Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Analyzed
2.1.1. Standard Solutions
2.1.2. Drinks
2.2. Raman Instrumentation and Spectra Collection
2.3. Raman Spectra Processing
2.4. Intraday and Interday Analyses
3. Results
3.1. Conventional Raman System
3.2. Analysis of Raman Spectrum of a Spirit
3.3. Portable Raman Setup for Spectra Acquisition through Transparent Containers
3.4. Optimization of the Signal
3.5. Raman Spectra of Drinks and Beverages
3.5.1. Colorless Spirits
3.5.2. Colored Spirits
3.6. Measuring Ethanol Strength
Colorless Spirits
3.7. Calibration Testing
3.7.1. Repeatability
3.7.2. Robustness
- Bottle shape
- Bottle color
- Liquid (spirit, beverage) color
3.8. Limits of Detection and Quantitation
3.9. Method Application
3.9.1. Colorless Spirits
3.9.2. Slightly Colored Spirits and Beverages
3.9.3. Dark-Colored Spirits
3.10. Illicit Alcohols in Spirits (Methanol and Isopropanol)
3.11. Measuring Illicit Alcohols Content
−0.00214 (±0.01292) + 0.07741 (±0.01210) CMeOH (% vol)
−0.00004 (± 0.00206) + 0.04495 (± 0.00752) CiPrOH (% vol)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive NIR and Raman spectrometries for determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Lachenmeier, D.W.; Godelmann, R.; Steiner, M.; Ansay, B.; Weigel, J.; Krieg, G. Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor. Chem. Cent. J. 2010, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.-L.; Wang, J.-T.; Choong, Y.-M. A rapid and accurate method for detrmination of methanol in alcoholic beverage by direct injection capillary gas chromatography. J. Food Compos. Anal. 2004, 17, 187–196. [Google Scholar] [CrossRef]
- Calull, M.; Marce, R.M.; Borull, F. Determination of carboxylic acids, sugars, glycerol and ethanol in wine and grape must by ion-exchange high-performance liquid with refractive index detection. J. Chromatogr. 1992, 590, 215–222. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, W.M.; Aylott, R.I. Analytical strategies to confirm Scotch whiskey authenticity. Part II: Mobile brand authentication. Analyst 2004, 129, 607–612. [Google Scholar] [CrossRef]
- Iñón, F.A.; Llario, R.; Garrigues, S.; de La Guardia, M. Development of a PLS based method for determination of the quality of beers by use of NIR: Spectral ranges and sample-introduction considerations. Anal. Bioanal. Chem. 2005, 382, 1549–1561. [Google Scholar] [CrossRef]
- Cavinato, A.G.; Mayes, D.M.; Ge, Z.; Callis, J. B Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy. Anal. Chem. 1990, 62, 1977–1982. [Google Scholar] [CrossRef]
- Tipparat, P.; Lapanantnoppakhun, S.; Jakmunee, J.; Grudpan, K. Determination of ethanol in liquor by near-infrared spectrophotometry with flow injection. Talanta 2001, 53, 1199–1204. [Google Scholar] [CrossRef]
- Sato-Berrú, R.Y.; Medina-Valtierra, J.; Medina-Gutiérrez, C.; Frausto-Reyes, C. Quantitative NIR Raman analysis in liquid mixtures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 2225–2229. [Google Scholar] [CrossRef]
- Yang, Y.R.; Ren, Y.F.; Dong, G.M.; Yang, R.J.; Liu, H.X.; Du, Y.H.; Zhang, W.Y. Determination of Methanol in Alcoholic Beverages by Two-Dimensional Near-Infrared Correlation Spectroscopy. Anal. Lett. 2016, 49, 2279–2289. [Google Scholar] [CrossRef]
- Debebe, A.; Anberbir, A.; Redi-Abshiro, M.; Chandravanshi, B.S.; Asfaw, A.; Asfaw, N.; Retta, N. Alcohol determination in distilled alcoholic beverages by liquid phase Fourier transform mid-infrared and near-infrared spectrophotometers. Food Anal. Methods 2017, 10, 172–179. [Google Scholar] [CrossRef]
