Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,489)

Search Parameters:
Keywords = lung tissues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 28302 KiB  
Article
IGF2BP3 as a Novel Prognostic Biomarker and Therapeutic Target in Lung Adenocarcinoma
by Feiming Hu, Chenchen Hu, Yuanli He, Lin Guo, Yuanjie Sun, Chenying Han, Xiyang Zhang, Junyi Ren, Jinduo Han, Jing Wang, Junqi Zhang, Yubo Sun, Sirui Cai, Dongbo Jiang, Kun Yang and Shuya Yang
Cells 2025, 14(15), 1222; https://doi.org/10.3390/cells14151222 - 7 Aug 2025
Abstract
RNA-binding proteins (RBPs), particularly IGF2BP3, play critical but underexplored roles in lung adenocarcinoma (LUAD). This study investigated IGF2BP3′s clinical and functional significance using single-cell/RNA sequencing, validated by qPCR, Western blot, and immunohistochemistry. The results show IGF2BP3 was significantly upregulated in LUAD tissues and [...] Read more.
RNA-binding proteins (RBPs), particularly IGF2BP3, play critical but underexplored roles in lung adenocarcinoma (LUAD). This study investigated IGF2BP3′s clinical and functional significance using single-cell/RNA sequencing, validated by qPCR, Western blot, and immunohistochemistry. The results show IGF2BP3 was significantly upregulated in LUAD tissues and associated with advanced-stage, larger tumors, lymph node metastasis, and poor prognosis. A prognostic nomogram confirmed its independent predictive value. Functionally, IGF2BP3 knockdown suppressed proliferation, and induced G2/M arrest and apoptosis. GSEA linked high IGF2BP3 to cell cycle activation and low expression to metabolic pathways. Notably, high IGF2BP3 correlated with immune evasion markers (downregulated CD4+ effector T cells, upregulated Th2 cells), while TIDE analysis suggested a better immunotherapy response in low-expressing patients. Drug screening identified BI-2536 as a potential therapy for low-IGF2BP3 cases, supported by strong molecular docking affinity (−7.55 kcal/mol). These findings establish IGF2BP3 as a key driver of LUAD progression and a promising target for immunotherapy and precision medicine. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

16 pages, 752 KiB  
Systematic Review
Balancing Accuracy, Safety, and Cost in Mediastinal Diagnostics: A Systematic Review of EBUS and Mediastinoscopy in NSCLC
by Serban Radu Matache, Ana Adelina Afetelor, Ancuta Mihaela Voinea, George Codrut Cosoveanu, Silviu-Mihail Dumitru, Mihai Alexe, Mihnea Orghidan, Alina Maria Smaranda, Vlad Cristian Dobrea, Alexandru Șerbănoiu, Beatrice Mahler and Cornel Florentin Savu
Healthcare 2025, 13(15), 1924; https://doi.org/10.3390/healthcare13151924 - 6 Aug 2025
Abstract
Background: Mediastinal staging plays a critical role in guiding treatment decisions for non-small cell lung cancer (NSCLC). While mediastinoscopy has been the gold standard for assessing mediastinal lymph node involvement, endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as a minimally invasive alternative [...] Read more.
Background: Mediastinal staging plays a critical role in guiding treatment decisions for non-small cell lung cancer (NSCLC). While mediastinoscopy has been the gold standard for assessing mediastinal lymph node involvement, endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as a minimally invasive alternative with comparable diagnostic accuracy. This systematic review evaluates the diagnostic performance, safety, cost-effectiveness, and feasibility of EBUS-TBNA versus mediastinoscopy for mediastinal staging. Methods: A systematic literature review was conducted in accordance with PRISMA guidelines, including searches in Medline, Scopus, EMBASE, and Cochrane databases for studies published from 2010 onwards. A total of 1542 studies were identified, and after removing duplicates and applying eligibility criteria, 100 studies were included for detailed analysis. The extracted data focused on sensitivity, specificity, complications, economic impact, and patient outcomes. Results: EBUS-TBNA demonstrated high sensitivity (85–94%) and specificity (~100%), making it an effective first-line modality for NSCLC staging. Mediastinoscopy remained highly specific (~100%) but exhibited slightly lower sensitivity (86–90%). EBUS-TBNA had a lower complication rate (~2%) and was more cost-effective, while mediastinoscopy provided larger biopsy samples, essential for molecular and histological analyses. The need for general anaesthesia, longer hospital stays, and increased procedural costs make mediastinoscopy less favourable as an initial approach. Combining both techniques in select cases enhanced overall staging accuracy, reducing false negatives and improving diagnostic confidence. Conclusions: EBUS-TBNA has become the preferred first-line mediastinal staging method due to its minimally invasive approach, high diagnostic accuracy, and lower cost. However, mediastinoscopy remains crucial in cases requiring posterior mediastinal node assessment or larger tissue samples. The integration of both techniques in a stepwise diagnostic strategy offers the highest accuracy while minimizing risks and costs. Given the lower hospitalization rates and economic benefits associated with EBUS-TBNA, its widespread adoption may contribute to more efficient resource utilization in healthcare systems. Full article
Show Figures

