Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction of Chitin
2.3. Film-Forming Solution and Deposition
2.4. Mechanical Testing
2.5. DPPH Radical Scavenging Assay
2.6. Analysis of Wrapped Cheeses
2.6.1. Samples
2.6.2. Extraction of the Volatiles
2.6.3. Microbiological Testing
2.6.4. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mechanical Properties
3.2. Antioxidant Activity
3.3. Analysis of Wrapped Cheese
3.3.1. Headspace
3.3.2. Microbiology
3.3.3. Sensory Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.; Wang, Y.; Chen, X.; Yu, X.; Li, W.; Zhang, S.; Meng, X.; Zhao, Z.-M.; Dong, T.; Anderson, A.; et al. Sustainable Bioplastics Derived from Renewable Natural Resources for Food Packaging. Matter 2023, 6, 97–127. [Google Scholar] [CrossRef]
- Mitrus, M.; Wojtowicz, A.; Moscicki, L. Biodegradable Polymers and Their Practical Utility. In Thermoplastic Starch; Janssen, L.P.B.M., Moscicki, L., Eds.; Wiley: Hoboken, NJ, USA, 2009; pp. 1–33. [Google Scholar] [CrossRef]
- Muncke, J.; Andersson, A.-M.; Backhaus, T.; Boucher, J.M.; Carney Almroth, B.; Castillo Castillo, A.; Chevrier, J.; Demeneix, B.A.; Emmanuel, J.A.; Fini, J.-B.; et al. Impacts of Food Contact Chemicals on Human Health: A Consensus Statement. Environ. Health 2020, 19, 25. [Google Scholar] [CrossRef]
- Gontard, N.; Guilbert, S. Bio-Packaging: Technology and Properties of Edible and/or Biodegradable Material of Agricultural Origin. In Food Packaging and Preservation; Mathlouthi, M., Ed.; Springer US: Boston, MA, USA, 1994; pp. 159–181. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Tang, Q.; Qiu, P.; Gou, D.; Zhao, J. Chitosan-Based Materials: An Overview of Potential Applications in Food Packaging. Foods 2022, 11, 1490. [Google Scholar] [CrossRef] [PubMed]
- Vadalà, R.; Di Bella, G.; Kosakowska, O.; Dugo, G.; Cicero, N.; Costa, R. Nutritional Benefits of Peanut By-Products. In Sustainable Food Science—A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; pp. 289–301. [Google Scholar] [CrossRef]
- Wang, J.; Euring, M.; Ostendorf, K.; Zhang, K. Biobased Materials for Food Packaging. J. Bioresour. Bioprod. 2022, 7, 1–13. [Google Scholar] [CrossRef]
- Muñoz-Tebar, N.; Pérez-Álvarez, J.A.; Fernández-López, J.; Viuda-Martos, M. Chitosan Edible Films and Coatings with Added Bioactive Compounds: Antibacterial and Antioxidant Properties and Their Application to Food Products: A Review. Polymers 2023, 15, 396. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.S.; Tomar, M.; Punia, S.; Kukula-Koch, W.; Kumar, M. Enhancing the Functionality of Chitosan- and Alginate-Based Active Edible Coatings/Films for the Preservation of Fruits and Vegetables: A Review. Int. J. Biol. Macromol. 2020, 164, 304–320. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Zhang, X.; Ismail, B.B.; Cheng, H.; Jin, T.Z.; Qian, M.; Arabi, S.A.; Liu, D.; Guo, M. Emerging Chitosan-Essential Oil Films and Coatings for Food Preservation—A Review of Advances and Applications. Carbohydr. Polym. 2021, 273, 118616. [Google Scholar] [CrossRef]
- Karaogul, E.; Altuntas, E.; Salan, T.; Hakki Alma, M. The Effects of Novel Additives Used in PVA/Starch Biohybrid Films. In Fillers—Synthesis, Characterization and Industrial Application; Patnaik, A., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Zambrano-Zaragoza, M.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. IJMS 2018, 19, 705. [Google Scholar] [CrossRef]
- Zakharova, V.A.; Kildeeva, N.R. Biopolymer Matrices Based on Chitosan and Fibroin: A Review Focused on Methods for Studying Surface Properties. Polysaccharides 2021, 2, 154–167. [Google Scholar] [CrossRef]
- Plastic Recyclers Europe. Available online: www.plasticsrecyclers.eu (accessed on 20 June 2024).