- Pontes, M.J.C.; Santos, S.R.B.; Araujo, M.C.U.; Almeida, L.F.; Lima, R.A.C.; Gaiao, E.N.; Souto, U.T.C.P. Classification of distilled alcoholic beverages and verification of adulteration by near infrared spectrometry. Food Res. Int. 2006, 39, 182–189. [Google Scholar] [CrossRef]
- Klein, O.; Roth, A.; Dornuf, F.; Schöller, O.; Mäntele, W. The Good Vibrations of Beer. The Use of Infrared and UV/Vis Spectroscopy and Chemometry for the Quantitative Analysis of Beverages. Z. Für Nat. B 2012, 67, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Fearn, T.; Smith, D.B.; Starr, C.; Halsey, S.A. Application of near infrared spectroscopy in the food industry. Anal. Proc. 1986, 23, 123–127. [Google Scholar] [CrossRef]
- Engelhard, S.; Löhmannsröben, H.-G.; Schael, F. Quantifying Ethanol Content of Beer Using Interpretive Near-Infrared Spectroscopy. Appl. Spectrosc. 2004, 58, 1205–1209. [Google Scholar] [CrossRef]
- Gallignani, M.; Garrigues, S.; de la Guardia, M. Direct determination of ethanol in all types of alcoholic beverages by near-infrared derivative spectrometry. Analyst 1993, 118, 1167–1173. [Google Scholar] [CrossRef]
- Mendes, L.S.; Oliveira, F.C.C.; Suarez, P.A.Z.; Rubin, J.C. Determination of ethanol in fuel ethanol and beverages by Fourier transform (FT)-near infrared and FT-Ramn spectrometries. Anal. Chim. Acta 2003, 493, 219–231. [Google Scholar] [CrossRef]
- Barboza, F.D.; Poppi, R.J. Determination of alcohol content in beverages using short-wave near-infrared spectroscopy and temperature correction by transfer calibration procedures. Anal. Bioanal. Chem. 2003, 377, 695–701. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Ma, Z.; Si, G. Quantitative Analysis of Multiple Components in Wine Fermentation using Raman Spectroscopy. Adv. J. Food Sci. Technol. 2015, 9, 13–18. [Google Scholar] [CrossRef]
- Boyaci, I.H.; Genis, H.E.; Guven, B.; Tamer, U.; Alper, N. A novel method for quantification of ethanol and methanol in distilled alcoholic beverages using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 1171–1176. [Google Scholar] [CrossRef]
- Ashok, P.C.; Praveen, B.B.; Dholakia, K. Optofluidic Raman sensor for simultaneous detection of the toxicity and quality of alcoholic beverages. J. Raman Spectrosc. 2013, 44, 795–797. [Google Scholar] [CrossRef]
- De Goes, R.E.; Fabris, L.V.M.; Muller, M.; Fabris, J.L. Light-Assisted Detection of Methanol in Contaminated Spirits. J. Light. Technol. 2016, 34, 4499–4505. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Medina-Gutiérrez, C.; Sato-Berrú, R.; Sahagún, L.R. Qualitative study of ethanol content in tequilas by Raman spectroscopy and principal component analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 2657–2662. [Google Scholar] [CrossRef]
- Teixeira Dos Santos, C.A.; Páscoa, R.N.M.J.; Porto, P.A.L.S.; Cerdeira, A.L.; González-Sáiz, J.M.; Pizarro, C.; Lopes, J.A. Raman spectroscopy for wine analyses: A comparison with near and mid infrared spectroscopy. Talanta 2018, 186, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Zeren, C.; Acikgoz, G.; Kahraman, S. Using Raman spectroscopy for determination methanol quantity in illegal alcoholic beverages. Spectrosc. Spectr. Anal. 2017, 37, 2979–2983. [Google Scholar]
- Abe, N.; Ito, M. Effects of hydrogen bonding on the Raman intensities of methanol, ethanol and water. J. Raman Spectrosc. 1978, 7, 161–167. [Google Scholar] [CrossRef]
