Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,444)

Search Parameters:
Keywords = low-power networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5262 KiB  
Article
Alternative Hydraulic Modeling Method Based on Recurrent Neural Networks: From HEC-RAS to AI
by Andrei Mihai Rugină
Hydrology 2025, 12(8), 207; https://doi.org/10.3390/hydrology12080207 (registering DOI) - 6 Aug 2025
Abstract
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural [...] Read more.
The present study explores the application of RNNs for the prediction and propagation of flood waves along a section of the Bârsa River, Romania, as a fast alternative to classical hydraulic models, aiming to identify new ways to alert the population. Five neural architectures were analyzed as follows: S-RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU. The input data for the neural networks were derived from 2D hydraulic simulations conducted using HEC-RAS software, which provided the necessary training data for the models. It should be mentioned that the input data for the hydraulic model are synthetic hydrographs, derived from the statistical processing of recorded floods. Performance evaluation was based on standard metrics such as NSE, R2 MSE, and RMSE. The results indicate that all studied networks performed well, with NSE and R2 values close to 1, thus validating their capacity to reproduce complex hydrological dynamics. Overall, all models yielded satisfactory results, making them useful tools particularly the GRU and Bi-GRU architectures, which showed the most balanced behavior, delivering low errors and high stability in predicting peak discharge, water level, and flood wave volume. The GRU and Bi-GRU networks yielded the best performance, with RMSE values below 1.45, MAE under 0.3, and volume errors typically under 3%. On the other hand, LSTM architecture exhibited the most significant instability and errors, especially in estimating the flood wave volume, often having errors exceeding 9% in some sections. The study concludes by identifying several limitations, including the heavy reliance on synthetic data and its local applicability, while also proposing solutions for future analyses, such as the integration of real-world data and the expansion of the methodology to diverse river basins thus providing greater significance to RNN models. The final conclusions highlight that RNNs are powerful tools in flood risk management, contributing to the development of fast and efficient early warning systems for extreme hydrological and meteorological events. Full article
Show Figures

Figure 1

32 pages, 1845 KiB  
Article
Enhancing Smart and Zero-Carbon Cities Through a Hybrid CNN-LSTM Algorithm for Sustainable AI-Driven Solar Power Forecasting (SAI-SPF)
by Haytham Elmousalami, Felix Kin Peng Hui and Aljawharah A. Alnaser
Buildings 2025, 15(15), 2785; https://doi.org/10.3390/buildings15152785 - 6 Aug 2025
Abstract
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational [...] Read more.
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational data from Benban Solar Park in Egypt and Sakaka Solar Power Plant in Saudi Arabia, two of the world’s largest solar installations, the research highlights the effectiveness of hybrid AI techniques. The hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model outperformed other models, achieving a Mean Absolute Percentage Error (MAPE) of 2.04%, Root Mean Square Error (RMSE) of 184, Mean Absolute Error (MAE) of 252, and R2 of 0.99 for Benban, and an MAPE of 2.00%, RMSE of 190, MAE of 255, and R2 of 0.98 for Sakaka. This model excels at capturing complex spatiotemporal patterns in solar data while maintaining low computational CO2 emissions, supporting sustainable AI practices. The findings demonstrate the potential of hybrid AI models to enhance the accuracy and sustainability of solar power forecasting, thereby contributing to efficient, resilient, and zero-carbon urban environments. This research provides valuable insights for policymakers and stakeholders aiming to advance smart energy infrastructure. Full article
(This article belongs to the Special Issue Intelligent Automation in Construction Management)
22 pages, 7990 KiB  
Article
Detection of Cracks in Low-Power Wind Turbines Using Vibration Signal Analysis with Empirical Mode Decomposition and Convolutional Neural Networks
by Angel H. Rangel-Rodriguez, Jose M. Machorro-Lopez, David Granados-Lieberman, J. Jesus de Santiago-Perez, Juan P. Amezquita-Sanchez and Martin Valtierra-Rodriguez
AI 2025, 6(8), 179; https://doi.org/10.3390/ai6080179 - 6 Aug 2025
Abstract
Condition monitoring and fault detection in wind turbines are essential for reducing repair and maintenance costs. Early detection of faults enables timely interventions before the damage worsens. However, existing methods often rely on costly scheduled inspections or lack the ability to effectively detect [...] Read more.
Condition monitoring and fault detection in wind turbines are essential for reducing repair and maintenance costs. Early detection of faults enables timely interventions before the damage worsens. However, existing methods often rely on costly scheduled inspections or lack the ability to effectively detect early stage damage, particularly under different operational speeds. This article presents a methodology based on convolutional neural networks (CNNs) and empirical mode decomposition (EMD) of vibration signals for the detection of blade crack damage. The proposed approach involves acquiring vibration signals under four conditions: healthy, light, intermediate, and severe damage. EMD is then applied to extract time–frequency representations of the signals, which are subsequently converted into images. These images are analyzed by a CNN to classify the condition of the wind turbine blades. To enhance the final CNN architecture, various image sizes and configuration parameters are evaluated to balance computational load and classification accuracy. The results demonstrate that combining vibration signal images, generated using the EMD method, with CNN models enables accurate classification of blade conditions, achieving 99.5% accuracy while maintaining a favorable trade-off between performance and complexity. Full article
Show Figures

