Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = lower-strength alcohol products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2172 KiB  
Article
Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study
by Magdalena Zalewska, Małgorzata E. Zujko, Jacek Jamiołkowski, Małgorzata Chlabicz, Magda Łapińska and Karol A. Kamiński
Nutrients 2025, 17(12), 2034; https://doi.org/10.3390/nu17122034 - 18 Jun 2025
Viewed by 890
Abstract
Background: The Mediterranean diet is considered one of the healthiest and safest diets for preventing chronic diseases. The primary objective of this study was to assess the association between adherence to the Mediterranean diet and the occurrence of prediabetes in a representative population [...] Read more.
Background: The Mediterranean diet is considered one of the healthiest and safest diets for preventing chronic diseases. The primary objective of this study was to assess the association between adherence to the Mediterranean diet and the occurrence of prediabetes in a representative population of Bialystok, Poland. Prediabetes is a condition characterized by elevated blood glucose levels that are higher than normal but not yet in the diabetic range, indicating an increased risk of developing type 2 diabetes. Methods: The study participants were selected into healthy control (HC) and prediabetic (PreD) groups based on age and gender. Biochemical measurements included total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), fasting glucose (FG), glycated hemoglobin (HbA1c), high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6). Additionally, blood pressure, handgrip strength, anthropometric parameters, and body composition were measured. Information on patients’ social data, medical history, and lifestyle history was collected using questionnaires developed for this study. A standardized questionnaire, the Satisfaction with Life Scale (SWLS), was used to assess life satisfaction. Dietary total antioxidant capacity (DTAC) and dietary total polyphenol intake (DTPI) were determined using a 3-day nutritional interview and appropriate databases containing information on polyphenols and the antioxidant potential of food products. To assess adherence to the Mediterranean diet recommendations, a 9-item Mediterranean Diet Index (MDI) was used. Results: It was found that the mean MDI for the entire group was low (3.98 ± 1.74), and the HC was characterized by a significantly higher MDI compared to the PreD. A statistically significant positive correlation was found between MDI and HDL-C, whereas a negative correlation was found between MDI and FG, homeostatic model assessment for insulin resistance (HOMA-IR), diastolic blood pressure (DBP), IL-6, body mass index (BMI), waist-hip ratio (WHR), waist circumference, visceral fat mass, android/gynoid fat ratio. Conclusions: Abdominal obesity was shown to significantly reduce life satisfaction. In model 3, after adjusting for age, sex, dietary energy intake, alcohol consumption, and smoking, each additional MDI point indicated a 10% lower risk of prediabetes. Full article
Show Figures

Figure 1

17 pages, 2590 KiB  
Article
Improving the Physical and Mechanical Properties of Cornstarch-Based Materials Using Polymer Admixtures
by Shibli Sadik Tulip, Ewumbua Monono, Ademola Hammed and Niloy Chandra Sarker
Constr. Mater. 2025, 5(1), 12; https://doi.org/10.3390/constrmater5010012 - 1 Mar 2025
Viewed by 1180
Abstract
Cement is widely used as an efficient binding agent in concrete; however, the production of cement is the second-largest source of carbon emissions. Therefore, there is an urgent need to explore alternative materials with similar properties. CoRncrete, a corn-based material, shows potential as [...] Read more.
Cement is widely used as an efficient binding agent in concrete; however, the production of cement is the second-largest source of carbon emissions. Therefore, there is an urgent need to explore alternative materials with similar properties. CoRncrete, a corn-based material, shows potential as an eco-friendly substitute. Our previous study showed that oven-dried CoRncrete achieved a maximum compressive strength of 18.9 MPa, which is 37% lower than traditional concrete. Nonetheless, in light of this limitation, CoRncrete still stands as a feasible choice for internal structural applications. This study aims to enhance CoRncrete’s strength by modifying drying conditions and incorporating lightweight thermoplastic polymers as admixtures. Air-drying for 7, 14, 21, and 28 days was tested, with durations of 21 days and greater showing improved internal curing, reduced porosity, and enhanced strength (23.9 MPa). Various high-strength, low-density polymers, including carboxy methyl cellulose (CMC), chitosan (CS), polyvinyl alcohol (PVA), and polyvinylpyrrolidone (PVP), were utilized. PVA demonstrated favorable interactions with cornstarch, also showing improved performance in water durability properties. Air-dried CoRncrete with PVA admixture had maximal water durability properties (up to 20 days) compared to the other samples. Micro-structural analysis revealed reduced porosity in air-dried and polymer-bound samples. Future investigations should extend to an in-depth study on air-drying duration for polymer-bound CoRn-crete and explore novel admixtures to further improve strength and water durability. Full article
Show Figures

