Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Data Collection
2.4. Mediterranean Diet Index (MDI)
2.5. Satisfaction with Life Scale (SWLS)
2.6. Definition of Prediabetes
2.7. Statistic Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, Y.; Qiu, Z.; Wang, F.; Deng, S.; Wang, Y.; Wang, Z.; Yin, P.; Huo, Y.; Zhou, M.; Liu, G.; et al. Associations of diabetes and prediabetes with mortality and life expectancy in China: A national study. Diabetes Care 2024, 47, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 27 January 2025).
- Echouffo-Tcheugui, J.B.; Perreault, L.; Ji, L.; Dagogo-Jack, S. Diagnosis and management of prediabetes: A review. JAMA 2023, 329, 1206–1216. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 3. Prevention or delay of diabetes and associated comorbidities: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. S1), S50–S58. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, G.B.; Dias-Vasconcelos, N.L.; Santos, R.K.F.; Brandão-Lima, P.N.; da Silva, D.G.; Pires, L.V. Effect of different dietary patterns on glycemic control in individuals with type 2 diabetes mellitus: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1999–2010. [Google Scholar] [CrossRef]
- Zujko, M.E.; Witkowska, A.M. Dietary antioxidants and chronic diseases. Antioxidants 2023, 12, 362. [Google Scholar] [CrossRef]
- Cyuńczyk, M.; Zujko, M.E.; Jamiołkowski, J.; Zujko, K.; Łapińska, M.; Zalewska, M.; Kondraciuk, M.; Witkowska, A.M.; Kamiński, K.A. Dietary total antioxidant capacity is inversely associated with prediabetes and insulin resistance in Bialystok PLUS population. Antioxidants 2022, 11, 283. [Google Scholar] [CrossRef]
- Sood, S.; Feehan, J.; Itsiopoulos, C.; Wilson, K.; Plebanski, M.; Scott, D.; Hebert, J.R.; Shivappa, N.; Mouse, A.; George, E.S.; et al. Higher Adherence to a Mediterranean Diet Is Associated with Improved Insulin Sensitivity and Selected Markers of Inflammation in Individuals Who Are Overweight and Obese without Diabetes. Nutrients 2022, 14, 4437. [Google Scholar] [CrossRef]
- Sarsangi, P.; Salehi-Abargouei, A.; Ebrahimpour-Koujan, S.; Esmaillzadeh, A. Association between adherence to the Mediterranean diet and risk of type 2 diabetes: An updated systematic review and dose-response meta-analysis of prospective cohort studies. Adv. Nutr. 2022, 13, 1787–1798. [Google Scholar] [CrossRef]
- Gardner, C.D.; Landry, M.J.; Perelman, D.; Petlura, C.; Durand, L.R.; Aronica, L.; Crimarco, A.; Cunanan, K.M.; Chang, A.; Dant, C.C.; et al. Effect of a ketogenic diet versus Mediterranean diet on glycated hemoglobin in individuals with prediabetes and type 2 diabetes mellitus: The interventional Keto-Med randomized crossover trial. Am. J. Clin. Nutr. 2022, 116, 640–652. [Google Scholar] [CrossRef]
- Pavlidou, E.; Papadopoulou, S.K.; Fasoulas, A.; Papaliagkas, V.; Alexatou, O.; Chatzidimitriou, M.; Mentzelou, M.; Giaginis, C. Diabesity and dietary interventions: Evaluating the impact of Mediterranean diet and other types of diets on obesity and type 2 diabetes management. Nutrients 2023, 16, 34. [Google Scholar] [CrossRef]