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rando, R.; Di Bella, G. Aquafeed Production from Fermented Fish Waste and Lemon Peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Kasaai, M.R. Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydr. Polym. 2007, 68, 477. [Google Scholar] [CrossRef]
- Lavertu, M.; Xia, Z.; Serreqi, A.N.; Berrada, M.; Rodrigues, A.; Wang, D.; Buschmann, M.D.; Gupta, A. A Validated 1H NMR Method for the Determination of the Degree of Deacetylation of Chitosan. J. Pharm. Biomed. Anal. 2003, 32, 1149–1158. [Google Scholar] [CrossRef]
- ASTM D618-13; Standard Practice for Conditioning Plastics for Testing. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Barrett Miles, K.; Ball, R.L.; Matthew, H.W.T. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds. Carbohydr. Polym. 2016, 139, 1. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- UNI EN ISO 868:2005; Materie Plastiche ed Ebanite—Determinazione Della Durezza per Penetrazione di un Durometro (Durezza Shore). ISO: Geneva, Switzerland, 2005.
- Hao, W.; Li, K.; Ma, Y.; Li, R.; Xing, R.; Yu, H.; Li, P. Preparation and Antioxidant Activity of Chitosan Dimers with Different Sequences. Mar. Drugs 2021, 19, 366. [Google Scholar] [CrossRef]
- Costa, R.; De Fina, M.R.; Valentino, M.R.; Dugo, P.; Mondello, L. Reliable Identification of Terpenoids and Related Compounds by Using Linear Retention Indices Interactively with Mass Spectrometry Search. Nat. Prod. Commun. 2007, 2, 1934578X0700200. [Google Scholar] [CrossRef]
- Paula, V.B.; Dias, L.G.; Estevinho, L.M. Microbiological and Physicochemical Evaluation of Hydroxypropyl Methylcellulose (HPMC) and Propolis Film Coatings for Cheese Preservation. Molecules 2024, 29, 1941. [Google Scholar] [CrossRef]
- Darıcı, M.; Özcan, K.; Beypınar, D.; Cabaroglu, T. Sensory Lexicon and Major Volatiles of Rakı Using Descriptive Analysis and GC-FID/MS. Foods 2021, 10, 1494. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.A.; Yates, M.D.; Gerard, P.D.; Delahunty, C.M.; Sheehan, E.M.; Turnbull, R.P.; Dodds, T.M. Comparison of Differences between Lexicons for Descriptive Analysis of Cheddar Cheese Flavour in Ireland, New Zealand, and the United States of America. Int. Dairy J. 2005, 15, 473–483. [Google Scholar] [CrossRef]
- Hamdi, M.; Nasri, R.; Amor, I.B.; Li, S.; Gargouri, J.; Nasri, M. Structural features, anti-coagulant and anti-adhesive potentials of blue crab (Portunus segnis) chitosan derivatives: Study of the effects of acetylation degree and molecular weight. Int. J. Biol. Macromol. 2020, 160, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Naznin, R. Extraction of chitin and chitosan from shrimp (Metapenaeus monoceros) shell by chemical method. Pak. J. Biol. Sci. 2005, 8, 1051–1054. [Google Scholar]
- Susmitha, A.; Sasikumar, K.; Rajan, D.; Padmakumar, M.A.; Nampoothiri, K.M. Development and Characterization of Corn Starch-Gelatin Based Edible Films Incorporated with Mango and Pineapple for Active Packaging. Food Biosci. 2021, 41, 100977. [Google Scholar] [CrossRef]
- Briassoulis, D.; Giannoulis, A. Evaluation of the Functionality of Bio-Based Food Packaging Films. Polym. Test. 2018, 69, 39–51. [Google Scholar] [CrossRef]
- Hou, C.; Gao, L.; Wang, Z.; Rao, W.; Du, M.; Zhang, D. Mechanical Properties, Thermal Stability, and Solubility of Sheep Bone Collagen–Chitosan Films. J Food Process Eng. 2020, 43, e13086. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; De La Caba, K. Functional Properties of Chitosan-Based Films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Amor, N.B.; Lo Vecchio, G.; Nava, V.; Rando, R.; Ben Mansour, H.; Lo Turco, V. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods. 2022, 11, 155. [Google Scholar] [CrossRef]