Figure 1

25 pages, 6230 KiB  
Article
Physicochemical Properties, Antioxidant Activity, and Flavor Profile of Strawberry Fruit-Based Novel Drinking Jelly Made with Gracilaria fisheri Seaweed as a Gelling Agent at Varying Concentrations
by Narin Charoenphun, Paramee Noonim, Somwang Lekjing, Chawakwan Nitikornwarakul, Nam Hoang Pham and Karthikeyan Venkatachalam
Gels 2025, 11(1), 54; https://doi.org/10.3390/gels11010054 - 10 Jan 2025
Cited by 1 | Viewed by 1576
Abstract
Gracilaria fisheri (GF) is a red seaweed that is widely found in Southeast Asia and has gained attention for its potential bioactive compounds and versatile applications in food products. This study explored the potential of GF as a natural gelling agent in the [...] Read more.
Gracilaria fisheri (GF) is a red seaweed that is widely found in Southeast Asia and has gained attention for its potential bioactive compounds and versatile applications in food products. This study explored the potential of GF as a natural gelling agent in the development of sustainable strawberry-based drinking jelly. By utilizing GF at varying concentrations (0.2 (S1), 0.4 (S2), 0.6 (S3), 0.8 (S4), and 1.0% (S5)), the impact on the physicochemical, textural, phytochemical, and flavor profiles of the strawberry concentrate-based drinking jelly was examined. The results demonstrated that GF concentration significantly affected the color characteristics, structural development, and flavor profiles of the drinking jelly samples. Increasing GF levels progressively enhanced the lightness (L*) and redness (a*) values while reducing the yellowness (b*), with optimal visual appeal achieved in the S4 samples compared to others. Microscopical observations revealed that gel matrix development improved with GF concentrations up to 0.8% (S4), transitioning from a sparse, liquid-like structure at lower levels to a compact, over-gelated network at 1.0% (S5). Physicochemical parameters, including pH, total soluble solid (TSS), and TSS/titratable acidity (TA) ratios, increased with GF levels, contributing to a sweeter, less acidic product, while water activity (aw) decreased, enhancing jelly stability. Viscosity and sulfate content increased significantly with GF concentration, indicating improved gel strength but reduced fluidity. Phytochemical analysis revealed that ascorbic acid (AsA) and total phenolic content (TPC) decreased progressively with higher GF levels, leading to a reduction in antioxidant activity (DPPH and ABTS). Volatile compound analysis identified alcohols, esters, and aldehydes as dominant contributors to the flavor profile. 1-Octanol (waxy, citrus-like) and methyl anthranilate (grape-like, sweet) increased substantially, while minor groups such as terpenoids and phenolic compounds contributed floral and woody notes. The findings suggest that S4 samples strike the optimal balance between texture, color, flavor, and antioxidant properties, achieving a cohesive, visually appealing, and flavorful drinking jelly suitable for commercial applications. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products)
Show Figures