- Milenkovic, T.; Bozhinovska, N.; Macut, D.; Bjekic-Macut, J.; Rahelic, D.; Velija Asimi, Z.; Burekovic, A. Mediterranean diet and type 2 diabetes mellitus: A perpetual inspiration for the scientific world. A Review. Nutrients 2021, 13, 1307. [Google Scholar] [CrossRef]
- Galilea-Zabalza, I.; Buil-Cosiales, P.; Salas-Salvadó, J.; Toledo, E.; Ortega-Azorín, C.; Díez-Espino, J.; Vázquez-Ruiz, Z.; Zomeño, M.D.; Vioque, J.; Martínez, J.A.; et al. Mediterranean diet and quality of life: Baseline cross-sectional analysis of the PREDIMED-PLUS trial. PLoS ONE 2018, 13, e0198974. [Google Scholar] [CrossRef]
- Cordwell, A.; McClure, R.; Villani, A. Adherence to a Mediterranean diet and health-related quality of life: A cross-sectional analysis of overweight and obese middle-aged and older adults with and without type 2 diabetes mellitus. Br. J. Nutr. 2022, 128, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Bossel, A.; Waeber, G.; Garnier, A.; Marques-Vidal, P.; Kraege, V. Association between Mediterranean Diet and Type 2 Diabetes: Multiple Cross-Sectional Analyses. Nutrients 2023, 15, 3025. [Google Scholar] [CrossRef] [PubMed]
- Waśkiewicz, A.; Szcześniewska, D.; Szostak-Węgierek, D.; Kwaśniewska, M.; Pająk, A.; Stepaniak, U.; Kozakiewicz, K.; Tykarski, A.; Zdrojewski, T.; Zujko, M.E.; et al. Are dietary habits of the Polish population consistent with the recommendations for prevention of cardiovascular disease?—WOBASZ II project. Kardiol. Pol. 2016, 74, 969–977. [Google Scholar] [CrossRef]
- Gacek, M.; Wojtowicz, A. Life satisfaction and other determinants of eating behaviours among women aged 40–65 years with type 2 diabetes from the Krakow population. Prz. Menopauz. 2019, 18, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chlabicz, M.; Jamiołkowski, J.; Łaguna, W.; Dubatówka, M.; Sowa, P.; Łapińska, M.; Szpakowicz, A.; Zieleniewska, N.; Zalewska, M.; Raczkowski, A.; et al. Effectiveness of lifestyle modification vs. therapeutic, preventative strategies for reducing cardiovascular risk in primary prevention—A cohort study. J. Clin. Med. 2022, 11, 688. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48 (Suppl. S1), S27–S49. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Chlabicz, M.; Jamiołkowski, J.; Paniczko, M.; Sowa, P.; Łapińska, M.; Szpakowicz, M.; Jurczuk, N.; Kondraciuk, M.; Raczkowski, A.; Sawicka, E.; et al. Independent impact of gynoid fat distribution and free testosterone on circulating levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) in humans. J. Clin. Med. 2019, 9, 74. [Google Scholar] [CrossRef]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album of Photographs of Food Products and Dishes; National Food and Nutrition Institute Press: Warsaw, Poland, 2000. [Google Scholar]
