Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,784)

Search Parameters:
Keywords = low-cost materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3376 KB  
Article
Sustainable and Energy-Efficient Capacitive Deionization Enabled Through Upcycled Wheat Straw Biochar via Ammonium Ferric Citrate Modification
by Jie Lu, Ping Wen, Jiong Wang, Pin Zhang, Shengyong Liu, Chunyao Qing, Hongge Tao, Yifeng Wu, Sihan Ma and Binglin Chen
Separations 2026, 13(1), 38; https://doi.org/10.3390/separations13010038 - 20 Jan 2026
Abstract
Capacitive deionization (CDI) technology represents an emerging and energy-efficient solution for seawater desalination and wastewater treatment. To further enhance its sustainability and economic viability, it is very important to develop high-performance electrodes made from low-cost and renewable raw materials. Herein, a new electrode [...] Read more.
Capacitive deionization (CDI) technology represents an emerging and energy-efficient solution for seawater desalination and wastewater treatment. To further enhance its sustainability and economic viability, it is very important to develop high-performance electrodes made from low-cost and renewable raw materials. Herein, a new electrode material is introduced; the material was derived from wheat straw and modified via a simple and green process using ammonium ferric citrate (AFC) as a synergistic activator and modifier. The modification of AFC significantly enhanced the physicochemical properties of biochar. At the optimal AFC concentration of 1 mol·L−1, the specific surface area reached 321.27 m2·g−1, with a specific capacitance of 208.19 F·g−1. In the NaCl desalination experiment, the MWC-1.0 electrode exhibited a desalination capacity of 13.62 mg g−1 under the conditions of 1.2 V voltage and 2 mm electrode spacing in an initial solution concentration of 500 mg L−1. After 20 cycles of adsorption/desorption, the deionization capacity of the material was still retained at 90.5% of its initial capacity, demonstrating excellent regeneration performance. This work provides a sustainable method for preparing efficient and stable biochar electrodes, further highlighting its potential application in energy-saving seawater desalination technology. Full article
Show Figures

Graphical abstract

18 pages, 3550 KB  
Article
Using Biopolymers to Control Hydraulic Degradation of Natural Expansive-Clay Liners Due to Fines Migration: Long-Term Performance
by Ahmed M. Al-Mahbashi, Abdullah Shaker and Abdullah Almajed
Polymers 2026, 18(2), 272; https://doi.org/10.3390/polym18020272 - 20 Jan 2026
Abstract
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these [...] Read more.
Liners made of natural materials, such as expansive soil with sand, have a wide range of applications, including geotechnical and geoenvironmental applications. Besides being environmentally friendly, these materials are locally available and can be constructed at a low cost. The concern regarding these liners is sustainability and serviceability in the long run. The research conducted revealed significant degradation in hydraulic performance after periods of operation under continuous flow, which was attributed to the migration of fines. This study investigated the stabilization of these liners by using biopolymers as a cementitious agent to prevent the migration of fines and enhance sustainability in the long run. Two different biopolymers were examined in this study, including guar gum (GG) and sodium alginate (SA). The hydraulic conductivity tests were conducted in the laboratory under continuous flow for a long period (i.e., more than 360 days). The results revealed that incorporating biopolymers into these liners is of great significance for enhancing their sustainability and hydraulic performance stability. Further in-depth identification of the interaction mechanisms demonstrates that biopolymer–soil interactions create cross-links between soil particles through adhesive bonding, forming a cementitious gel that stabilizes fines and enhances the stability of the liners’ internal structure. Both examined biopolymers show significant stabilization of fines and stable hydraulic performance within the acceptable range, with high superiority of SA with EC20. The outcomes of this study are valuable for conducting an adequate and sustainable design for liner protection layers as hydraulic barriers or covers. Full article
(This article belongs to the Special Issue Polymers in the Face of Sustainable Development)
Show Figures