Figure 1

22 pages, 4563 KiB  
Article
Physically Cross-Linked PVA Hydrogels as Potential Wound Dressings: How Freezing Conditions and Formulation Composition Define Cryogel Structure and Performance
by Anna Górska, Ewelina Baran, Justyna Knapik-Kowalczuk, Joanna Szafraniec-Szczęsny, Marian Paluch, Piotr Kulinowski and Aleksander Mendyk
Pharmaceutics 2024, 16(11), 1388; https://doi.org/10.3390/pharmaceutics16111388 - 28 Oct 2024
Cited by 8 | Viewed by 2515
Abstract
Objectives: Hydrogels produced using the freeze–thaw method have demonstrated significant potential for wound management applications. However, their production requires precise control over critical factors including freezing temperature and the choice of matrix-forming excipients, for which no consensus on the optimal conditions currently [...] Read more.
Objectives: Hydrogels produced using the freeze–thaw method have demonstrated significant potential for wound management applications. However, their production requires precise control over critical factors including freezing temperature and the choice of matrix-forming excipients, for which no consensus on the optimal conditions currently exists. This study aimed to address this gap by evaluating the effects of the above-mentioned variables on cryogel performance. Methods: Mechanical properties, absorption capacity, and microstructure were assessed alongside advanced analyses using differential scanning calorimetry (DSC) and low-field nuclear magnetic resonance relaxometry (LF TD NMR). Results: The results demonstrated that fully hydrolyzed polyvinyl alcohol (PVA) with a molecular weight above 61,000 g/mol is essential for producing high-performance cryogels. Among the tested formulations, an 8% (w/w) PVA56–98 solution (Mw~195,000; DH = 98.0–98.8%) with 10% (w/w) propylene glycol (PG) provided the best balance of stretchability, durability, and low adhesion. Notably, while −25 °C is often used for cryogel preparation, freezing the gel precursor at −80 °C yielded superior results, producing materials with more open, interconnected structures and enhanced mechanical strength and elasticity—deviating from conventional practices. Conclusions: The designed cryogel prototypes exhibited functional properties comparable to or even surpassing commercial wound dressings, except for absorption capacity, which remained lower. Despite this, the cryogel prototypes demonstrated potential as wound dressings, particularly for use in dry or minimally exuding wounds. All in all, this study provides a comprehensive analysis of the physicochemical and functional properties of PVA cryogels, establishing a strong foundation for the development of advanced wound dressing systems. Full article
(This article belongs to the Special Issue Prospects of Hydrogels in Wound Healing)
Show Figures

Figure 1

11 pages, 841 KiB  
Article
Sensory Discrimination Tests for Low- and High-Strength Alcohol
by Ari Franklin, Kevin D. Shield, Jürgen Rehm and Dirk W. Lachenmeier
Beverages 2024, 10(4), 95; https://doi.org/10.3390/beverages10040095 - 2 Oct 2024
Viewed by 1492
Abstract
Research is limited on consumers’ ability to detect perceptible sensory differences between low- and high-strength alcoholic beverages. This study, therefore, conducted three pilot experiments using ISO sensory analysis methods to assess accuracy for evaluating beverages of different strengths. Participants were food production professionals [...] Read more.
Research is limited on consumers’ ability to detect perceptible sensory differences between low- and high-strength alcoholic beverages. This study, therefore, conducted three pilot experiments using ISO sensory analysis methods to assess accuracy for evaluating beverages of different strengths. Participants were food production professionals trained in sensory analysis. Experiment 1 used a wide-range discrimination test to estimate low- to high-strength beverages (0–60% alcohol by volume (ABV) in 10% intervals). Experiment 2 included a narrower range of intermediate to high strengths (25–45% ABV in 5% intervals). Experiment 3 used 3-alternative forced choice tests (ISO 13301) to discriminate between beverages of varying strengths. Experiment 1 (n = 16) indicated that estimation ability was dependent upon the beverages’ ABV; as ABV increased, estimation significantly decreased (p < 0.005). These findings were not replicated in Experiment 2 (n = 13). In Experiment 3 (n = 17), a significant perceptible difference between high- and low-strength samples was observed in two of nine conditions (35% vs. 31% ABV (p = 0.009); 41% vs. 37% ABV (p = 0.037)). While people can detect large differences in beverage ABVs, they may have a moderate to poor ability to discriminate between beverages of similar strengths. These findings provide support for public health interventions that promote lower-strength alcoholic beverages. Full article
Show Figures