Figure 1

25 pages, 1504 KiB  
Article
Systemic Sclerosis with Interstitial Lung Disease: Identification of Novel Immunogenetic Markers and Ethnic Specificity in Kazakh Patients
by Lina Zaripova, Abay Baigenzhin, Zhanar Zarkumova, Zhanna Zhabakova, Alyona Boltanova, Maxim Solomadin and Alexey Pak
Epidemiologia 2025, 6(3), 41; https://doi.org/10.3390/epidemiologia6030041 - 6 Aug 2025
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: to investigate autoantibodies, cytokines, and genetic markers in SSc-ILD through a systematic review and analysis of a Kazakh cohort of SSc-ILD patients. Methods: A PubMed search over the past 10 years was performed with “SSc-ILD”, “autoantibodies”, “cytokines”, and “genes”. Thirty patients with SSc were assessed for lung involvement, EScSG score, and modified Rodnan skin score. IL-6 was measured by ELISA, antinuclear factor on HEp-2 cells by indirect immunofluorescence, and specific autoantibodies by immunoblotting. Genetic analysis was performed using a 120-gene AmpliSeq panel on the Ion Proton platform. Results: The literature review identified 361 articles, 26 addressed autoantibodies, 20 genetic variants, and 12 cytokine profiles. Elevated levels of IL-6, TGF-β, IL-33, and TNF-α were linked to SSc. Based on the results of the systemic review, we created a preliminary immunogenic panel for SSc-ILD with following analysis in Kazakh patients with SSc (n = 30). Fourteen of them (46.7%) demonstrated signs of ILD and/or lung hypertension, with frequent detection of antibodies such as Scl-70, U1-snRNP, SS-A, and genetic variants in SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, and CD40 genes. Conclusions: Current research confirmed the presence of the broad range of autoantibodies and variations in IRAK1, TNFAIP3, SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, CD40 genes in of Kazakhstani cohort of SSc-ILD patients. Full article
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