- Shao, Y.; Wu, C.; Wu, T.; Li, Y.; Chen, S.; Yuan, C.; Hu, Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr. Polym. 2018, 193, 144–152. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, Q.; Xia, W. One-step procedure for enhancing the antibacterial and antioxidant properties of a polysaccharide polymer: Kojic acid grafted onto chitosan. Int. J. Biol. Macromol. 2018, 113, 1125–1133. [Google Scholar] [CrossRef]
- Akyuz, L.; Kaya, M.; Mujtaba, M.; Ilk, S.; Sargin, I.; Salaberria, A.M.; Labidi, J.; Cakmak, Y.S.; Islek, C. Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. Int. J. Biol. Macromol. 2018, 115, 438–446. [Google Scholar] [CrossRef]
- Bicchi, C.; Liberto, E.; Matteodo, M.; Sgorbini, B.; Mondello, L.; Zellner, B.D.; Costa, R.; Rubiolo, P. Quantitative Analysis of Essential Oils: A Complex Task. Flavour Fragr. J. 2008, 23, 382–391. [Google Scholar] [CrossRef]
- Costa, R.; Dugo, P.; Santi, L.; Dugo, G.; Mondello, L. Advances of Modern Gas Chromatography and Hyphenated Techniques for Analysis of Plant Extracts. COC 2010, 14, 1752–1768. [Google Scholar] [CrossRef]
- Sunesen, L.O.; Lund, P.; Sørensen, J.; Hølmer, G. Development of Volatile Compounds in Processed Cheese during Storage. LWT Food Sci. Technol. 2002, 35, 128–134. [Google Scholar] [CrossRef]
- Mondello, L.; Costa, R.; Tranchida, P.Q.; Chiofalo, B.; Zumbo, A.; Dugo, P.; Dugo, G. Determination of Flavor Components in Sicilian Goat Cheese by Automated HS-SPME-GC. Flavour Fragr. J. 2005, 20, 659–665. [Google Scholar] [CrossRef]
- Singh, T.K.; Drake, M.A.; Cadwallader, K.R. Flavor of Cheddar Cheese: A Chemical and Sensory Perspective. Comp. Rev. Food Sci. Food Safe. 2003, 2, 166–189. [Google Scholar] [CrossRef]
- Yvon, M.; Rijnen, L. Cheese Flavour Formation by Amino Acid Catabolism. Int. Dairy J. 2001, 11, 185–201. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, F.; Shi, X.; Wang, B.; Li, K.; Li, B.; Zhuge, B. Dynamic Correlations between Microbiota Succession and Flavor Development Involved in the Ripening of Kazak Artisanal Cheese. Food Res. Int. 2018, 105, 733–742. [Google Scholar] [CrossRef]
- Pettersen, M.K.; Eie, T.; Nilsson, A. Oxidative Stability of Cream Cheese Stored in Thermoformed Trays as Affected by Packaging Material, Drawing Depth and Light. Int. Dairy J. 2005, 15, 355–362. [Google Scholar] [CrossRef]
- Becaro, A.A.; Puti, F.C.; Correa, D.S.; Paris, E.C.; Marconcini, J.M.; Ferreira, M.D. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties. J. Nanosci. Nanotechnol. 2015, 15, 2148–2156. [Google Scholar] [CrossRef]
- Sung, S.-Y.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Rahmat, A.R.; Rahman, W.A.W.A.; Tan, A.-C.; Vikhraman, M. Antimicrobial Agents for Food Packaging Applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential Application of Essential Oils as Antimicrobial Preservatives in Cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- De Farias, P.M.; De Vasconcelos, L.B.; Ferreira, M.E.S.; Alves Filho, E.G.; Tapia-Blácido, D.R. Use of Chemically Treated Nopal Cladodes as Additive in the Cassava Starch Composite Films. Vinyl Addit. Technol. 2023, 29, 1109–1124. [Google Scholar] [CrossRef]
- Zhou, J.; Wen, B.; Xie, H.; Zhang, C.; Bai, Y.; Cao, H.; Che, Q.; Guo, J.; Su, Z. Advances in the preparation and assessment of the biological activities of chitosan oligosaccharides with different structural characteristics. Food Funct. 2021, 12, 926–951. [Google Scholar] [CrossRef]
- Wang, W.; Xue, C.; Mao, X. Chitosan: Structural modification, biological activity and application. Int. J. Biol. Macromol. 2020, 164, 4532–4546. [Google Scholar] [CrossRef]