- Zujko, M.E.; Witkowska, A.M.; Waśkiewicz, A.; Piotrowski, W.; Terlikowska, K.M. Dietary antioxidant capacity of the patients with cardiovascular disease in a cross-sectional study. Nutr. J. 2015, 14, 26. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt. Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef]
- Nabila, S.; Kim, J.E.; Choi, J.; Park, J.; Shin, A.; Lee, S.A.; Lee, J.K.; Kang, D.; Choi, J.Y. Associations between modifiable risk factors and changes in glycemic status among individuals with prediabetes. Diabetes Care 2023, 46, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Rohm, T.V.; Meier, D.T.; Olefsky, J.M.; Donath, M.Y. Inflammation in obesity, diabetes, and related disorders. Immunity 2022, 55, 31–55. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, X.; Zhou, Y.; Wang, Z.; Yu, Y.; Zhu, Y.; Xu, W. Anthropometric and DXA-Derived Measures of Body Composition in Relation to Pre-Diabetes in Adults: A Cross-Sectional Study. BMJ Open Diabetes Res. Care 2023, 11, e003412. [Google Scholar]
- Li, H.; Zhuang, P.; Liu, X.; Li, Y.; Ao, Y.; Tian, Y.; Jia, W.; Zhang, Y.; Jiao, J. Marine n-3 fatty acids mitigate hyperglycemia in prediabetes by improving muscular glucose transporter 4 translocation and glucose homeostasis. Research 2025, 8, 0683. [Google Scholar] [CrossRef]
- Strengers, J.G.; den Ruijter, H.M.; Boer, J.M.A.; Asselbergs, F.W.; Verschuren, W.M.M.; van der Schouw, Y.T.; Sluijs, I. The association of the Mediterranean diet with heart failure risk in a Dutch population. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 60–66. [Google Scholar] [CrossRef]
- Fung, T.T.; Rexrode, K.M.; Mantzoros, C.S.; Manson, J.E.; Willett, W.C.; Hu, F.B. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 2009, 119, 1093–1100. [Google Scholar] [CrossRef]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhao, Y.; Liu, J.; Huang, Z.; Yang, X.; Qin, P.; Chen, C.; Luo, X.; Li, Y.; Wu, Y.; et al. Consumption of dairy products and the risk of overweight or obesity, hypertension, and type 2 diabetes mellitus: A dose-response meta-analysis and systematic review of cohort studies. Adv. Nutr. 2022, 13, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Liu, Y.; Wang, X.; Bai, J.; Lin, L.; Luo, F.; Zhong, H. A Comprehensive review of health-benefiting components in rapeseed oil. Nutrients 2023, 15, 999. [Google Scholar] [CrossRef]
- Lotfi, K.; Saneei, P.; Hajhashemy, Z.; Esmaillzadeh, A. Adherence to the Mediterranean diet, five-year weight change, and risk of overweight and obesity: A systematic review and dose-response meta-analysis of prospective cohort studies. Adv. Nutr. 2022, 13, 152–166. [Google Scholar] [CrossRef]
- Scaglione, S.; Di Chiara, T.; Daidone, M.; Tuttolomondo, A. Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk. Nutrients 2025, 17, 358. [Google Scholar] [CrossRef]
- Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 2003, 52, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
