Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = low salinity water (LSW)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6389 KiB  
Article
Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments
by Eunna Jang, Jong-Kuk Choi and Jae-Hyun Ahn
Remote Sens. 2024, 16(12), 2111; https://doi.org/10.3390/rs16122111 - 11 Jun 2024
Cited by 1 | Viewed by 1571
Abstract
During the summer, substantial freshwater discharge from the Changjiang River into the East China Sea (ECS) results in extensive low-salinity water (LSW) plumes that significantly affect regions along the southern Korean Peninsula and near Jeju Island. Previous research developed an empirical equation to [...] Read more.
During the summer, substantial freshwater discharge from the Changjiang River into the East China Sea (ECS) results in extensive low-salinity water (LSW) plumes that significantly affect regions along the southern Korean Peninsula and near Jeju Island. Previous research developed an empirical equation to estimate sea surface salinity (SSS) in the ECS during the summer season using remote-sensing reflectance (Rrs) data from bands 3–6 (490, 555, 660, and 680 nm) of the Geostationary Ocean Color Imager (GOCI). With the conclusion of the GOCI mission in March 2021, this study aims to ensure the continuity of SSS estimation in the ECS by transitioning to its successor, the GOCI-II. This transition was facilitated through two approaches: applying the existing GOCI-based equation and introducing a new machine learning method using a random forest model. Our analysis demonstrated a high correlation between SSS estimates derived from the GOCI and GOCI-II when applying the equation developed for the GOCI to both satellites, as indicated by a robust R2 value of 0.984 and a low RMSD of 0.8465 psu. This study successfully addressed the challenge of maintaining continuous SSS estimation in the ECS post-GOCI mission and evaluated the accuracy and limitations of the GOCI-II-derived SSS, proposing future strategies to enhance its effectiveness. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 2398 KiB  
Article
Response of Sunflower Yield and Water Productivity to Saline Water Irrigation in the Coastal Zones of the Ganges Delta
by Khokan Kumer Sarker, Mohammed Mainuddin, Richard W. Bell, SK Shamshul Alam Kamar, Mohammad A. R. Akanda, Bidhan Chandro Sarker, Priya Lal Chandra Paul, Mark Glover, Mustafa Kamal Shahadat, Mohammad Shahidul Islam Khan, Md. Harunor Rashid and Edward G. Barrett-Lennard
Soil Syst. 2024, 8(1), 20; https://doi.org/10.3390/soilsystems8010020 - 29 Jan 2024
Cited by 1 | Viewed by 2567
Abstract
The intensification of cropping systems in the salt-affected coastal zones of the Ganges Delta can boost food security in the region. The scarcity of fresh water, coupled with varying degrees of soil and water salinity are however limiting factors for the expansion of [...] Read more.
The intensification of cropping systems in the salt-affected coastal zones of the Ganges Delta can boost food security in the region. The scarcity of fresh water, coupled with varying degrees of soil and water salinity are however limiting factors for the expansion of irrigated cropping in that area. In this study, we assessed the potential of growing sunflowers using combinations of low and medium saline water for irrigation. The experiments were conducted at two locations with six irrigation treatments in 2016–2017 and 2017–2018. The treatments were: T1—two irrigations at early vegetative (25–30 days after sowing; DAS) and flowering stages (60–65 DAS) with low salinity water (LSW, electric conductivity, ECw < 2 dS m−1); T2—two irrigations, one at the vegetative stage with LSW and one at the flowering stage with medium salinity water (MSW, 2 < ECw < 5dS m−1); T3—two irrigations, one at the vegetative stage with LSW and one at seed development stage (75–80 DAS) with MSW; T4—three irrigations at the vegetative, flowering and seed development stages with LSW; T5—three irrigations, at vegetative stage with LSW, and flowering and seed development stages with MSW; and T6—three irrigations, two at the vegetative and flowering stages with LSW and one at the seed development stage with MSW. Irrigation with LSW at early growth stages and MSW at later growth stages did not significantly (p < 0.05) affect the yield compared to the LSW irrigation at early and later growth stages. Crop water productivity and irrigation water productivity of sunflowers (p < 0.001) increased substantially with the decreasing amount of irrigation water with an average of 1.18 kg m−3 and 2.22 kg m−3 in 2017 and 0.92 kg m−3 and 1.29 kg m−3 in 2018, respectively. Grain yield was significantly correlated with root zone solute potential. The flowering and seed development stages of sunflowers in February–March were sensitive to both low and medium saline water irrigation for seed yield. Overall, the results show that irrigation with LSW (ECw < 2dS m−1) at early growth stages and MSW (2 < ECw < 5dS m−1) at later growth stages could be an option for dry-season sunflowers in the coastal zones of the Ganges Delta which would allow double cropping in this area. Full article
Show Figures