12 pages, 2363 KiB  
Article
MCC950 Alleviates Fat Embolism-Induced Acute Respiratory Distress Syndrome Through Dual Modulation of NLRP3 Inflammasome and ERK Pathways
by Chin-Kuo Lin, Zheng-Wei Chen, Yu-Hao Lin, Cheng-Ta Yang, Chung-Sheng Shi, Chieh-Mo Lin, Tzu Hsiung Huang, Justin Ching Hsien Lu, Kwok-Tung Lu and Yi-Ling Yang
Int. J. Mol. Sci. 2025, 26(15), 7571; https://doi.org/10.3390/ijms26157571 - 5 Aug 2025
Abstract
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and [...] Read more.
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and tissue damage, contributing to inflammatory responses. This study examines the role of NLRP3 in fat embolism-induced ARDS and evaluates the therapeutic potential of MCC950, a selective NLRP3 antagonist. Fat embolism was induced by fatty micelle injection into the tail vein of Sprague Dawley rats. Pulmonary injury was assessed through lung weight gain as an edema indicator, NLRP3 expression via Western blot, and IL-1β levels using ELISA. Histological damage and macrophage infiltration were evaluated with hematoxylin and eosin staining. Fat embolism significantly increased pulmonary NLRP3 expression, lipid peroxidation, IL-1β release, and macrophage infiltration within four hours, accompanied by severe pulmonary edema. NLRP3 was localized in type I alveolar cells, co-localizing with aquaporin 5. Administration of MCC950 significantly reduced inflammatory responses, lipid peroxidation, pulmonary edema, and histological damage, while attenuating MAPK cascade phosphorylation of ERK and Raf. These findings suggest that NLRP3 plays a critical role in fat embolism-induced acute respiratory distress syndrome, and its inhibition by MCC950 may offer a promising therapeutic approach. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 6034 KiB  
Article
Pexidartinib and Nintedanib Combination Therapy Targets Macrophage Polarization to Reverse Pulmonary Fibrosis: A Preclinical Study
by Ji-Hee Kim, Jae-Kyung Nam, Min-Sik Park, Seungyoul Seo, Hyung Chul Ryu, Hae-June Lee, Jeeyong Lee and Yoon-Jin Lee
Int. J. Mol. Sci. 2025, 26(15), 7570; https://doi.org/10.3390/ijms26157570 - 5 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This study determined the efficacy of nintedanib and pexidartinib (PLX3397) combination therapy for treating IPF. Combination treatment effectively inhibited the progression of radiation-induced pulmonary fibrosis (RIPF) and prolonged survival in bleomycin-treated mice. Micro-CT analysis revealed a significant tissue repair efficacy. The therapy significantly normalized the abnormal vascular structure observed during RIPF and bleomycin-induced pulmonary fibrosis progression and was accompanied by a decrease in the M2 population. Polarized M1 macrophages enhanced normalized tube formation of irradiated endothelial cells (ECs) in vitro; M2 macrophages increased adhesion in irradiated ECs and abnormal tube formation. Single-cell RNA sequencing data from patients with IPF further supports colony stimulating factor (CSF) 1 upregulation in macrophages and downregulation of capillary EC markers. This study highlights a promising combination strategy to overcome the therapeutic limitations of monotherapy with nintedanib for the treatment of IPF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 2501 KiB  
Article
Therapeutic Patterns and Surgical Decision-Making in Breast Cancer: A Retrospective Regional Cohort Study in Romania
by Ramona Andreea Cioroianu, Michael Schenker, Virginia-Maria Rădulescu, Tradian Ciprian Berisha, George Ovidiu Cioroianu, Mihaela Popescu, Cristina Mihaela Ciofiac, Ana Maria Petrescu and Stelian Ștefăniță Mogoantă
Clin. Pract. 2025, 15(8), 145; https://doi.org/10.3390/clinpract15080145 - 5 Aug 2025
Abstract
Background: Breast cancer is the most prevalent malignancy among women globally. In Romania, it is the most frequent form of cancer affecting women, with approximately 12,000 new cases diagnosed annually, and the second most common cause of cancer-related mortality, second only to [...] Read more.
Background: Breast cancer is the most prevalent malignancy among women globally. In Romania, it is the most frequent form of cancer affecting women, with approximately 12,000 new cases diagnosed annually, and the second most common cause of cancer-related mortality, second only to lung cancer. Methods: This study looked at 79 breast cancer patients from Oltenia, concentrating on epidemiology, histology, diagnostic features, and treatments. Patients were chosen based on inclusion criteria such as histopathologically verified diagnosis, availability of clinical and treatment data, and follow-up information. The analyzed biological material consisted of tissue samples taken from the breast parenchyma and axillary lymph nodes. Even though not the primary subject of this paper, all patients underwent immunohistochemical (IHC) evaluation both preoperatively and postoperatively. Results: We found invasive ductal carcinoma to be the predominant type, while ductal carcinoma in situ (DCIS) and mixed types were rare. We performed cross-tabulations of metastasis versus nodal status and age versus therapy type; none reached significance (all p > 0.05), suggesting observed differences were likely due to chance. A chi-square test comparing surgical interventions (breast-conserving vs. mastectomy) in patients who did or did not receive chemotherapy showed, χ2 = 3.17, p = 0.367, indicating that chemotherapy did not significantly influence surgical choice. Importantly, adjuvant chemotherapy and radiotherapy were used at similar rates across age groups, whereas neoadjuvant hormonal (endocrine) therapy was more common in older patients (but without statistical significance). Conclusions: Finally, we discussed the consequences of individualized care and early detection. Romania’s shockingly low screening rate, which contributes to delayed diagnosis, emphasizes the importance of improved population medical examination and tailored treatment options. Also, the country has one of the lowest rates of mammography uptake in Europe and no systematic population screening program. Full article
Show Figures