- Nitzke, D.; Czermainski, J.; Rosa, C.; Coghetto, C.; Fernandes, S.A.; Carteri, R.B. Increasing dietary fiber intake for type 2 diabetes mellitus management: A systematic review. World J. Diabetes 2024, 15, 1001–1010. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, W.; Li, Y.; Feng, J.; Miao, J.; Shi, H.; Xue, H. Monounsaturated and polyunsaturated fatty acids concerning prediabetes and type 2 diabetes mellitus risk among participants in the National Health and Nutrition Examination Surveys (NHANES) from 2005 to March 2020. Front. Nutr. 2023, 10, 1284800. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Di Bella, G.; Cusumano, C.; Parisi, A.; Tagliaferri, F.; Ciriminna, S.; Barbagallo, M. Mediterranean diet in the management and prevention of obesity. Exp. Gerontol. 2023, 174, 112121. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean Diet Effects on Type 2 Diabetes Prevention, Disease Progression, and Related Mechanisms. A Review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Simonson, D.C.; Gourash, W.F.; Arterburn, D.E.; Hu, B.; Kashyap, S.R.; Cummings, D.E.; Patti, M.E.; Courcoulas, A.P.; Vernon, A.H.; Jakicic, J.M.; et al. Health-related quality of life and health utility after metabolic/bariatric surgery versus medical/lifestyle intervention in individuals with type 2 diabetes and obesity: The ARMMS-T2D Study. Diabetes Care 2025, 48, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.; Smith, C.M.; Kearns, B.; Haywood, A.; Bissell, P. The association between obesity and quality of life: A retrospective analysis of a large-scale population-based cohort study. BMC Public Health 2021, 21, 1990. [Google Scholar] [CrossRef]
Variable | Total (N = 614) | Healthy (N = 307) | Prediabetes (N = 307) | p |
---|---|---|---|---|
Gender, N (%) | ||||
Men | 245 (39.9) | 132 (43.0) | 113 (36.8) | 0.117 b |
Women | 369 (60.1) | 175 (57.0) | 194 (63.2) | |
Age (years), X ± SD | 52.02 ± 12.66 | 51.36 ± 12.36 | 52.68 ± 13.18 | 0.190 a |
Age, N (%) | ||||
20–45 | 206 (33.5) | 103 (33.5) | 103 (33.6) | |
46–60 | 221 (36.0) | 120 (39.1) | 101 (32.1) | 0.168 b |
61–79 | 187 (30.5) | 84 (27.4) | 103 (33.6) | |
Education 1, N (%) | ||||
Below secondary education | 90 (14.8) | 34 (11.1) | 56 (18.3) | |
Secondary education | 214 (34.8) | 101 (32.9) | 113 (36.8) | 0.068 b |
Higher education | 309 (50.4) | 172 (56.0) | 138 (44.9) | |
Marital status, N (%) | ||||
Bachelor/Miss | 76 (12.4) | 33 (10.7) | 43 (14.0) | |
Married | 426 (69.4) | 223 (72.6) | 203 (66.1) | |
Separation/divorced | 52 (8.5) | 23 (7.5) | 29 (9.5) | 0.578 b |
Widower | 41 (6.6) | 18 (5.9) | 23 (7.5) | |
Informal relationship | 19 (3.1) | 10 (3.3) | 9 (2.9) | |
Current smoking, N (%) | 96 (16.1) | 48 (16.2) | 48 (15.9) | 0.943 b |
Physical activity in winter, N (%) | ||||
Every day | 62 (10.1) | 37 (12.1) | 25 (8.1) | 0.100 c |
2–5/week | 122 (19.9) | 70 (22.8) | 52 (16.9) | 0.068 c |
1/week | 73 (11.9) | 36 (11.7) | 37 (12.1) | 0.899 c |
Lack | 357 (58.1) | 164 (53.4) | 193 (62.9) | 0.017 c |
Physical activity in summer, N (%) | ||||
Every day | 167 (27.2) | 100 (32.6) | 67 (21.8) | 0.003 c |