Figure A1

20 pages, 3134 KiB  
Article
Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage
by Rossella Vadalà, Laura De Maria, Rita De Pasquale, Eleonora Di Salvo, Giovanna Lo Vecchio, Giuseppa Di Bella, Rosaria Costa and Nicola Cicero
Foods 2024, 13(13), 2055; https://doi.org/10.3390/foods13132055 - 27 Jun 2024
Cited by 2 | Viewed by 2243
Abstract
The global concern about the use of disposable plastics has fed the research on sustainable packaging for food products. Among the virtuous materials, chitosan emerges as a valid alternative to conventional polyethylene films because of its abundance in nature. In this work, a [...] Read more.
The global concern about the use of disposable plastics has fed the research on sustainable packaging for food products. Among the virtuous materials, chitosan emerges as a valid alternative to conventional polyethylene films because of its abundance in nature. In this work, a novel film for food wrapping was developed by exploiting shellfish waste according to a vision of circular economy. Compared to previous studies, here, novel ingredients, such as polyvinyl alcohol (PVA), fibroin, and essential oils, were used in a synergistic combination to functionally postpone cheese deterioration. The fermentative procedure applied for the obtainment of chitin contributes to filling the existing gap in the literature, since the majority of studies are based on the chemical pathways that dramatically impact the environment. After pretreatment, the shrimp shell waste (SSW) was fermented through two bacterial strains, namely Lactobacillus plantarum and Bacillus subtilis. A deacetylation step in an alkaline environment transformed chitin into chitosan, yielding 78.88 g/kg SWW. Four different film formulations were prepared, all containing chitosan with other ingredients added in order of decreasing complexity from the A to D groups. The novel films were tested with regard to their physico-mechanical and antioxidant properties, including the tensile strength (12.10–23.25 MPa), the elongation at break (27.91–46.12%), the hardness (52–71 Shore A), the film thickness (308–309 μm), and the radical scavenging activity (16.11–76.56%). The performance as a cling film was tested on two groups of cheese samples: the control (CTR), wrapped in conventional polyethylene (PE) film; treated (TRT), wrapped in the chitofilm formulation deemed best for its mechanical properties. The volatiles entrapped into the headspace were investigated by means of the SPME-GC technique. The results varied across soft, Camembert, and semi-hard cheeses, indicating a growing abundance of volatiles during the conservation of cheese. The bacterial growth trends for mesophilic, enterobacteriaceae, and lactic acid bacteria were expressed as the mean colony forming units (CFU)/mL for each type of cheese at different sampling times (day 2, day 8, and day 22): the highest load was quantified as 8.2 × 106 CFU/mL at day 22 in the CTR Camembert cheese. The TRT samples generally exhibited inhibitory activity comparable to or lower than that observed in the CTR samples. The sensory analysis revealed distinctions in cheese taste between the TRT and CTR groups. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 18588 KiB  
Article
Characterization of CNC Nanoparticles Prepared via Ultrasonic-Assisted Spray Drying and Their Application in Composite Films
by Sungjun Hwang, Yousoo Han and Douglas J. Gardner
Nanomaterials 2023, 13(22), 2928; https://doi.org/10.3390/nano13222928 - 10 Nov 2023
Cited by 4 | Viewed by 2423
Abstract
The ultrasonic-assisted spray dryer, also known as a nano spray dryer and predominantly used on a lab scale in the pharmaceutical and food industries, enables the production of nanometer-sized particles. In this study, the nano spray dryer was applied to cellulosic materials, such [...] Read more.
The ultrasonic-assisted spray dryer, also known as a nano spray dryer and predominantly used on a lab scale in the pharmaceutical and food industries, enables the production of nanometer-sized particles. In this study, the nano spray dryer was applied to cellulosic materials, such as cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs). CNC suspensions were successfully dried, while the CNF suspensions could not be dried, attributable to their longer fibril lengths. The nano spray drying process was performed under different drying conditions, including nebulizer hole sizes, solid concentrations, and gas flow rates. It was confirmed that the individual particle size of nano spray-dried CNCs (nano SDCNCs) decreased as the nebulizer hole sizes and solid contents of the suspensions decreased. The production rate of the nano spray dryer increased with higher solid contents and lower gas flow rates. The resulting nano SDCNCs were added to a polyvinyl alcohol (PVA) matrix as a reinforcing material to evaluate their reinforcement behavior in a plastic matrix using solvent casting. After incorporating the 20 wt.% nano SDCNCs into the PVA matrix, the tensile strength and tensile modulus elasticity of the neat PVA nanocomposite film increased by 22% and 32%, respectively, while preserving the transparency of the films. Full article
(This article belongs to the Special Issue Cellulose Nanomaterials and Nanocomposites)
Show Figures