Figure 1

21 pages, 6387 KiB  
Article
Carbon Dot-Enhanced Doxorubicin Liposomes: A Dual-Functional Nanoplatform for Cancer Therapy
by Corina-Lenuta Logigan, Cristian Peptu, Corneliu S. Stan, Gabriel Luta, Crina Elena Tiron, Mariana Pinteala, Aleksander Foryś, Bogdan Simionescu, Constanta Ibanescu, Adrian Tiron and Catalina A. Peptu
Int. J. Mol. Sci. 2025, 26(15), 7535; https://doi.org/10.3390/ijms26157535 - 4 Aug 2025
Viewed by 192
Abstract
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, [...] Read more.
Liposomes (LPs) represent one of the most effective nanoscale platforms for drug delivery in cancer therapy due to their favorable pharmacokinetic and various body tissue compatibility profiles. Building on recent findings showing that carbon dots derived from N-hydroxyphthalimide (CDs-NHF) possess intrinsic antitumor activity, herein, we investigate the possibility of preparing complex nano-platforms composed of LPs encapsulating CDs-NHF and/or doxorubicin (DOX) for breast and lung cancer. Various LP formulations were prepared and characterized using Cryo-TEM and Cryo-SEM for morphological analysis, while zeta potential and fluorescence assessments confirmed their stability and optical properties. Cellular effects were evaluated through immunofluorescence microscopy and proliferation assays. LPs-CDs-NHF significantly reduced cancer cell viability at lower concentrations compared to free CDs-NHF, and this effect was further amplified when combined with doxorubicin. Mechanistically, the liposomal formulations downregulated key signaling molecules including pAKT, pmTOR, and pERK, indicating the disruption of cancer-related pathways. These findings suggest that LPs containing CDs-NHF, either alone or in combination with DOX, exhibit synergistic antitumor activity and hold strong promise as multifunctional nanocarriers for future oncological applications. Full article
Show Figures

Graphical abstract

23 pages, 5387 KiB  
Article
Tabernanthalog, a Non-Hallucinogenic Psychedelic, Alleviates Cancer-Induced Cognitive Deficits via Serotonergic Pathways
by Masahide Arinaga, Jun Yamada, Shoichiro Maeda, Ayumi Okamura, Yuto Oshima, Liye Zhang, Yiying Han, Kyoko M. Iinuma and Shozo Jinno
Int. J. Mol. Sci. 2025, 26(15), 7519; https://doi.org/10.3390/ijms26157519 - 4 Aug 2025
Viewed by 132
Abstract
Cancer-related cognitive impairment (CRCI)—encompassing anxiety, depression, and memory deficits—significantly diminishes the quality of life in patients with cancer, yet remains underrecognized in clinical practice. In this study, we investigated the therapeutic potential of tabernanthalog (TBG), a non-hallucinogenic analog of psychedelic compounds, as a [...] Read more.
Cancer-related cognitive impairment (CRCI)—encompassing anxiety, depression, and memory deficits—significantly diminishes the quality of life in patients with cancer, yet remains underrecognized in clinical practice. In this study, we investigated the therapeutic potential of tabernanthalog (TBG), a non-hallucinogenic analog of psychedelic compounds, as a novel intervention for CRCI using a Lewis lung carcinoma (3LL) mouse model. Behavioral assessments revealed heightened anxiety-like behavior and memory impairment following 3LL cell transplantation. Biochemical analysis revealed reduced tryptophan levels in both blood and hippocampal tissue, accompanied by the downregulation of serotonergic receptor genes and upregulation of pro-inflammatory cytokine genes in the hippocampus of tumor-bearing mice. Additionally, microglial density and morphological activation were markedly elevated. TBG treatment reversed these behavioral deficits, improving both anxiety-related behavior and memory performance. These effects were associated with the normalization of microglial density and morphology, as well as the restoration of serotonergic receptor and cytokine gene expression. In vitro, TBG partially suppressed neuroinflammatory gene expression in BV-2 microglial cells exposed to conditioned medium from 3LL cells. Collectively, these findings suggest that TBG alleviates CRCI-like symptoms by modulating neuroinflammation and microglial activation. This study highlights TBG as a promising therapeutic candidate for improving cognitive and emotional functioning in patients with cancer. Full article
(This article belongs to the Special Issue Physiological Functions and Pathological Effects of Microglia)
Show Figures