2–5/week | 179 (29.2) | 81 (26.4) | 99 (32.2) | 0.118 c |
1/week | 43 (7.0) | 21 (6.8) | 20 (6.5) | 0.889 c |
Lack | 225 (36.6) | 105 (34.2) | 121 (39.5) | 0.187 c |
Handgrip strengthmax (kg), X ± SD | 32.95 ± 11.76 | 33.87 ± 11.86 | 32.02 ± 11.60 | 0.041 a |
TC (mg/dL), X ± SD | 200.22 ± 40.75 | 200.66 ± 37.75 | 199.78 ± 43.59 | 0.673 a |
LDL-C (mg/dL), X ± SD | 129.17 ± 36.39 | 129.12 ± 33.45 | 129.22 ± 39.17 | 0.946 a |
HDL-C (mg/dL), X ± SD | 63.09 ± 17.23 | 64.15 ± 17.39 | 62.04 ± 17.02 | 0.068 a |
TG (mg/dL), X ± SD | 114.09 ± 70.06 | 109.66 ± 70.84 | 118.53 ± 69.09 | 0.003 a |
FG (mg/dL), X ± SD | 100.16 ± 8.49 | 97.03 ± 6.76 | 103.29 ± 8.91 | <0.001 a |
HbA1c (%), X ± SD | 5.43 ± 0.36 | 5.27 ± 0.24 | 5.59 ± 0.37 | <0.001 a |
HOMA-IR, X ± SD | 3.15 ± 2.06 | 2.74 ± 1.73 | 3.55 ± 2.25 | <0.001 a |
SBP (mm Hg), X ± SD | 123.85 ± 16.23 | 122.73 ± 16.18 | 124.97 ± 16.26 | 0.070 a |
DBP (mm Hg), X ± SD | 81.50 ± 9.96 | 81.12 ± 9.49 | 81.88 ± 10.41 | 0.590 a |
Hs-CRP, (mg/L) | 1.75 ± 3.34 | 1.48 ± 2.54 | 2.02 ± 3.97 | 0.001 a |
IL-6, (pg/mL) | 2.36 ± 5.73 | 2.26 ± 6.85 | 2.45 ± 4.44 | 0.025 a |
SWLS, X ± SD | 22.38 ± 5.14 | 22.77 ± 5.16 | 21.98 ± 5.10 | 0.050 a |
SWLS, N (%) | ||||
High satisfaction | 259 (42.2) | 145 (47.2) | 114 (37.1) | |
Average satisfaction | 244 (39.7) | 110 (35.8) | 134 (43.6) | 0.037 b |
Low satisfaction | 111 (18.1) | 52 (17.0) | 59 (19.3) |
Variable | Total (N = 614) | Healthy (N = 307) | Prediabetes (N = 307) | p a |
---|---|---|---|---|
BMI (kg/m2), X ± SD | 26.95 ± 4.69 | 26.28 ± 4.31 | 27.62 ± 4.94 | <0.001 |
BMI (kg/m2), N (%) | ||||
BMI < 25 | 232 (37.8) | 125 (40.7) | 107 (34.9) | |
BMI = 25–29.9 | 237 (38.6) | 132 (43.0) | 105 (34.2) | <0.001 b |
BMI ≥ 30 | 145 (23.6) | 50 (16.3) | 95 (30.9) | |
Waist circumference (cm), X ± SD | 87.43 ± 12.40 | 85.98 ± 12.03 | 88.88 ± 12.63 | 0.003 |
Hip circumference (cm), X ± SD | 101.07 ± 9.31 | 100.20 ± 8.77 | 101.94 ± 9.76 | 0.016 |
Thigh circumference (cm), X ± SD | 58.94 ± 5.86 | 58.70 ± 5.78 | 59.17 ± 5.94 | 0.199 |
WHR, X ± SD | 0.86 ± 0.09 | 0.85 ± 0.09 | 0.87 ± 0.09 | 0.059 |
Average body fat (%), X ± SD | 34.21 ± 0.07 | 33.23 ± 0.07 | 35.18 ± 0.07 | 0.001 |
Visceral fat mass (kg), X ± SD | 1.229 ± 0.905 | 1.122 ± 0.855 | 1.336 ± 0.941 | 0.003 |
Android fat mass (kg), X ± SD | 2.464 ± 1.189 | 2.295 ± 1.136 | 2.632 ± 1.223 | <0.001 |
Android lean mass (kg), X ± SD | 3.335 ± 0.674 | 3.352 ± 0.640 | 3.318 ± 0.707 | 0.279 |
Gynoid fat mass (kg), X ± SD | 4.166 ± 1.489 | 4.025 ± 1.455 | 4.306 ± 1.511 | 0.009 |
Gynoid lean mass (kg), X ± SD | 7.118 ± 1.515 | 7.175 ± 1.504 | 7.062 ± 1.525 | 0.270 |
Android to total fat ratio, X ± SD | 0.089 ± 0.02 | 0.087 ± 0.02 | 0.091 ± 0.02 | 0.053 |
Gynoid to total fat ratio, X ± SD | 0.158 ± 0.02 | 0.161 ± 0.03 | 0.156 ± 0.02 | 0.088 |
Android/gynoid fat ratio, X ± SD | 0.594 ± 0.22 | 0.576 ± 0.22 | 0.613 ± 0.22 | 0.056 |
Variable | Total (N = 614) | Healthy (N = 307) | Prediabetes (N = 307) | p a |
---|---|---|---|---|