Graphical abstract

17 pages, 4852 KiB  
Article
Shrinkage, Permeation and Freeze–Thaw Characteristics of Ambient Cured High Calcium-Based Alkali-Activated Engineered Composites
by Khandaker M. A. Hossain and Dhruv Sood
Materials 2023, 16(22), 7101; https://doi.org/10.3390/ma16227101 - 9 Nov 2023
Cited by 2 | Viewed by 1376
Abstract
Sustainable zero cement-based one-part ambient cured alkali-activated engineered composites (AAECs) are developed. The durability and microstructural characteristics of developed AAECs using 2% v/v polyvinyl alcohol (PVA) fibers, silica sand, binary or ternary combinations of precursors (fly ash class C ‘FA-C’, fly [...] Read more.
Sustainable zero cement-based one-part ambient cured alkali-activated engineered composites (AAECs) are developed. The durability and microstructural characteristics of developed AAECs using 2% v/v polyvinyl alcohol (PVA) fibers, silica sand, binary or ternary combinations of precursors (fly ash class C ‘FA-C’, fly ash class F ‘FA-F’ and ground granulated blast furnace slag ‘GGBFS’) and two types of powder form alkaline reagents (Type 1 and Type 2) are evaluated compared to conventional engineered cementitious composites (ECCs) and alkali-activated mortars (AAMs) without fiber. AAECs developed satisfactory compressive strength ranging from 34 MPa to 46 MPa. Expansion/shrinkage and mass change (loss/gain) behaviors are affected by binary/ternary combination of source materials, reagent types and curing regimes (water or ambient) for both AAMs and AAECs. The binary (FA-C + GGBFS) and reagent 2 (calcium hydroxide + sodium sulfate) composites demonstrated lower shrinkage due to formation of crystalline C-A-S-H/C-S-H binding phases than their ternary (FA-C + FA-F + GGBFS) and reagent 1 (calcium hydroxide + sodium metasilicate) counterparts which formed amorphous N-C-A-S-H/N-A-S-H phases. The matrix densification due to the formation of reaction products and fiber-induced micro-confinement leads to lower shrinkage and mass change of AAECs compared to their AAM counterparts. Composites exhibited lower or comparable secondary sorptivity indices compared to control ECC, indicating their superior permeation performance. All AAECs had a relative dynamic modulus of elasticity (RDME) greater than 90% at 300 cycles (comparable to control ECC), exhibiting satisfactory freeze–thaw resistance with reagent 2 mixes showing better performance compared to those with reagent 1. The production feasibility of strain hardening AAECs with powder form reagents having satisfactory mechanical and durability properties is confirmed. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

27 pages, 12427 KiB  
Article
The Strength and Fracture Characteristics of One-Part Strain-Hardening Green Alkali-Activated Engineered Composites
by Khandaker M. Anwar Hossain and Dhruv Sood
Materials 2023, 16(14), 5077; https://doi.org/10.3390/ma16145077 - 18 Jul 2023
Cited by 4 | Viewed by 1678
Abstract
Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into [...] Read more.
Alkali-activated engineered composites (AAECs) are cement-free composites developed using alkali activation technology, which exhibit strain hardening and multiple micro-cracking like conventional engineered cementitious composites (ECCs). Such AAECs are developed in this study by incorporating 2% v/v polyvinyl alcohol (PVA) fibers into alkali-activated mortars (AAMs) produced using binary/ternary combinations of fly ash class C (FA-C), fly ash class F (FA-F), and ground-granulated blast furnace slag (GGBFS) with powder-form alkaline reagents and silica sand through a one-part mixing method under ambient curing conditions. The mechanical and microstructural characteristics of eight AAECs are investigated to characterize their strain-hardening performance based on existing (stress and energy indices) and newly developed tensile/flexural ductility indices. The binary (FA-C + GGBFS) AAECs obtained higher compressive strengths (between 48 MPa and 52 MPa) and ultrasonic pulse velocities (between 3358 m/s and 3947 m/s) than their ternary (FA-C + FA-F + GGBFS) counterparts. The ternary AAECs obtained a higher fracture energy than their binary counterparts. The AAECs incorporating reagent 2 (Ca(OH)2: Na2SO4 = 2.5:1) obtained a greater fracture energy and compressive strengths than their counterparts with reagent 1 (Ca(OH)2: Na2SiO3.5H2O = 1:2.5), due to additional C-S-H gel formation, which increased their energy absorption for crack propagation through superior multiple-cracking behavior. A lower fracture and crack-tip toughness facilitated the development of enhanced flexural strength characteristics with higher flexural strengths (ranging from 5.3 MPa to 11.3 MPa) and a higher energy ductility of the binary AAMs compared to their ternary counterparts. The tensile stress relaxation process was relatively gradual in the binary AAECs, owing to the formation of a more uniform combination of reaction products (C-S-H/C-A-S-H) rather than a blend of amorphous (N-C-A-S-H/N-A-S-H) and crystalline (C-A-S-H/C-S-H) binding phases in the case of the ternary AAECs. All the AAECs demonstrated tensile strain-hardening characteristics at 28 days, with significant improvements from 28% to 100% in the maximum bridging stresses for mixes incorporating 40% to 45% GGBFS at 365 days. This study confirmed the viability of producing green cement-free strain-hardening alkali-activated composites with powder-form reagents, with satisfactory mechanical characteristics under ambient conditions. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