Figure 1

14 pages, 1777 KB  
Article
Machine-Learning-Based Screening of Perovskite Cathodes for Low-Temperature Solid Oxide Fuel Cell Operation
by Mingxuan Deng, Yang Yu, Yunhao Wang, Zhuangzhuang Ma, Linyuan Lu, Tianhao Rui, Yulin Lan, Jiajun Linghu, Nannan Han, Yiyan Li, Zhipeng Li and Haibin Zhang
Crystals 2026, 16(1), 68; https://doi.org/10.3390/cryst16010068 - 20 Jan 2026
Abstract
The discovery of cathode materials that simultaneously exhibit high oxygen-reduction activity, robust stability, and low cost is pivotal to moving solid oxide fuel cells (SOFCs) from the laboratory into commercial deployment. To address this challenge, we compile the largest perovskite dataset to date [...] Read more.
The discovery of cathode materials that simultaneously exhibit high oxygen-reduction activity, robust stability, and low cost is pivotal to moving solid oxide fuel cells (SOFCs) from the laboratory into commercial deployment. To address this challenge, we compile the largest perovskite dataset to date parameterized by the oxygen tracer surface exchange coefficient (k*). Using only readily obtainable elemental and structural descriptors, we develop machine-learning models that surpass existing approaches in both accuracy and computational efficiency. Specifically, by integrating Mahalanobis-distance-based applicability-domain analysis with random forest-enhanced property descriptors and support vector regression, we high-throughput-screen 1.3 million ABO3 compositions and curate a candidate list that balances thermodynamic stability, cost, and oxygen-reduction activity. Beyond prediction accuracy, SHAP interpretation reveals strong physical correlations between the enhanced descriptors and k*, highlighting the coefficient of thermal expansion, O p-band center, and A-site ionic radius as the dominant factors governing oxygen exchange kinetics. Finally, we identify 209 promising perovskite cathodes predicted to outperform LSC in the low-temperature regime, offering promising directions for experimental realization of practical low-temperature SOFCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

15 pages, 568 KB  
Review
Trends and Opportunities in Crustacean Shell Waste Valorization: Towards Sustainable Application in Packaging Materials and Wastewater Treatment
by Zorica Tomičić, Senka Popović, Nevena Hromiš, Dragana Lukić, Vesna Vasić and Ivana Čabarkapa
Environments 2026, 13(1), 54; https://doi.org/10.3390/environments13010054 - 20 Jan 2026
Abstract
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable [...] Read more.
Every year, crustacean shell waste amounts to nearly 8 million tons worldwide, representing both an environmental challenge and a valuable resource. Crustacean shells can be repurposed as raw material for products in various industries, including agriculture, construction, and biomedicine. They are a valuable resource for creating functional materials due to their high content of chitin, protein, and calcium carbonate. These compounds can be extracted and processed to create various products, such as the biopolymer chitosan, antioxidants like astaxanthin, and adsorbents for water treatment, aligning with a circular economy approach by converting waste into valuable by-products. Chitosan films from crustacean waste are promising active packaging materials developed over the last decade, featuring enhanced antimicrobial and antioxidant properties. Extensive research confirms that crustacean shell waste is an excellent, low-cost adsorbent for removing heavy metals from water. This review analyzes current trends and opportunities for crustacean shell waste utilization in packaging materials and wastewater treatment. Key applications include replacing conventional plastic in biodegradable packaging and improving water treatment, which enhances resource efficiency and minimizes environmental pollution. Full article
Show Figures