Energy (kcal) | 1941.90 ± 614.57 | 1951.71 ± 618.44 | 1932.09 ± 611.52 | 0.592 |
Protein (g) | 83.68 ± 27.17 | 83.65 ± 27.23 | 83.71 ± 71 | 0.918 |
Carbohydrates (g) | 239.80 ± 88.03 | 241.44 ± 93.59 | 238.81 ± 88.03 | 0.838 |
Monosaccharides (g) | 66.01 ± 35.56 | 66.86 ± 33.89 | 66.15 ± 37.20 | 0.750 |
Dietary fiber (g) | 20.39 ± 7.74 | 20.51 ± 7.82 | 20.28 ± 7.67 | 0.794 |
Fat (g) | 74.12 ± 28.33 | 74.35 ± 27.26 | 73.89 ± 29.41 | 0.515 |
MUFA (g) | 30.11 ± 12.39 | 30.39 ± 12.14 | 29.83 ± 12.65 | 0.470 |
PUFA (g) | 12.14 ± 5.73 | 12.34 ± 5.95 | 11.94 ± 5.47 | 0.400 |
SFA (g) | 25.39 ± 11.40 | 25.21 ± 10.95 | 25.58 ± 11.84 | 0.939 |
MUFA/SFA | 0.54 ± 0.31 | 0.55 ± 0.33 | 0.52 ± 0.27 | 0.165 |
Fatty acids n-3 (g) | 2.51 ± 1.50 | 2.59 ± 1.44 | 2.42 ± 1.54 | 0.031 |
Fatty acids n-6 (g) | 9.51 ± 4.83 | 9.62 ± 5.13 | 9.40 ± 4.52 | 0.552 |
n-6/n-3 | 4.39 ± 2.41 | 4.17 ± 2.03 | 4.61 ± 2.73 | 0.054 |
Magnesium (mg) | 332.43 ± 111.74 | 331.75 ± 108.72 | 333.12 ± 114.86 | 0.977 |
Zinc (mg) | 10.79 ± 4.77 | 10.51 ± 3.28 | 11.07 ± 5.90 | 0.339 |
Calcium (mg) | 665.53 ± 297.17 | 668.31 ± 292.70 | 662.74 ± 302.02 | 0.843 |
Iron (mg) | 12.64 ± 8.89 | 12.34 ± 4.26 | 12.93 ± 11.83 | 0.975 |
Vitamin D (µg) | 4.07 ± 3.91 | 3.98 ± 3.86 | 4.15 ± 3.96 | 0.286 |
Vitamin B1 (mg) | 1.28 ± 0.62 | 1.26 ± 0.50 | 1.30 ± 0.72 | 0.450 |
Vitamin B6 (mg) | 1.90 ± 2.01 | 1.79 ± 0.77 | 2.01 ± 2.74 | 0.555 |
Vitamin B12 (µg) | 4.55 ± 3.87 | 4.56 ± 3.77 | 4.54 ± 3.97 | 0.731 |
Vitamin E (mg) | 11.40 ± 5.78 | 11.54 ± 5.45 | 11.25 ± 6.09 | 0.294 |
Vitamin C (mg) | 102.42 ± 148.37 | 105.47 ± 198.35 | 99.38 ± 68.82 | 0.804 |
DTAC (mmol) | 1449.33 ± 667.00 | 1484.12 ± 675.36 | 1414.54 ± 657.79 | 0.083 |
DTPI (g) | 2253.90 ± 782.60 | 2284.09 ± 778.74 | 2223.71 ± 786.56 | 0.270 |
Vegetables without potatoes (g) | 269.57 ± 140.97 | 271.17 ± 132.46 | 267.97 ± 149.19 | 0.406 |
Potatoes (g) | 92.76 ± 70.53 | 90.19 ± 70.77 | 95.33 ± 70.21 | 0.309 |
Fruit (g) | 240.74 ± 202.79 | 236.08 ± 183.63 | 245.40 ± 220.50 | 0.930 |
Fruit juices (g) | 40.06 ± 126.64 | 35.64 ± 125.30 | 44.48 ± 133.90 | 0.081 |
Nuts (g) | 12.71 ± 18.87 | 11.32 ± 17.86 | 14.11 ± 19.75 | 0.109 |
Legumes (g) | 9.56 ± 26.16 | 11.43 ± 31.09 | 7.7 ± 19.92 | 0.178 |
Wholegrains (g) | 52.65 ± 65.42 | 53.55 ± 66.23 | 51.75 ± 64.71 | 0.882 |
Refined cereal products (g) | 162.47 ± 99.44 | 166.87 ± 111.81 | 158.06 ± 85.26 | 0.674 |
Milk and dairy products (g) | 193.66 ± 138.08 | 189.03 ± 130.88 | 198.29 ± 144.99 | 0.500 |
Eggs (g) | 43.62 ± 44.19 | 42.73 ± 42.68 | 44.48 ± 45.72 | 0.966 |
Meat (g) | 146.91 ± 88.53 | 144.96 ± 87.56 | 148.87 ± 89.58 | 0.563 |
Red meat (g) | 103.62 ± 81.54 | 103.66 ± 83.25 | 103.57 ± 79.93 | 0.957 |
Fishes, g | 23.96 ± 36.81 | 25.91 ± 38.96 | 22.02 ± 34.48 | 0.344 |
Oils (g) | 16.13 ± 13.95 | 17.14 ± 15.36 | 15.13 ± 12.32 | 0.096 |
Olive oil (g) | 2.03 ± 6.13 | 2.22 ± 6.59 | 1.83 ± 5.63 | 0.818 |
Rapeseed oil (g) | 14.10 ± 15.24 | 14.92 ± 16.71 | 13.30 ± 13.55 | 0.118 |