Figure 1

38 pages, 5003 KiB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 (registering DOI) - 5 Aug 2025
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
Show Figures

Figure 1

31 pages, 5644 KiB  
Article
Mitigation Technique Using a Hybrid Energy Storage and Time-of-Use (TOU) Approach in Photovoltaic Grid Connection
by Mohammad Reza Maghami, Jagadeesh Pasupuleti, Arthur G. O. Mutambara and Janaka Ekanayake
Technologies 2025, 13(8), 339; https://doi.org/10.3390/technologies13080339 - 5 Aug 2025
Abstract
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a [...] Read more.
This study investigates the impact of Time-of-Use (TOU) scheduling and battery energy storage systems (BESS) on voltage stability in a typical Malaysian medium-voltage distribution network with high photovoltaic (PV) system penetration. The analyzed network comprises 110 nodes connected via eight feeders to a pair of 132/11 kV, 15 MVA transformers, supplying a total load of 20.006 MVA. Each node is integrated with a 100 kW PV system, enabling up to 100% PV penetration scenarios. A hybrid mitigation strategy combining TOU-based load shifting and BESS was implemented to address voltage violations occurring, particularly during low-load night hours. Dynamic simulations using DIgSILENT PowerFactory were conducted under worst-case (no load and peak load) conditions. The novelty of this research is the use of real rural network data to validate a hybrid BESS–TOU strategy, supported by detailed sensitivity analysis across PV penetration levels. This provides practical voltage stabilization insights not shown in earlier studies. Results show that at 100% PV penetration, TOU or BESS alone are insufficient to fully mitigate voltage drops. However, a hybrid application of 0.4 MWh BESS with 20% TOU load shifting eliminates voltage violations across all nodes, raising the minimum voltage from 0.924 p.u. to 0.951 p.u. while reducing active power losses and grid dependency. A sensitivity analysis further reveals that a 60% PV penetration can be supported reliably using only 0.4 MWh of BESS and 10% TOU. Beyond this, hybrid mitigation becomes essential to maintain stability. The proposed solution demonstrates a scalable approach to enable large-scale PV integration in dense rural grids and addresses the specific operational characteristics of Malaysian networks, which differ from commonly studied IEEE test systems. This work fills a critical research gap by using real local data to propose and validate practical voltage mitigation strategies. Full article
Show Figures

Figure 1

25 pages, 29559 KiB  
Article
CFRANet: Cross-Modal Frequency-Responsive Attention Network for Thermal Power Plant Detection in Multispectral High-Resolution Remote Sensing Images
by Qinxue He, Bo Cheng, Xiaoping Zhang and Yaocan Gan
Remote Sens. 2025, 17(15), 2706; https://doi.org/10.3390/rs17152706 - 5 Aug 2025
Abstract
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale [...] Read more.
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale objects, while existing composite object detection methods are mostly part-based, limiting their ability to capture the structural and textural characteristics of composite targets like TPPs. Moreover, most of them rely on single-modality data, failing to fully exploit the rich information available in remote sensing imagery. To address these limitations, we propose a novel Cross-Modal Frequency-Responsive Attention Network (CFRANet). Specifically, the Modality-Aware Fusion Block (MAFB) facilitates the integration of multi-modal features, enhancing inter-modal interactions. Additionally, the Frequency-Responsive Attention (FRA) module leverages both spatial and localized dual-channel information and utilizes Fourier-based frequency decomposition to separately capture high- and low-frequency components, thereby improving the recognition of TPPs by learning both detailed textures and structural layouts. Experiments conducted on our newly proposed AIR-MTPP dataset demonstrate that CFRANet achieves state-of-the-art performance, with a mAP50 of 82.41%. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