- Burikov, S.; Dolenko, T.; Patsaeva, S.; Starokurov, Y.; Yuzhakov, V. Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems. Mol. Phys. 2010, 108, 2427–2436. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Calibration methods: Regression and Correlation. In Statistics and Chemometrics for Analytical Chemistry, 5th ed.; Pearson Education: London, UK, 2005; pp. 107–147. [Google Scholar]
- Matsuura, H.; Yamamoto, M.; Murata, H. Raman spectra and normal vibrations of methylene glycol and its perdeuterated analogue. Spectrochim. Acta Part A Mol. Spectrosc. 1980, 36, 321–327. [Google Scholar] [CrossRef]
- Jin, Z.; Chu, Q.; Xu, W.; Cai, H.; Ji, W.; Wang, G.; Lin, B.; Zhang, X. All-Fiber Raman Biosensor by Combining Reflection and Transmission Mode. IEEE Photonics Technol. Lett. 2018, 30, 387–390. [Google Scholar] [CrossRef]
- Yang, B.; Cao, X.; Wang, S.; Sun, C. Exploring molecular association of isopropanol-water binary solution by Raman spectroscopy. Optik 2020, 204, 163544. [Google Scholar] [CrossRef]
- McCoy, H.G.; Cipolle, R.J.; Ehlers, S.M.; Sawchuk, R.J.; Zaske, D.E. Severe methanol poisoning: Application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am. J. Med. 1979, 67, 804–807. [Google Scholar] [CrossRef]
- Hydara, Y.E.; Zilg, B. Postmortem diagnosis of ketoacidosis: Levels of beta-hydroxybutyrate, acetone and isopropanol in different causes of death. Forensic Sci. Int. 2020, 314, 110418. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Haupt, S.; Schulz, K. Defining maximum levels of higher alcohols in alcoholic beverages and surrogate alcohol products. Regul. Toxicol. Pharmacol. 2008, 50, 313–321. [Google Scholar] [CrossRef]
- Botelho, G.; Anjos, O.; Estevinho, L.M.; Caldeira, I. Methanol in grape derived, fruit and honey spirits: A critical review on source, quality control and legal limits. Processes 2020, 8, 1609. [Google Scholar] [CrossRef]
Brand Name (Type of Drink, Alcoholic Strength, Volume) | Characteristics of the Drink (1,2) | Characteristics of the Bottle (3,4,5) |
---|---|---|
Blue island (Beer, 0%), 330 mL | light yellow | |
Blue island (Beer, 4.5%), 330 mL | light yellow | |
Carib (Beer, 5%), 330 mL | light yellow | |
Desperados (Beer, 5.9%), 250 mL | light yellow | |
Somersby (Beer, 4.5%), 330 mL | light yellow | |
Martell (Cognac, 40%), 50 mL | dark brown, not tranparent | |
Beefeater (Gin, 47%), 50 mL | plastic | |
Ahududu (Liqueur, unknown), 50 mL | dark red, not transparent | |
Banane (Liqueur, unknown), 50 mL | yellow | |
Belle epoque (Liqueur, unknown), 50 mL | orange, not transparent | |
Brandy (Liqueur, unknown), 50 mL | light yellow | |
Drambuie (Liqueur, 40%), 50 mL | yellow | plastic, brown, not transparent |
Fraise (Liqueur, unknown), 50 mL | red, not transparent | |
Limoncello (Liqueur, 32%), 50 mL | yellow, not transparent | |
Marascino (Liqueur, unknown), 50 mL | light yellow | |
Sabra (Liqueur, 30%), 50 mL | burgundy, not transparent | |
Tikelli (Ouzo, 40%), 50 mL | ||
Varvagianni (Ouzo, 42%), 50 mL | ||
Haraki (Raki, 40%), 50 mL | ||
Agioritiko (Tripouro, 38%), 50 mL | ||
Amorgos (Tsipouro, 20%), 50 mL | dark brown, not transparent | |
Babajim (Tsipouro, 40%), 50 mL | ||
Stolichnaya (Vodka, 40%), 50 mL | ||
Ballantines (Whiskey, 43%), 50 mL | light yellow | |
Jack Daniel’s (Whiskey, 43%), 50 mL | light yellow | |
J & B (Whiskey, 40%), 50 mL | light yellow | plastic, green, not transparent |
Vat 69 (Whiskey, 40%), 700 mL | yellow | green, not transparent |