2 pages, 178 KiB  
Editorial
Lower-Strength Alcohol Products and Public Health
by Peter Anderson
Nutrients 2023, 15(10), 2240; https://doi.org/10.3390/nu15102240 - 9 May 2023
Cited by 1 | Viewed by 1872
Abstract
The World Health Organization has called on economic operators to “substitute, whenever possible, higher-alcohol products with no-alcohol and lower-alcohol products in their overall product portfolios, with the goal of decreasing the overall levels of alcohol consumption in populations and consumer groups, while avoiding [...] Read more.
The World Health Organization has called on economic operators to “substitute, whenever possible, higher-alcohol products with no-alcohol and lower-alcohol products in their overall product portfolios, with the goal of decreasing the overall levels of alcohol consumption in populations and consumer groups, while avoiding the circumvention of existing regulations for alcoholic beverages and the targeting of new consumer groups with alcohol marketing, advertising and promotional activities” (see [...] Full article
(This article belongs to the Special Issue Lower Strength Alcohol Products to Public Health)
17 pages, 6109 KiB  
Article
Effect of Furfurylation on Bamboo-Scrimber Composites
by Wanju Li, Guijun Xie, Hongxia Ma and Xingwei Li
Materials 2023, 16(7), 2931; https://doi.org/10.3390/ma16072931 - 6 Apr 2023
Cited by 3 | Viewed by 2274
Abstract
Bamboo is a material with excellent development prospects. It is increasingly used in furniture, decoration, building, and bridge construction. In this study, Furfurylated bamboo bundles and phenol-formaldehyde resin were used to make bamboo-scrimber composites (BSCs) via molding-recombination and hot-pressing processes. The effects of [...] Read more.
Bamboo is a material with excellent development prospects. It is increasingly used in furniture, decoration, building, and bridge construction. In this study, Furfurylated bamboo bundles and phenol-formaldehyde resin were used to make bamboo-scrimber composites (BSCs) via molding-recombination and hot-pressing processes. The effects of the impregnation mode, furfuryl-alcohol concentration, and curing temperature on the various physical–mechanical properties and durability of the composites were evaluated. Scanning-electron microscopy (SEM) was used to observe the microstructural differences. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were employed to investigate changes in the chemical constituents. The heat resistance was also investigated using thermogravimetric analysis. The results showed that the density of the furfurylated BSC increased by up to 22% compared with that of the BSC-C with the same paving mode. The furfurylated BSCs had lower moisture contents: the average moisture content of the furfurylated BSCs was 25~50% lower than that of the BSC-C. In addition, the furfurylated BSCs showed better dimensional stability and durability, since the decay-resistance grade of the BSCs was raised from decay resistance (class II) to strong decay resistance (class I). In terms of the mechanical properties, the furfurylation had a slight negative effect on the mechanical strength of the BSCs, and the modulus of rupture (MOR) and horizontal shear strength (HSS) of the BSCs were increased to a certain extent under most of the treatment conditions. In particular, the highest HSS for indoor use and MOR of the furfurylated BSCs increased by 21% and 9% compared with those of the untreated BSCs, respectively. The SEM results indicated that the FA resin effectively filled in the bamboo-cell cavities and vessels, and the modified bamboo-parenchyma cells were compressed more tightly and evenly. The FTIR and XPS spectroscopy showed that the hydroxyl group of carboxylic acid of the bamboo-cell-wall component reacted with that of the furan ring, and the cellulose and hemicellulose underwent acid hydrolysis to a certain extent after the furfurylation. Overall, the present study highlights the potential of furfurylation as a modification method to enhance BSC products. Further research should focus on improving the ability of furfurylated BSCs to prevent the growth of Botryodiplodia theobromae. Additionally, the influence of furfuryl-alcohol resin on the bonding strengths of PF adhesives should be further clarified. Full article
Show Figures