Figure 1

20 pages, 1376 KiB  
Review
Molecular Mechanisms of Cadmium-Induced Toxicity and Its Modification
by Jin-Yong Lee, Maki Tokumoto and Masahiko Satoh
Int. J. Mol. Sci. 2025, 26(15), 7515; https://doi.org/10.3390/ijms26157515 - 4 Aug 2025
Viewed by 220
Abstract
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In [...] Read more.
Cadmium (Cd) is a toxic environmental heavy metal that exerts harmful effects on multiple tissues, including the kidney, liver, lung, and bone, and is also associated with the development of anemia. However, the precise molecular mechanisms underlying Cd-induced toxicity remain incompletely understood. In this paper, we review the recent molecular mechanisms of Cd-induced toxicity and its modification, with a particular emphasis on our recent findings. Using a combination of DNA microarray analysis, protein–DNA binding assays, and siRNA-mediated gene silencing, we identified several transcription factors, YY1, FOXF1, ARNT, and MEF2A, as novel molecular targets of Cd. The downregulation of their downstream genes, including UBE2D2, UBE2D4, BIRC3, and SLC2A4, was directly associated with the expression of cytotoxicity. In addition, PPARδ plays a pivotal role in modulating cellular susceptibility to Cd-induced renal toxicity, potentially by regulating apoptosis-related signaling pathways. In addition to apoptosis pathways, Cd toxicity through ROS generation, ferroptosis and pyroptosis were summarized. Furthermore, it has been revealed that Cd suppresses the expression of iron transport-related genes in duodenal epithelial cells leading to impaired intestinal iron absorption as well as decreased hepatic iron levels. These findings provide a mechanistic basis for Cd-induced iron deficiency anemia, implicating disrupted iron homeostasis as a contributing factor. Full article
(This article belongs to the Special Issue Mechanisms of Heavy Metal Toxicity: 3rd Edition)
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Viewed by 119
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

17 pages, 5591 KiB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 240
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 1770 KiB  
Article
Inhibitory Effects of 3-Deoxysappanchalcone on Particulate-Matter-Induced Pulmonary Injury
by Chang-Woo Ryu, Jinhee Lee, Gyuri Han, Jin-Young Lee and Jong-Sup Bae
Curr. Issues Mol. Biol. 2025, 47(8), 608; https://doi.org/10.3390/cimb47080608 - 1 Aug 2025
Viewed by 132
Abstract
Fine particulate matter (PM2.5) exposure has been linked to increased lung damage due to compromised vascular barrier function, while 3-deoxysappanchalcone (3-DSC), a chalcone derived from Caesalpinia sappan, is known for its pharmacological benefits such as anti-cancer, anti-inflammatory, and antioxidant effects; [...] Read more.
Fine particulate matter (PM2.5) exposure has been linked to increased lung damage due to compromised vascular barrier function, while 3-deoxysappanchalcone (3-DSC), a chalcone derived from Caesalpinia sappan, is known for its pharmacological benefits such as anti-cancer, anti-inflammatory, and antioxidant effects; however, its potential role in mitigating PM2.5-induced pulmonary damage remains unexplored. To confirm the inhibitory effects of 3-DSC on PM2.5-induced pulmonary injury, this research focused on evaluating how 3-DSC influences PM2.5-induced disruption of the barrier of the endothelial cells (ECs) in the lungs and the resulting pulmonary inflammation. Permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology were assessed in PM2.5-treated ECs and mice. This study demonstrated that 3-DSC effectively neutralized the reactive oxygen species (ROS) generated by PM2.5 exposure in the lung endothelial cells, suppressing ROS-triggered p38 MAPK activation while enhancing Akt signaling pathways critical to preserving vascular barrier function. In animal models, 3-DSC administration markedly decreased vascular permeability, attenuated the influx of immune cells into the lung tissue, and lowered inflammatory mediators like cytokines in the airways of PM2.5-exposed mice. These data suggest that 3-DSC might exert protective effects on PM2.5-induced inflammatory lung injury and vascular hyperpermeability. Full article
Show Figures