Graphical abstract

29 pages, 5907 KB  
Article
Electrical Percolation and Piezoresistive Response of Vulcanized Natural Rubber/MWCNT Nanocomposites
by Diego Silva Melo, Nuelson Carlitos Gomes, Jeferson Shiguemi Mukuno, Carlos Toshiyuki Hiranobe, José Antônio Malmonge, Renivaldo José dos Santos, Alex Otávio Sanches, Vinicius Dias Silva, Leandro Ferreira Pinto and Michael Jones Silva
J. Compos. Sci. 2026, 10(1), 56; https://doi.org/10.3390/jcs10010056 - 20 Jan 2026
Abstract
A flexible piezoresistive material based on vulcanized natural rubber (VNR) and multiwalled carbon nanotubes (MWCNTs) was developed and systematically investigated for strain sensing applications. The nanocomposites were prepared by melting and vulcanizing MWCNT, while keeping the rubber composition constant to isolate the effect [...] Read more.
A flexible piezoresistive material based on vulcanized natural rubber (VNR) and multiwalled carbon nanotubes (MWCNTs) was developed and systematically investigated for strain sensing applications. The nanocomposites were prepared by melting and vulcanizing MWCNT, while keeping the rubber composition constant to isolate the effect of the conductive nanofiller. By scanning electron microscopy, morphological analyses indicated that MWCNTs were dispersed throughout the rubber matrix, with localized agglomerations becoming more evident at higher loadings. In mechanical tests, MWCNT incorporation increases the tensile strength of VNR, increasing the stress at break from 8.84 MPa for neat VNR to approximately 10.5 MPa at low MWCNT loadings. According to the electrical characterization, VNR-MWCNT nanocomposite exhibits a strong insulator–conductor transition, with the electrical percolation threshold occurring between 2 and 4 phr. The dc electrical conductivity increased sharply from values on the order of 10−14 S·m−1 for neat VNR to approximately 10−3 S·m−1 for nanocomposites containing 7 phr of MWCNT. Impedance spectroscopy revealed frequency-independent conductivity plateaus above the percolation threshold, indicating continuous conductive pathways, while dielectric analysis revealed strong interfacial polarization effects at the MWCNT–VNR interfaces. The piezoresistive response of samples containing MWCNT exhibited a stable, reversible, and nearly linear response under cyclic tensile deformation (10% strain). VNR/MWCNT nanocomposites demonstrate mechanical compliance and tunable electrical sensitivity, making them promising candidates for flexible and low-cost piezoresistive sensors. Full article
Show Figures

Figure 1

16 pages, 8073 KB  
Article
Bifaciality Optimization of TBC Silicon Solar Cells Based on Quokka3 Simulation
by Fen Yang, Zhibin Jiang, Yi Xie, Taihong Xie, Jingquan Zhang, Xia Hao, Guanggen Zeng, Zhengguo Yuan and Lili Wu
Materials 2026, 19(2), 405; https://doi.org/10.3390/ma19020405 - 20 Jan 2026
Abstract
Tunnel Oxide-Passivated Back Contact solar cells represent a next-generation photovoltaic technology with significant potential for achieving both high efficiency and low cost. This study addresses the challenge of low bifaciality inherent to the rear-side structure of TBC cells. Using the Quokka3 simulation and [...] Read more.
Tunnel Oxide-Passivated Back Contact solar cells represent a next-generation photovoltaic technology with significant potential for achieving both high efficiency and low cost. This study addresses the challenge of low bifaciality inherent to the rear-side structure of TBC cells. Using the Quokka3 simulation and assuming high-quality surface passivation and fine-line printing accuracy, a systematic optimization was conducted. The optimization encompassed surface morphology, optical coatings, bulk material parameters (carrier lifetime and resistivity), and rear-side geometry (emitter fraction, metallization pattern and gap width). Through a multi-parameter co-optimization process aimed at enhancing conversion efficiency, a simulated conversion efficiency of 27.26% and a bifaciality ratio of 92.96% were achieved. The simulation analysis quantified the trade-off relationships between FF, bifaciality, and efficiency under different parameter combinations. This enables accurate prediction of final performance outcomes when prioritizing different metrics, thereby providing scientific decision-making support for addressing the core design challenges in the industrialization of TBC cells. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