Alcohol (g ethanol) | 53.81 ± 180.99 | 54.33 ± 149.98 | 53.30 ± 207.68 | 0.062 |
Variable | Total (N = 614) | Healthy (N = 307) | Prediabetes (N = 307) | p |
---|---|---|---|---|
MDI, X ± SD | 3.98 ± 1.74 | 4.11 ± 1.66 | 3.85 ± 1.81 | 0.047 a |
Low MDI (0–3), N (%) | 238 (38.8) | 105 (34.2) | 133/43.3 | 0.020 c |
Moderate MDI (4–6), N (%) | 332 (54.1) | 181 (59.0) | 151/49.2 | 0.015 c |
High MDI (7–9), N (%) | 44 (7.2) | 21 (6.8) | 23/7.5 | 0.754 c |
Variable | Total (N = 614) | Healthy (N = 307) | Prediabetes (N = 307) | |||
---|---|---|---|---|---|---|
R | p | R | p | R | p | |
TC (mg/dL) | −0.001 | 0.986 | −0.029 | 0.614 | 0.027 | 0.640 |
LDL-C (mg/dL) | −0.037 | 0.362 | −0.039 | 0.497 | −0.032 | 0.576 |
HDL-C (mg/dL) | 0.120 | 0.003 | 0.074 | 0.195 | 0.154 | 0.007 |
TG (mg/dL) | −0.015 | 0.706 | 0.008 | 0.885 | −0.022 | 0.707 |
FG (mg/dL) | −0.115 | 0.004 | −0.030 | 0.597 | −0.128 | 0.025 |
HbA1c (%) | −0.064 | 0.114 | −0.016 | 0.785 | −0.013 | 0.820 |
HOMA-IR | −0.107 | 0.013 | −0.049 | 0.425 | −0.103 | 0.085 |
SBP (mm Hg) | −0.034 | 0.399 | 0.018 | 0.075 | −0.066 | 0.249 |
DBP (mm Hg) | −0.084 | 0.037 | −0.088 | 0.126 | −0.069 | 0.231 |
Hs-CRP (mg/L) | −0.028 | 0.488 | −0.087 | 0.127 | 0.056 | 0.325 |
IL-6 (pg/mL) | −0.104 | 0.015 | −0.016 | 0.799 | −0.162 | 0.006 |
BMI (kg/m2) | −0.138 | 0.001 | −0.078 | 0.174 | −0.166 | 0.004 |
WHR | −0.206 | <0.001 | −0.114 | 0.045 | −0.285 | <0.001 |
Waist circumference (cm) | −0.199 | <0.001 | −0.115 | 0.045 | −0.261 | <0.001 |
Visceral fat mass (kg) | −0.088 | 0.030 | −0.051 | 0.378 | −0.099 | 0.083 |
Android/gynoid fat ratio (%) | −0.179 | <0.001 | −0.126 | 0.028 | −0.211 | <0.001 |
Model 1. | Model 2. | Model 3. | ||||
---|---|---|---|---|---|---|
OR | p | OR | p | OR | p | |
MDI | 0.919 | 0.071 | 0.907 | 0.041 | 0.900 | 0.038 |
Age | - | - | 1.007 | 0.308 | 1.007 | 0.290 |
Sex, M vs. W | - | - | 1.340 | 0.085 | 1.402 | 0.073 |
Energy of diet | - | - | - | - | 1.000 | 0.858 |
Alcohol consumption | - | - | - | - | 0.502 | 0.264 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalewska, M.; Zujko, M.E.; Jamiołkowski, J.; Chlabicz, M.; Łapińska, M.; Kamiński, K.A. Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study. Nutrients 2025, 17, 2034. https://doi.org/10.3390/nu17122034
Zalewska M, Zujko ME, Jamiołkowski J, Chlabicz M, Łapińska M, Kamiński KA. Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study. Nutrients. 2025; 17(12):2034. https://doi.org/10.3390/nu17122034
Chicago/Turabian StyleZalewska, Magdalena, Małgorzata E. Zujko, Jacek Jamiołkowski, Małgorzata Chlabicz, Magda Łapińska, and Karol A. Kamiński. 2025. "Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study" Nutrients 17, no. 12: 2034. https://doi.org/10.3390/nu17122034
APA StyleZalewska, M., Zujko, M. E., Jamiołkowski, J., Chlabicz, M., Łapińska, M., & Kamiński, K. A. (2025). Beneficial Effect of the Mediterranean Diet on the Reduction of Prediabetes—Results of the Bialystok PLUS Study. Nutrients, 17(12), 2034. https://doi.org/10.3390/nu17122034