Figure 1

24 pages, 936 KiB  
Article
Anti-Ku Antibodies: Clinical Associations, Organ Damage, and Prognostic Implications in Connective Tissue Diseases
by Céline La, Julie Smet, Carole Nagant and Muhammad Soyfoo
Int. J. Mol. Sci. 2025, 26(15), 7433; https://doi.org/10.3390/ijms26157433 - 1 Aug 2025
Viewed by 170
Abstract
Anti-Ku antibodies are rare autoantibodies associated with connective tissue diseases (CTDs), but their clinical significance remains poorly understood due to limited studies. Semi-quantitative immunodot assays yield positive, negative, or borderline results, with the clinical relevance of borderline findings remaining unclear. The purpose of [...] Read more.
Anti-Ku antibodies are rare autoantibodies associated with connective tissue diseases (CTDs), but their clinical significance remains poorly understood due to limited studies. Semi-quantitative immunodot assays yield positive, negative, or borderline results, with the clinical relevance of borderline findings remaining unclear. The purpose of this study is to characterize the clinical spectrum of anti-Ku-positive patients and evaluate the clinical significance of anti-Ku-borderline results in CTD management. A retrospective cohort study was conducted at Hôpital Erasme, including all patients with anti-Ku-positive or borderline results, over a 10-year period. Clinical and biological data were collected from medical records and analyzed for disease associations, organ involvement, and outcomes. Among 47 anti-Ku-positive patients, systemic lupus erythematosus (SLE) and Sjögren’s syndrome (SS) were the most common diagnoses. Interstitial lung disease (ILD) occurred in 23.4% and renal involvement in 12.8% of patients. Cytopenia was significantly associated with glomerulonephritis. Organ damage, particularly pulmonary and renal involvement, correlated with increased mortality. In the borderline group (n = 33), SLE and SS remained the predominant diagnoses. During follow-up, three patients died (all with isolated ILD without associated CTD), one required chronic dialysis, and one underwent lung transplantation. ILD was present in 7/22 (31.8%) borderline patients, and renal involvement in 7/32 (21.9%). This study demonstrates significant associations between anti-Ku antibodies and organ damage, with increased mortality risk. The high prevalence of pulmonary and renal involvement in anti-Ku-borderline patients suggests that these results carry substantial clinical significance and should prompt comprehensive CTD evaluation. These findings support treating borderline anti-Ku results with the same clinical vigilance as positive results, given their similar association with severe organ involvement and adverse outcomes. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

8 pages, 9195 KiB  
Case Report
Fatal Case of Viral Pneumonia Associated with Metapneumovirus Infection in a Patient with a Burdened Medical History
by Parandzem Khachatryan, Naira Karalyan, Hasmik Petunts, Sona Hakobyan, Hranush Avagyan, Zarine Ter-Pogossyan and Zaven Karalyan
Microorganisms 2025, 13(8), 1790; https://doi.org/10.3390/microorganisms13081790 - 31 Jul 2025
Viewed by 220
Abstract
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to [...] Read more.
Background: Human metapneumovirus (hMPV) is a respiratory pathogen that causes illness ranging from mild upper respiratory tract infections to severe pneumonia, particularly in individuals with comorbidities. Fatal cases of hMPV-induced hemorrhagic pneumonia are rare and likely under-reported. Diagnosis is often delayed due to overlapping symptoms with other respiratory viruses and the rapid progression of the disease. Case presentation: We report the case of a 55-year-old man with a complex medical history, including liver cirrhosis and diabetes mellitus, who developed acute viral pneumonia. Initial symptoms appeared three days before a sudden clinical deterioration marked by shortness of breath, hemoptysis, and respiratory failure. A nasopharyngeal swab taken on the third day of illness tested positive for hMPV by qRT-PCR. The patient died the following day. Postmortem molecular testing confirmed hMPV in lung tissue and alveolar contents. Autopsy revealed bilateral hemorrhagic pneumonia with regional lymphadenopathy. Histopathological examination showed alveolar hemorrhage, multinucleated cells, neutrophilic infiltration, activated autophagy in macrophages, and numerous cytoplasmic eosinophilic viral inclusions. Conclusions: This is the first documented case of fatal hMPV pneumonia in Armenia. It highlights the potential severity of hMPV in adults with chronic health conditions and emphasizes the need for timely molecular diagnostics. Postmortem identification of characteristic viral inclusions may serve as a cost-effective histopathological marker of hMPV-associated lung pathology. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

Back to TopTop