9 pages, 1364 KB  
Communication
Multiband Infrared Photodetection Based on Colloidal Quantum Dot
by Yingying Xu, Xiaomeng Xue, Lixiong Wu, Zhikai Gan, Menglu Chen and Qun Hao
Photonics 2026, 13(1), 89; https://doi.org/10.3390/photonics13010089 - 20 Jan 2026
Abstract
Multispectral infrared detection plays a crucial role in advanced applications spanning environmental monitoring, military surveillance, and biomedical diagnostics, offering superior target identification accuracy compared to single-band imaging techniques. In this work, we synthesized four distinct bands of colloidal quantum dots (CQDs)—specifically, a cut-off [...] Read more.
Multispectral infrared detection plays a crucial role in advanced applications spanning environmental monitoring, military surveillance, and biomedical diagnostics, offering superior target identification accuracy compared to single-band imaging techniques. In this work, we synthesized four distinct bands of colloidal quantum dots (CQDs)—specifically, a cut-off of 1.3 µm with PbS CQDs and 1.8 µm, 2.6 µm, and 3.5 µm with HgTe CQDs—and employed them to construct planar multiband infrared photodetectors. The device exhibited a clear photoresponse at room temperature from 0.8 µm to 3.5 µm, with responsivity of 5.39 A/W and specific detectivity of 2.01 × 1011 Jones at 1.8 µm. This materials–device co-design strategy integrates wavelength-selective CQD synthesis with planar pixel-level patterning, providing a versatile pathway for developing low-cost, solution-processed, multiband infrared photodetectors. Full article
(This article belongs to the Special Issue New Perspectives in Micro-Nano Optical Design and Manufacturing)
Show Figures

Figure 1

26 pages, 657 KB  
Article
Green Energy Sources in Energy Efficiency Management and Improving the Comfort of Individual Energy Consumers in Poland
by Ewa Chomać-Pierzecka, Anna Barwińska-Małajowicz, Radosław Pyrek, Szymon Godawa and Edward Urbańczyk
Energies 2026, 19(2), 500; https://doi.org/10.3390/en19020500 - 19 Jan 2026
Abstract
Green technologies are strongly present in the energy mixes of countries around the world. In addition to the need to reduce the extraction of non-renewable raw materials and the harmful environmental impact associated with energy production, the trend towards renewable energy development should [...] Read more.
Green technologies are strongly present in the energy mixes of countries around the world. In addition to the need to reduce the extraction of non-renewable raw materials and the harmful environmental impact associated with energy production, the trend towards renewable energy development should also be linked to the need to minimize energy poverty stemming from high electricity prices and the need to increase the energy efficiency of existing solutions. These issues formed the basis for the study’s objective, which was to examine the regulatory framework for the development of Poland’s energy system, with particular emphasis on sustainable development. A particularly important aspect of the study was the exploration of the market for green technologies introduced into the energy system in Poland, with a primary focus on solutions dedicated to small, individual consumers (households). The cognitive value of the study and its original character is created by the cognitive aspect in terms of the interests and consumer preferences of households in this area, motivated by economic considerations related to the energy efficiency aspect of RES solutions. In this regard, there is a relatively limited number of current studies conducted for the reference country (Poland), justifying the choice of the research topic and theme. For the purposes of the study, a literature review, as well as legal standards and industry reports, was conducted. A practical study was conducted based on the results of surveys conducted by selected companies involved in the sale and installation of heating solutions. Detailed research was supported by statistical instruments using PQstat software version 1.8.4.164. Key findings confirm significant household interest in green electricity production technologies, which enable improved energy efficiency of home energy installations. Importantly, the potential for lower electricity bills, which can be attributed to low system maintenance costs and the ability to manage consumption, is a factor in choosing renewable energy solutions. Current interest in renewable energy solutions focuses on heat pumps, photovoltaics, and energy storage. Renewable energy users are interested in integrating renewable energy technology solutions into energy production and management to optimize energy consumption costs and increase household energy independence. Full article
14 pages, 784 KB  
Article
Predictive Value of Platelet-Based Indexes for Mortality in Sepsis
by Alice Nicoleta Drăgoescu, Adina Turcu-Stiolica, Marian Valentin Zorilă, Bogdan Silviu Ungureanu, Petru Octavian Drăgoescu and Andreea Doriana Stănculescu
Biomedicines 2026, 14(1), 211; https://doi.org/10.3390/biomedicines14010211 - 19 Jan 2026
Abstract
Background: Even though there have been improvements in antimicrobial and supportive therapies, sepsis and septic shock are still major causes of death in intensive care units. Early prognostic stratification is very important for helping doctors make decisions. Platelet-derived indices may provide useful, low-cost [...] Read more.
Background: Even though there have been improvements in antimicrobial and supportive therapies, sepsis and septic shock are still major causes of death in intensive care units. Early prognostic stratification is very important for helping doctors make decisions. Platelet-derived indices may provide useful, low-cost indicators that signify both inflammatory activation and coagulation irregularities. This study looked at how well different platelet-based ratios could predict death in the hospital from sepsis. Materials and Methods: We performed a prospective observational study spanning one year in a tertiary ICU, enrolling 114 adult patients diagnosed with sepsis or septic shock. Upon admission, four platelet-related biomarkers were measured: the C-reactive protein-to-platelet ratio (CPR), the platelet-to-lymphocyte ratio (PLR), the platelet-to-white blood cell ratio (PWR), and the platelet-to-creatinine ratio (PCR). Logistic regression models and receiver operating characteristic (ROC) analyses were employed to assess predictive accuracy. Results: Compared to survivors, non-survivors (n = 39) had much higher CRP levels and CPR values, alongside lower platelet and lymphocyte counts. The CPR index showed the best ability in differentiating between non-survivors and survivors (AUC 0.757), with a best cutoff of 0.886. In simplified multivariate models, CPR was still an independent predictor of death in the hospital (OR 1.98; 95% CI 1.22–3.21), whereas PLR and PWR were not. PCR showed a non-significant trend toward lower values in not survivors. Conclusions: CPR is a strong and clinically viable predictor of early mortality in sepsis, outperforming other platelet-based indices. Derived from routine laboratory parameters, CPR serves as a valuable adjunct for initial risk stratification in the ICU. To further confirm its prognostic role and incorporation into current scoring systems, large-scale multicenter studies with longitudinal measurements are warranted to validate its prognostic utility and integration into existing scoring systems. Full article
Show Figures