8 pages, 4923 KiB  
Proceeding Paper
A Hardware Measurement Platform for Quantum Current Sensors
by Frederik Hoffmann, Ann-Sophie Bülter, Ludwig Horsthemke, Dennis Stiegekötter, Jens Pogorzelski, Markus Gregor and Peter Glösekötter
Eng. Proc. 2025, 101(1), 11; https://doi.org/10.3390/engproc2025101011 - 4 Aug 2025
Abstract
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, [...] Read more.
A concept towards current measurement in low and medium voltage power distribution networks is presented. The concentric magnetic field around the current-carrying conductor should be measured using a nitrogen-vacancy quantum magnetic field sensor. A bottleneck in current measurement systems is the readout electronics, which are usually based on optically detected magnetic resonance (ODMR). The idea is to have a hardware that tracks up to four resonances simultaneously for the detection of the three-axis magnetic field components and the temperature. Normally, expensive scientific instruments are used for the measurement setup. In this work, we present an electronic device that is based on a Zynq 7010 FPGA (Red Pitaya) with an add-on board, which has been developed to control the excitation laser, the generation of the microwaves, and interfacing the photodiode, and which provides additional fast digital outputs. The T1 measurement was chosen to demonstrate the ability to read out the spin of the system. Full article
Show Figures

Figure 1

20 pages, 1895 KiB  
Article
Distributed Low-Carbon Demand Response in Distribution Networks Incorporating Day-Ahead and Intraday Flexibilities
by Bin Hu, Xianen Zong, Hongbin Wu and Yue Yang
Processes 2025, 13(8), 2460; https://doi.org/10.3390/pr13082460 - 4 Aug 2025
Viewed by 25
Abstract
In this paper, we present a distributed low-carbon demand response method in distribution networks incorporating day-ahead and intraday flexibilities on the demand side. This two-stage demand dispatch scheme, including day-ahead schedule and intraday adjustment, is proposed to facilitate the coordination between power demand [...] Read more.
In this paper, we present a distributed low-carbon demand response method in distribution networks incorporating day-ahead and intraday flexibilities on the demand side. This two-stage demand dispatch scheme, including day-ahead schedule and intraday adjustment, is proposed to facilitate the coordination between power demand and local photovoltaic (PV) generation. We employ the alternating direction method of multipliers (ADMM) to solve the dispatch problem in a distributed manner. Demand response in a 141-bus test system serves as our case study, demonstrating the effectiveness of our approach in shifting power loads to periods of high PV generation. Our results indicate remarkable reductions in the total carbon emission by utilizing more distributed PV generation. Full article
(This article belongs to the Special Issue Modeling, Operation and Control in Renewable Energy Systems)
Show Figures

Figure 1

23 pages, 1146 KiB  
Review
A Review of Optimization Scheduling for Active Distribution Networks with High-Penetration Distributed Generation Access
by Kewei Wang, Yonghong Huang, Yanbo Liu, Tao Huang and Shijia Zang
Energies 2025, 18(15), 4119; https://doi.org/10.3390/en18154119 - 3 Aug 2025
Viewed by 239
Abstract
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations [...] Read more.
The high-proportion integration of renewable energy sources, represented by wind power and photovoltaics, into active distribution networks (ADNs) can effectively alleviate the pressure associated with advancing China’s dual-carbon goals. However, the high uncertainty in renewable energy output leads to increased system voltage fluctuations and localized voltage violations, posing safety challenges. Consequently, research on optimal dispatch for ADNs with a high penetration of renewable energy has become a current focal point. This paper provides a comprehensive review of research in this domain over the past decade. Initially, it analyzes the voltage impact patterns and control principles in distribution networks under varying levels of renewable energy penetration. Subsequently, it introduces optimization dispatch models for ADNs that focus on three key objectives: safety, economy, and low carbon emissions. Furthermore, addressing the challenge of solving non-convex and nonlinear models, the paper highlights model reformulation strategies such as semidefinite relaxation, second-order cone relaxation, and convex inner approximation methods, along with summarizing relevant intelligent solution algorithms. Additionally, in response to the high uncertainty of renewable energy output, it reviews stochastic optimization dispatch strategies for ADNs, encompassing single-stage, two-stage, and multi-stage approaches. Meanwhile, given the promising prospects of large-scale deep reinforcement learning models in the power sector, their applications in ADN optimization dispatch are also reviewed. Finally, the paper outlines potential future research directions for ADN optimization dispatch. Full article
Show Figures

Figure 1

22 pages, 3301 KiB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 - 2 Aug 2025
Viewed by 151
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