Graphical abstract

16 pages, 1881 KiB  
Article
Development and Validation of an HPLC-UV Method for the Determination Bis(2-ethylhexyl) Phthalate Ester in Alcoholic Beverages
by Evangelos G. Gemenetzis and Nikiforos A. Alygizakis
Appl. Sci. 2023, 13(5), 3194; https://doi.org/10.3390/app13053194 - 2 Mar 2023
Cited by 5 | Viewed by 4198
Abstract
An HPLC method with UV detector was developed for the determination of DEHP phthalate ester in the alcoholic beverage “Ouzo”. Phthalate esters are added to plastic packaging for food and beverages to increase flexibility, transparency, strength, and longevity. When these substances come into [...] Read more.
An HPLC method with UV detector was developed for the determination of DEHP phthalate ester in the alcoholic beverage “Ouzo”. Phthalate esters are added to plastic packaging for food and beverages to increase flexibility, transparency, strength, and longevity. When these substances come into contact with food or beverages, they can lead to the migration of phthalate residues into the product. This paper presents a two-step process involving extraction of the sample with hexane and separation of the phthalates by HPLC. The method was validated for specificity, linearity, limit of quantification, accuracy, precision, range, and ruggedness. The linear range is 0.3–1.5 mg/L DEHP, with a lower limit of quantification of 0.06 mg/L. The precision study showed acceptable RSD values, and the working range is 0.3 to 1.5 mg/L DEHP. The relative standard uncertainty of DEHP determination in Ouzo was ±8%. The results show that the in-house method is suitable, reliable, and fit-for-purpose. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

16 pages, 2198 KiB  
Article
Properties and Emissions of Three-Layer Particleboards Manufactured with Mixtures of Wood Chips and Partially Liquefied Bark
by Wen Jiang, Stergios Adamopoulos, Reza Hosseinpourpia, Thomas Walther and Sergej Medved
Materials 2023, 16(5), 1855; https://doi.org/10.3390/ma16051855 - 24 Feb 2023
Cited by 8 | Viewed by 3869
Abstract
Partial liquefaction of residual biomass shows good potential for developing new materials suitable for making bio-based composites. Three-layer particleboards were produced by replacing virgin wood particles with partially liquefied bark (PLB) in the core or surface layers. PLB was prepared by the acid-catalyzed [...] Read more.
Partial liquefaction of residual biomass shows good potential for developing new materials suitable for making bio-based composites. Three-layer particleboards were produced by replacing virgin wood particles with partially liquefied bark (PLB) in the core or surface layers. PLB was prepared by the acid-catalyzed liquefaction of industrial bark residues in polyhydric alcohol. The chemical and microscopic structure of bark and residues after liquefaction were evaluated by means of Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM), while the particleboards were tested for their mechanical and water-related properties, as well as their emission profiles. Through a partial liquefaction process, some FTIR absorption peaks of the bark residues were lower than those of raw bark, indicating hydrolysis of chemical compounds. The surface morphology of bark did not change considerably after partial liquefaction. Particleboards with PLB in the core layers showed overall lower densities and mechanical properties (modulus of elasticity, modulus of rupture, and internal bond strength), and were less water-resistant as compared to the ones with PLB used in the surface layers. Formaldehyde emissions from the particleboards were 0.284–0.382 mg/m2·h, and thus, below the E1 class limit required by European Standard EN 13986:2004. The major emissions of volatile organic compounds (VOCs) were carboxylic acids as oxidization and degradation products from hemicelluloses and lignin. The application of PLB in three-layer particleboards is more challenging than in single-layer boards as PLB has different effects on the core and surface layers. Full article
(This article belongs to the Special Issue Application of Natural Polymers in Bio-Based Products)
Show Figures