Figure 1

20 pages, 1534 KB  
Article
Low-Cost DLW Setup for Fabrication of Photonics-Integrated Circuits
by André Moreira, Alessandro Fantoni, Miguel Fernandes and Jorge Fidalgo
Micromachines 2026, 17(1), 125; https://doi.org/10.3390/mi17010125 - 19 Jan 2026
Abstract
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing [...] Read more.
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing (DLW) system designed as a low-cost alternative, utilizing an XY platform for precise substrate movement and an optical system comprising a collimator and lens to focus the laser beam. Operating on a single layer, the system employs SU-8 photoresist to fabricate polymer-based structures on substrates such as ITO-covered glass. Preparation involves thorough cleaning, spin coating with photoresist, and pre- and post-baking to ensure material stability. This approach reduces dependence on costly infrastructure, making it suitable for academic settings and enabling rapid prototyping. A user interface and custom slicer process standard .dxf files into executable commands, enhancing operational flexibility. Experimental results demonstrate a resolution of 10 µm, with successful patterning of structures, including diffraction grids, waveguides, and multimode interference devices. This system aims to transform PIC prototype fabrication into a cost-effective, accessible process. Full article
(This article belongs to the Special Issue Laser-Assisted Ultra-Precision Machining)
Show Figures

Figure 1

16 pages, 2524 KB  
Article
Degradation of Some Polymeric Materials of Bioreactors for Growing Algae
by Ewa Borucińska-Parfieniuk, Ewa Górecka, Jakub Markiewicz, Urszula Błaszczak, Krzysztof J. Kurzydlowski and Izabela B. Zglobicka
Materials 2026, 19(2), 384; https://doi.org/10.3390/ma19020384 - 18 Jan 2026
Viewed by 83
Abstract
Transparent polymeric materials such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polyethylene terephthalate (PET) are widely used as glass alternatives in algal bioreactors, where optical clarity and mechanical stability are crucial. However, their long-term use is limited by surface degradation processes. Photodegradation, hydrolysis, [...] Read more.
Transparent polymeric materials such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and polyethylene terephthalate (PET) are widely used as glass alternatives in algal bioreactors, where optical clarity and mechanical stability are crucial. However, their long-term use is limited by surface degradation processes. Photodegradation, hydrolysis, and biofilm accumulation can reduce light transmission in the 400–700 nm range essential for photosynthesis. This study examined the aging of PMMA, PC, and PET under bioreactor conditions. Samples were exposed for 70 days to illumination, culture medium, and aquatic environments. Changes in their optical transmittance, surface roughness, and wettability were analyzed. All polymers exhibited measurable surface degradation, characterized by an average 15% loss in transparency, significant increases in surface roughness, and reduced contact angles. PMMA demonstrated the highest optical stability, maintaining strong transmission in key blue and red spectral regions, while PET performed the worst, showing low initial clarity and the steepest decline. The most severe surface degradation occurred in areas exposed to the receding liquid interface, highlighting the need for targeted cleaning and/or a reduction in the size of the liquid–vapor transition zone. Overall, the results identify PMMA and recycled PMMA (PMMAR) as durable, cost-effective materials for transparent bioreactor walls. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