Kourtaki (Wine, 11.5%), 500 mL | light yellow |
Ethanol Peak Maximum (cm−1) | Whiskey Peak Maximum (cm−1) | Band Assignment |
---|---|---|
433 | 433 | C-C-O bending |
883 | 878 | C-C-O stretching |
1053 | 1046 | C-C-O stretching |
1097 | 1086 | C-O stretching, CH3 rocking |
1277 | 1276 | C-H torsion and rotation |
1454 | 1454 | CH3 and CH2 bending |
1486 | 1483 | CH3 bending |
A. Interday | |||
CEtOH (% vol) | Calculated CEtOH ± SD (% vol) | Rel. Error (%) | |
25 | 1st day | 26.57 ± 1.99 | 6.29 |
2nd day | 24.94 ± 0.80 | 0.24 | |
3rd day | 26.01 ± 1.76 | 4.05 | |
50 | 1st day | 49.67 ± 1.85 | 0.65 |
2nd day | 50.51 ± 1.86 | 1.02 | |
3rd day | 47.84 ± 2.11 | 4.33 | |
75 | 1st day | 70.37 ± 2.16 | 6.18 |
2nd day | 74.95 ± 1.70 | 0.06 | |
3rd day | 74.89 ± 4.09 | 0.15 | |
100 | 1st day | 100.06 ± 0.29 | 0.06 |
2nd day | 99.68 ± 2.91 | 0.32 | |
3rd day | 104.43 ± 5.16 | 4.43 | |
B. Intraday | |||
CEtOH (% vol) | Calculated CEtOH ± SD (% vol) | Rel. Error (%) | |
25 | 25.91 ± 1.67 | 3.62 | |
50 | 49.34 ± 2.14 | 1.32 | |
75 | 73.40 ± 3.45 | 2.13 | |
100 | 101.39 ± 3.88 | 1.39 |
Drink Analyzed | Color | Calculated Concentration (%) | Relative Error (%) |
---|---|---|---|
Ouzo, Varvagiani (42% vol) | colorless | 42.17 ± 1.44 | 0.40 |
Whiskey, Ballantines (43% vol) | light yellow | 43.80 ± 1.30 | 1.86 |
Whiskey. Jack Daniels (43% vol) | light yellow | 42.89 ± 1.80 | 0.24 |
Vodka, Stolochnaya (40% vol) | colorless | 39.51 ± 2.37 | 1.22 |
A. Interday | |||
CMeOH (% vol) | Calculated CMeOH ± SD (% vol) | Rel. Error (%) | |
0.8 | 1st day | 0.835 ± 0.073 | 4.4 |
2nd day | 0.812 ± 0.049 | 1.5 | |
3rd day | 0.779 ± 0.095 | 2.6 | |
1.0 | 1st day | 0.968 ± 0.089 | 3.2 |
2nd day | 1.083 ± 0.086 | 8.3 | |
3rd day | 0.914 ± 0.063 | 8.6 | |
1.5 | 1st day | 1.532 ± 0.091 | 2.1 |
2nd day | 1.491 ± 0.085 | 0.6 | |
3rd day | 1.540 ± 0.097 | 2.7 | |
B. Intraday | |||
CMeOH (% vol) | Calculated CMeOH ± SD (% vol) | Rel. Error (%) | |
0.8 | 0.814 ± 0.035 | 1.73 | |
1.0 | 0.870 ± 0.084 | 12.97 | |
1.5 | 1.512 ± 0.052 | 0.79 |
A. Interday | |||
CiPrOH (% vol) | Calculated CiPrOH ± SD (% vol) | Rel. Error (%) | |
0.2 | 1st day | 0.167 ± 0.045 | 16.5 |
2nd day | 0.185 ± 0.030 | 7.5 | |
3rd day | 0.201 ± 0.024 | 0.5 | |
0.3 | 1st day | 0.315 ± 0.016 | 5.0 |
2nd day | 0.291 ± 0.018 | 3.0 | |
3rd day | 0.331 ± 0.020 | 10.3 | |
0.4 | 1st day | 0.402 ± 0.015 | 0.5 |
2nd day | 0.397 ± 0.021 | 0.8 | |
3rd day | 0.405 ± 0.019 | 1.3 | |
B. Intraday | |||
CiPrOH (% vol) | Calculated CiPrOH ± SD (% vol) | Rel. Error (%) | |
0.2 | 0.158 ± 0.065 | 20.85 | |
0.3 | 0.326 ± 0.012 | 8.77 | |
0.4 | 0.396 ± 0.025 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papaspyridakou, P.; Giannoutsou, P.; Orkoula, M.G. Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy. Biosensors 2023, 13, 135. https://doi.org/10.3390/bios13010135
Papaspyridakou P, Giannoutsou P, Orkoula MG. Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy. Biosensors. 2023; 13(1):135. https://doi.org/10.3390/bios13010135
Chicago/Turabian StylePapaspyridakou, Panagiota, Panagiota Giannoutsou, and Malvina G. Orkoula. 2023. "Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy" Biosensors 13, no. 1: 135. https://doi.org/10.3390/bios13010135
APA StylePapaspyridakou, P., Giannoutsou, P., & Orkoula, M. G. (2023). Non-Destructive and Non-Invasive Measurement of Ethanol and Toxic Alcohol Strengths in Beverages and Spirits Using Portable Raman Spectroscopy. Biosensors, 13(1), 135. https://doi.org/10.3390/bios13010135