- Hou, F.; Gong, Z.; Jia, F.; Cui, W.; Song, S.; Zhang, J.; Wang, Y.; Wang, W. Insights into the relationships of modifying methods, structure, functional properties and applications of chitin: A review. Food Chem. 2023, 409, 135336. [Google Scholar] [CrossRef]
- Song, W.; Xu, J.; Ren, L.; Guo, L.; Tong, J.; Wang, L.; Chang, Z. Traditional Sensory Evaluation and Bionic Electronic Nose as Innovative Tools for the Packaging Performance Evaluation of Chitosan Film. Polymers 2020, 12, 2310. [Google Scholar] [CrossRef] [PubMed]
- Chirilli, C.; Torri, L. Effect of Biobased Cling Films on Cheese Quality: Color and Aroma Analysis for Sustainable Food Packaging. Foods 2023, 12, 3672. [Google Scholar] [CrossRef]
Sample Group | FT [µm] | TS [MPa] | EB [%] | Hardness [Shore A] |
---|---|---|---|---|
A Mean ± SD | 309.00 ns ± 0.81 | 23.25 a ± 0.48 | 46.12 a ± 7.94 | 71 a ± 1.11 |
B Mean ± SD | 308.21 ns ± 1.12 | 19.44 b ± 0.64 | 38.60 b ± 4.11 | 55 b ± 1.25 |
C Mean ± SD | 309.11 ns ± 0.94 | 13.63 c ± 0.56 | 34.35 c ± 0.99 | 52 b ± 1.13 |
D Mean ± SD | 308.57 ns ± 0.68 | 12.10 d ± 0.81 | 27.91 c ± 1.39 | 54 b ± 2.28 |
Compound | LOQ (ng·g−1) | LOD (ng·g−1) | % Recovery (%RSD) | Range of Linearity (mg·g−1) |
---|---|---|---|---|
n-Hexanal | 1.10 | 0.31 | 96.3 (8.4) | 0.1–10.0 |
Octanoic acid | 2.42 | 0.85 | 102.7 (14.3) | 0.1–10.0 |
Ethyl tetradecanoate | 0.48 | 0.09 | 85.7 (7.9) | 0.1–10.0 |
δ-Decalactone | 0.31 | 0.12 | 98.7 (8.1) | 0.1–10.0 |
Limonene | 0.42 | 0.26 | 97.4 (10.9) | 0.1–10.0 |
Dodecane | 0.53 | 0.27 | 97.9 (9.4) | 0.1–10.0 |
Group | Sampling | Sample Type | MES | ENT | LAC |
---|---|---|---|---|---|
Control | Day 2 | Soft cheese | 1.3 × 103 | n.d. | 8.4 × 10 |
Camembert | 4.6 × 104 | n.d. | 9.4 × 103 | ||
Semi-hard | 1.1 × 105 | 0.5 × 10 | 5.7 × 104 | ||
Day 8 | Soft cheese | 1.2 × 102 | n.d. | 5.0 × 105 | |
Camembert | 6.1 × 103 | n.d. | 6.7 × 105 | ||
Semi-hard | 1.9 × 103 | n.d. | 4.5 × 104 | ||
Day 22 | Soft cheese | 6.2 × 105 | n.d. | 1.1 × 104 | |
Camembert | 8.2 × 106 | 9.9 × 102 | 8.0 × 105 | ||
Semi-hard | 1.9 × 106 | n.d. | 1.2 × 104 | ||
Treated | Day 2 | Soft cheese | 2.9 × 102 | 0.5 × 10 | 7.0 × 10 |
Camembert | 9.2 × 104 | 0.5 × 10 | 8.2 × 103 | ||
Semi-hard | 1.3 × 105 | 0.5 × 10 | 1.1 × 105 | ||
Day 8 | Soft cheese | 6.1 × 103 | n.d. | 4.4 × 105 | |
Camembert | 1.4 × 103 | n.d. | 2.5 × 105 | ||
Semi-hard | 1.7 × 103 | n.d. | 7.8 × 104 | ||
Day 22 | Soft cheese | 2.2 × 106 | n.d. | 3.2 × 104 | |
Camembert | 1.3 × 106 | 0.3 × 10 | 6.7 × 105 | ||
Semi-hard | 1.1 × 106 | n.d. | 1.6 × 105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadalà, R.; De Maria, L.; De Pasquale, R.; Di Salvo, E.; Lo Vecchio, G.; Di Bella, G.; Costa, R.; Cicero, N. Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage. Foods 2024, 13, 2055. https://doi.org/10.3390/foods13132055
Vadalà R, De Maria L, De Pasquale R, Di Salvo E, Lo Vecchio G, Di Bella G, Costa R, Cicero N. Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage. Foods. 2024; 13(13):2055. https://doi.org/10.3390/foods13132055
Chicago/Turabian StyleVadalà, Rossella, Laura De Maria, Rita De Pasquale, Eleonora Di Salvo, Giovanna Lo Vecchio, Giuseppa Di Bella, Rosaria Costa, and Nicola Cicero. 2024. "Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage" Foods 13, no. 13: 2055. https://doi.org/10.3390/foods13132055
APA StyleVadalà, R., De Maria, L., De Pasquale, R., Di Salvo, E., Lo Vecchio, G., Di Bella, G., Costa, R., & Cicero, N. (2024). Development of a Chitosan-Based Film from Shellfish Waste for the Preservation of Various Cheese Types during Storage. Foods, 13(13), 2055. https://doi.org/10.3390/foods13132055