17 pages, 3289 KB  
Article
Genipin as an Effective Crosslinker for High-Performance and Flexible Direct-Printed Bioelectrodes
by Kornelia Bobrowska, Marcin Urbanowicz, Agnieszka Paziewska-Nowak, Marek Dawgul and Kamila Sadowska
Molecules 2026, 31(2), 327; https://doi.org/10.3390/molecules31020327 - 17 Jan 2026
Viewed by 97
Abstract
The development of efficient bioelectrodes requires suitable fabrication strategies, starting with the electrode material, which affects the electron transfer between the biocatalyst and the electrode surface. Then, selection and adjustment of the enzyme immobilization conditions are essential to enhance the performance of the [...] Read more.
The development of efficient bioelectrodes requires suitable fabrication strategies, starting with the electrode material, which affects the electron transfer between the biocatalyst and the electrode surface. Then, selection and adjustment of the enzyme immobilization conditions are essential to enhance the performance of the bioelectrodes for their desirable utility. In this study, we report the fabrication of a high-performance bioelectrode using a one-step crosslinking of FAD-dependent glucose dehydrogenase (FAD-GDH) and thionine acetate as a redox mediator, with genipin serving as a natural, biocompatible crosslinker. Electrodes were manufactured on flexible polyester substrates using a direct printing technique, enabling reproducible and low-cost production. Among the tested crosslinkers, genipin significantly enhanced the catalytic performance of bioelectrodes. Comparative studies on graphite, silver, and gold electrode materials identified graphite as the most suitable due to its extended electroactive surface area. The developed bioelectrodes applied to glucose biosensing demonstrated a linear amperometric response to glucose in the range of 0.02–2 mM and 0.048–30 mM, covering clinically relevant concentrations. The application of artificial sweat confirmed high detection accuracy. These findings highlight the potential integration of genipin-based enzyme–mediator networks for future non-invasive sweat glucose monitoring platforms. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Electrochemistry)
Show Figures

Graphical abstract

20 pages, 4568 KB  
Article
From Coal to Carbon Quantum Dots by Chemical Oxidation: Effects of Synthesis Conditions and Coal Chemical Structure
by Jiaqi Ma, Jiawei Liu, Jun Xu, Limo He, Hengda Han, Kai Xu, Long Jiang, Yi Wang, Sheng Su, Song Hu and Jun Xiang
Processes 2026, 14(2), 332; https://doi.org/10.3390/pr14020332 - 17 Jan 2026
Viewed by 88
Abstract
The synthesis of carbon dots (CDs) from coal represents a promising strategy for advancing both the efficient, low-carbon utilization of coal resources and the cost-effective production of CDs. To enable the controlled, high-quality conversion of CDs from coal, a comprehensive understanding of the [...] Read more.
The synthesis of carbon dots (CDs) from coal represents a promising strategy for advancing both the efficient, low-carbon utilization of coal resources and the cost-effective production of CDs. To enable the controlled, high-quality conversion of CDs from coal, a comprehensive understanding of the relationship between the coal chemical structure and the properties of CDs is crucial. This study prepared CDs from nine kinds of coal using a chemical oxidation method, and the correlations between properties of coal-based carbon dots and the original materials were revealed. The results show that the luminescence sites of coal-derived CDs are mostly distributed around 435 nm or 500 nm, where the former one relates to the confined sp2 domains and the latter one is associated with the defect structure. Coal with a volatile content of about 20–30% in the nine samples was found to produce higher CD yields, with a maximum mass yield of 19.96%, accompanied by stronger fluorescence intensity. During chemical oxidation processes, the unsaturated double bonds (C=C, C=O) and aliphatic chains firstly break, and then aromatic clusters are formed by dehydrocyclization between carbon crystallites, followed by the introduction of a C–O group. The growth of the C–O group in the CDs contributes to a stronger fluorescence property. Furthermore, strong correlations were found between the carbon skeleton structure of raw coal and photoluminescence characteristics of corresponding CDs, as reflected by Raman parameters AD1/AG, ID1/IG, and FWHMD. The findings offer significant insights into the precise modulation and control of coal-based carbon dot structures. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

