering nosocomial outbreaks. The increasing prevalence of multidrug-resistant (MDR) A. baumannii poses a pressing threat to public health. To date, no commercially available vaccine against A. baumannii has been developed for clinical use. messenger RNA (mRNA)–lipid nanoparticle (LNP) vaccines have emerged as a promising vaccination strategy. Methods: In this work, we developed two mRNA vaccines targeting SmpA-PLD and the fusion protein of outer membrane proteins OmpK and Omp22. The mRNA was encapsulated in LNP and administered to BALB/c mice. We evaluated humoral and cellular immune responses, bacterial burden, inflammation, and protective efficacy against A. baumannii infection in a sepsis model. Results: These mRNA vaccines triggered robust humoral and cellular immune responses in BALB/c mice, reduced bacterial burden and inflammation in sepsis models, and provided significant protection against A. baumannii infection. Notably, the OmpK-Omp22 vaccine exhibited superior protective efficacy, reducing bacterial loads in various organs and improving survival rates in the sepsis model compared to the SmpA-PLD vaccine. Conclusions: Our findings demonstrate mRNA-LNP vaccine technology as a versatile and promising platform for the development of innovative therapeutics against A. baumannii, with the potential to mitigate acute disease and promote bacterial decolonization. These findings pave the way for the development of urgently needed and effective antibacterial vaccines. Full article
Show Figures

Figure 1

28 pages, 2988 KiB  
Review
Circular RNAs as Targets for Developing Anticancer Therapeutics
by Jaewhoon Jeoung, Wonho Kim, Hyein Jo and Dooil Jeoung
Cells 2025, 14(14), 1106; https://doi.org/10.3390/cells14141106 - 18 Jul 2025
Viewed by 424
Abstract
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, [...] Read more.
Circular RNA (CircRNA) is a single-stranded RNA arising from back splicing. CircRNAs interact with mRNA, miRNA, and proteins. These interactions regulate various life processes, including transcription, translation, cancer progression, anticancer drug resistance, and metabolism. Due to a lack of cap and poly(A) tails, circRNAs show exceptional stability and resistance to RNase degradation. CircRNAs exhibit dysregulated expression patterns in various cancers and influence cancer progression. Stability and regulatory roles in cancer progression make circRNAs reliable biomarkers and targets for the development of anticancer therapeutics. The dysregulated expression of circRNAs is associated with resistance to anticancer drugs. Enhanced glycolysis by circRNAs leads to resistance to anticancer drugs. CircRNAs have been known to regulate the response to chemotherapy drugs and immune checkpoint inhibitors. Exogenous circRNAs can encode antigens that can induce both innate and adaptive immunity. CircRNA vaccines on lipid nanoparticles have been shown to enhance the sensitivity of cancer patients to immune checkpoint inhibitors. In this review, we summarize the roles and mechanisms of circRNAs in anticancer drug resistance and glycolysis. This review discusses clinical applications of circRNA vaccines to overcome anticancer drug resistance and enhance the efficacy of immune checkpoint inhibitors. The advantages and disadvantages of circRNA vaccines are also discussed. Overall, this review stresses the potential value of circRNAs as new therapeutic targets and diagnostic/prognostic biomarkers for cancer Full article
Show Figures

Figure 1

Back to TopTop