Figure 1

16 pages, 6121 KiB  
Article
Enhancing the Mechanical Properties of Historical Masonry Using Fiber-Reinforced Geopolymers
by Ithan Jessemar R. Dollente, Daniel Nichol R. Valerio, Pauline Rose J. Quiatchon, Anabel B. Abulencia, Ma. Beatrice D. Villoria, Lessandro Estelito O. Garciano, Michael Angelo B. Promentilla, Ernesto J. Guades and Jason Maximino C. Ongpeng
Polymers 2023, 15(4), 1017; https://doi.org/10.3390/polym15041017 - 17 Feb 2023
Cited by 5 | Viewed by 2720
Abstract
Current research into the production of sustainable construction materials for retrofitting and strengthening historic structures has been rising, with geopolymer technology being seen as an advantageous alternative to traditional concrete. Fiber reinforcement using this novel cementitious material involves a low embodied carbon footprint [...] Read more.
Current research into the production of sustainable construction materials for retrofitting and strengthening historic structures has been rising, with geopolymer technology being seen as an advantageous alternative to traditional concrete. Fiber reinforcement using this novel cementitious material involves a low embodied carbon footprint while ensuring cohesiveness with local materials. This study aims to develop fly ash-based geopolymers reinforced with six different types of fibers: polyvinyl alcohol, polypropylene, chopped basalt, carbon fiber, and copper-coated stainless steel. The samples are produced by mixing the geopolymer mortar in random distribution and content. Twenty-eight geopolymer mixes are evaluated through compressive strength, split-tensile strength, and modulus of elasticity to determine the fiber mix with the best performance compared with pure geopolymer mortar as a control. Polyvinyl alcohol and copper-coated stainless-steel fiber samples had considerably high mechanical properties and fracture toughness under applied tensile loads. However, the polypropylene fiber source did not perform well and had lower mechanical properties. One-way ANOVA verifies these results. Based on these findings, polyvinyl alcohol and stainless-steel fibers are viable options for fiber reinforcement in historical structures, and further optimization and testing are recommended before application as a reinforcement material in historic structures. Full article
(This article belongs to the Special Issue Fibre-Reinforced Polymer Composite II)
Show Figures

Figure 1

18 pages, 4383 KiB  
Article
Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy
by Panagiota Papaspyridakou, Panagiota Giannoutsou and Malvina G. Orkoula
Biosensors 2023, 13(1), 135; https://doi.org/10.3390/bios13010135 - 13 Jan 2023
Cited by 13 | Viewed by 4303
Abstract
The measurement of ethanol and toxic alcohol (methanol and isopropanol) strengths in beverages and spirits is crucial for health reasons but also for the identification of adulterated products. Many methodologies have been reported in the literature, based mainly on chromatographic and on spectroscopic [...] Read more.
The measurement of ethanol and toxic alcohol (methanol and isopropanol) strengths in beverages and spirits is crucial for health reasons but also for the identification of adulterated products. Many methodologies have been reported in the literature, based mainly on chromatographic and on spectroscopic techniques. Chromatographic techniques are laborious and time-consuming, while spectroscopic techniques are rapid and need no special sample pretreatment. All techniques were only applied to off-line or at-line manner. In the present work, Raman spectroscopy was used for fast and non-destructive measurements. A “through the container” method was developed for a non-invasive analysis, i.e., analysis without unsealing the bottles. This method, coupled with a miniature portable Raman, can serve for in-line measurements in a production line. The optimum laser focus for maximum spirit signal and minimum glass-wall signal was investigated. Calibration curves for the alcohols of interest were constructed and validated. The limits of detections were calculated and proved to be lower than the legitimate values. The influences of the liquor color and the bottle color, shape, and thickness were checked. Twenty-eight alcoholic products were studied. The concentrations found were compared against the nominal values (from the bottle labels). Full article
(This article belongs to the Special Issue Advances in Optical Biosensors and Chemical Sensors)
Show Figures

Figure 1

Back to TopTop