18 pages, 2230 KB  
Article
Direct Production of Na2WO4-Based Salt by Scheelite Smelting
by Baojun Zhao
Minerals 2026, 16(1), 90; https://doi.org/10.3390/min16010090 - 17 Jan 2026
Viewed by 56
Abstract
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO [...] Read more.
Tungsten is one of the critical materials with important applications in many areas. Electrolysis of Na2WO4-based salt is a short and green process for the production of tungsten metal and alloys. The conventional process for producing Na2WO4 is expensive and time-consuming. Scheelite (CaWO4) is becoming the most important resource for the extraction of tungsten. Based on thermodynamic calculations and phase equilibrium studies, a novel process is proposed to prepare Na2WO4-based salt directly from scheelite through a high-temperature process. By reacting with silica and sodium oxide, immiscible layers of liquid salt and slag are formed from scheelite between 1200 and 1300 °C. High-density salt containing Na2WO4 is separated from the silicate slag, which is composed of impurities and fluxes. The effects of fluxing agents, smelting temperature, and reaction time on the direct yield of WO3 and purity of sodium tungsten are investigated in combination with thermodynamic calculations and high-temperature experiments. The salt containing up to 99% Na2WO4 is obtained directly in a single process, which can be used for the production of other tungsten chemicals. This study provides a novel research method and detailed information to produce low-cost sodium tungstate directly from scheelite. Full article
Show Figures

Figure 1

9 pages, 1768 KB  
Proceeding Paper
A Low-Cost 3D Printed Piezoresistive Airflow Sensor for Biomedical and Industrial Applications
by Utkucan Tek, Mehmet Akif Nişancı and İhsan Çiçek
Eng. Proc. 2026, 122(1), 16; https://doi.org/10.3390/engproc2026122016 - 16 Jan 2026
Abstract
Flow sensing is essential in biomedical engineering, industrial process control, and environmental monitoring. Conventional sensors, while accurate, are often constrained by high fabrication costs, complex processes, and limited design flexibility, restricting their use in disposable or rapidly customizable applications. This paper presents a [...] Read more.
Flow sensing is essential in biomedical engineering, industrial process control, and environmental monitoring. Conventional sensors, while accurate, are often constrained by high fabrication costs, complex processes, and limited design flexibility, restricting their use in disposable or rapidly customizable applications. This paper presents a novel ultra-low-cost airflow sensor fabricated entirely through fused deposition modeling 3D printing. The device employs a cantilever-based structure printed with PETg filament, followed by the deposition of a conductive ABS piezoresistive layer in a two-step process requiring no curing or post-processing. Experimental characterization reveals that the sensor operates in an ultra-low pressure range of 0.88–26.68 Pa, corresponding to flow velocities of 1.2–6.6 m/s. The sensor achieves a sensitivity of 967 Ω/Pa, a resolution of 9.27 Pa, and a detection limit of 83.27 Pa, with a total resistance change of approximately 51.5 kΩ. This kilo-ohm-scale response enables direct readout via a digital multimeter without requiring Wheatstone bridges or instrumentation amplifiers. The minimalist design, combined with sub-5 min fabrication time and material cost below $0.05, positions this sensor as an accessible platform for disposable, scalable, and resource-constrained flow monitoring applications in both biomedical and industrial contexts. Full article
Show Figures

Figure 1

Back to TopTop