48 pages, 5229 KiB  
Article
Enhancing Ship Propulsion Efficiency Predictions with Integrated Physics and Machine Learning
by Hamid Reza Soltani Motlagh, Seyed Behbood Issa-Zadeh, Md Redzuan Zoolfakar and Claudia Lizette Garay-Rondero
J. Mar. Sci. Eng. 2025, 13(8), 1487; https://doi.org/10.3390/jmse13081487 - 31 Jul 2025
Viewed by 251
Abstract
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte [...] Read more.
This research develops a dual physics-based machine learning system to forecast fuel consumption and CO2 emissions for a 100 m oil tanker across six operational scenarios: Original, Paint, Advanced Propeller, Fin, Bulbous Bow, and Combined. The combination of hydrodynamic calculations with Monte Carlo simulations provides a solid foundation for training machine learning models, particularly in cases where dataset restrictions are present. The XGBoost model demonstrated superior performance compared to Support Vector Regression, Gaussian Process Regression, Random Forest, and Shallow Neural Network models, achieving near-zero prediction errors that closely matched physics-based calculations. The physics-based analysis demonstrated that the Combined scenario, which combines hull coatings with bulbous bow modifications, produced the largest fuel consumption reduction (5.37% at 15 knots), followed by the Advanced Propeller scenario. The results demonstrate that user inputs (e.g., engine power: 870 kW, speed: 12.7 knots) match the Advanced Propeller scenario, followed by Paint, which indicates that advanced propellers or hull coatings would optimize efficiency. The obtained insights help ship operators modify their operational parameters and designers select essential modifications for sustainable operations. The model maintains its strength at low speeds, where fuel consumption is minimal, making it applicable to other oil tankers. The hybrid approach provides a new tool for maritime efficiency analysis, yielding interpretable results that support International Maritime Organization objectives, despite starting with a limited dataset. The model requires additional research to enhance its predictive accuracy using larger datasets and real-time data collection, which will aid in achieving global environmental stewardship. Full article
(This article belongs to the Special Issue Machine Learning for Prediction of Ship Motion)
Show Figures

Figure 1

13 pages, 1217 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 - 31 Jul 2025
Viewed by 126
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
Show Figures

Figure 1

22 pages, 2738 KiB  
Article
Mitigation of Solar PV Impact in Four-Wire LV Radial Distribution Feeders Through Reactive Power Management Using STATCOMs
by Obaidur Rahman, Duane Robinson and Sean Elphick
Electronics 2025, 14(15), 3063; https://doi.org/10.3390/electronics14153063 - 31 Jul 2025
Viewed by 184
Abstract
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar [...] Read more.
Australia has the highest per capita penetration of rooftop solar PV systems in the world. Integration of these systems has led to reverse power flow and associated voltage rise problems in residential low-voltage (LV) distribution networks. Furthermore, random, uncontrolled connection of single-phase solar systems can exacerbate voltage unbalance in these networks. This paper investigates the application of a Static Synchronous Compensator (STATCOM) for the improvement of voltage regulation in four-wire LV distribution feeders through reactive power management as a means of mitigating voltage regulation and unbalance challenges. To demonstrate the performance of the STATCOM with varying loads and PV output, a Q-V droop curve is applied to specify the level of reactive power injection/absorption required to maintain appropriate voltage regulation. A practical four-wire feeder from New South Wales, Australia, has been used as a case study network to analyse improvements in system performance through the use of the STATCOM. The outcomes indicate that the STATCOM has a high degree of efficacy in mitigating voltage regulation and unbalance excursions. In addition, compared to other solutions identified in the existing literature, the STATCOM-based solution requires no sophisticated communication infrastructure. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

14 pages, 1161 KiB  
Article
Multipath Interference Impact Due to Fiber Mode Coupling in C+L+S Multiband Transmission Reach
by Luís Cancela and João Pires
Photonics 2025, 12(8), 770; https://doi.org/10.3390/photonics12080770 - 30 Jul 2025
Viewed by 137
Abstract
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can [...] Read more.
Multiband transmission is, nowadays, being implemented worldwide to increase the optical transport network capacity, mainly because it uses the already-installed single-mode fiber (SMF). The G.654E SMF, due to its attributes (e.g., low-loss, and large-effective area in comparison with the standard G.652 SMF), can also increase network capacity and can also be used for multiband (MB) transmission. Nevertheless, in MB transmission, power mode coupling arises when bands with wavelengths below the cut-off wavelength are used, inducing multipath interference (MPI). This work investigates the impact of the MPI, due to mode coupling from G.654E SMF, in the transmission reach of a C+L+S band transmission system. Our results indicate that for the S-band scenario, the band below the wavelength cut-off, an approximately 25% reach decrease is observed when the MPI/span increases to −26 dB/span, considering quadrature phase-shift keying (QPSK) signals with a 64 GBaud symbol rate. We also concluded that if the L-band were not above the wavelength cut-off, it would be much more affected than the S-band, with an approximately 52% reach decrease due to MPI impact. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

Back to TopTop