Figure 1

39 pages, 2440 KiB  
Article
A Review of Wettability Alteration by Spontaneous Imbibition Using Low-Salinity Water in Naturally Fractured Reservoirs
by Marzhan Karimova, Razieh Kashiri, Peyman Pourafshary and Randy Hazlett
Energies 2023, 16(5), 2373; https://doi.org/10.3390/en16052373 - 1 Mar 2023
Cited by 18 | Viewed by 4453
Abstract
Analysis of fluid flow in naturally fractured reservoirs (NFRs), as a highly heterogeneous and complex system, requires a detailed study of the fracture-matrix interactions. The main process of fluid movement between the fracture and matrix is spontaneous imbibition (SI), which can occur in [...] Read more.
Analysis of fluid flow in naturally fractured reservoirs (NFRs), as a highly heterogeneous and complex system, requires a detailed study of the fracture-matrix interactions. The main process of fluid movement between the fracture and matrix is spontaneous imbibition (SI), which can occur in co/countercurrent fluid flow states. In addition, most carbonate rocks are fractured and non-water-wet, which can lead to low oil recovery. Wettability greatly affects the performance of the SI process. Injection of water or chemicals can be insufficient because fluids mostly pass through highly permeable fractures and lead to early breakthrough. Therefore, the wettability alteration mechanism should be applied in NFRs, and low-salinity water (LSW) injection is considered an effective enhanced oil recovery (EOR) approach. In this review, experimental and numerical studies of co/counter-imbibition are analyzed to show the importance of investigating the fracture-matrix interactions. In addition, the review shows the wettability effect on imbibition in fractured rocks. The review of experimental studies of LSW imbibition in fractured carbonates shows the possibilities for implementing an EOR method. However, the wettability alteration process during SI using LSW has not yet been studied, and no simulation models of co/countercurrent flows have yet been provided. Based on this review, more experimental studies are recommended to duplicate co/countercurrent imbibition using LSW. Advanced techniques such as CT scanning, MRI, and NTI can be used to reveal fluid distribution. Using experimental data, numerical models can be developed to characterize dynamic wettability alteration during co/countercurrent imbibition. Full article
Show Figures

Figure 1

24 pages, 6243 KiB  
Article
Rock–Oil–Brine Dominant Mechanisms in Smart Water Flooding
by Gustavo Maya, Aurora L. Carreño Otero, Fabián L. Monares Bueno, Arnold R. Romero Bohórquez, Farid B. Cortés, Camilo A. Franco and Eduardo Manrique
Energies 2023, 16(4), 2043; https://doi.org/10.3390/en16042043 - 19 Feb 2023
Cited by 2 | Viewed by 2332
Abstract
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most [...] Read more.
Recent research has highlighted wettability alteration as the main consequence of the different mechanisms involved in technologies such as adjusted brine composition water flooding (ABCW) and low-salinity water flooding (LSW). However, studies are still needed to give a phenomenological explanation, and the most influential components of the system (rock–oil–brine) must be clarified. This work focuses on determining the most relevant variables for the smart water effects to occur. Static (contact angles) and dynamic tests (coreflooding) were conducted. For the static tests, aged Berea slices, a specific crude oil (27° API, 10.5 cp at 60 °C), and mono and divalent inorganic salts (Na+, K+, Ca2+, and Mg2+/Cl) were used in 3 different concentrations of 1000, 3000, and 5000 ppm (ionic strength variation between 0.015 and 0.06) to establish the wettability state by measuring the contact angles of the system. When salts containing chloride were evaluated, a decrease in oil wettability was observed at 5000 ppm. At 3000 and 1000 ppm, tendencies depended on the particular cation. Three brines were selected from the contact angle experiments to be used in coreflooding assays, considering a particular design to identify ion exchange from the rock–oil–brine system. The first assay was carried out in the absence of crude oil as a baseline to determine the ion exchange between the brine and the rock, and a second test considered crude oil to provide insight into ion exchange and its effect on displacement efficiency. Capillary electrophoresis was used in this research as a novel contribution to the systematic study of oil displacement tests, and it has proven to be a powerful tool for understanding the mechanisms involved. The results show that the variations in the concentrations detected in the displacement effluents were the product of the interactions between rock, oil, and brine since the concentrations measured in the absence of oil phase were comparable to those in the injection brine. Significant variations in the effluent ion concentrations were determined for the different brines used, and increases in the pressure differentials were observed for the KCl and CaCl2 brines. These results suggest that the oil–brine ion exchange (salting in/out) represents a relevant mechanism to explain the observed displacement efficiencies and differential pressures. The ionic enrichment of the water phase due to the salting in/out effect needs to be better understood. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 2nd Volume)
Show Figures

Figure 1

23 pages, 6747 KiB  
Article
A Comprehensive Simulation Study of Physicochemical and Geochemical Interactions on Immiscible CO2-LSWAG Injection in Carbonates
by Ladislane dos Santos Bastos, Igor Emanuel da Silva Lins, Gloria Meyberg Nunes Costa and Silvio Alexandre Beisl Vieira de Melo
Energies 2023, 16(1), 440; https://doi.org/10.3390/en16010440 - 30 Dec 2022
Viewed by 1900
Abstract
Low-salinity water-alternating-CO2 (CO2-LSWAG) injection has been widely studied and employed due to its capability to promote enhanced oil recovery (EOR). However, there is no consensus on the dominant mechanisms for oil recovery in carbonates due to the extreme complexity of [...] Read more.
Low-salinity water-alternating-CO2 (CO2-LSWAG) injection has been widely studied and employed due to its capability to promote enhanced oil recovery (EOR). However, there is no consensus on the dominant mechanisms for oil recovery in carbonates due to the extreme complexity of the oil–brine–rock interactions. This work proposes a comparative investigation of the physicochemical and geochemical effects of continuous CO2 and CO2-LSWAG immiscible injections on oil recovery in a carbonate core. Simulations were carried out using oil PVT properties and relative permeability experimental data from the literature. A comparison of SO42− and Mg2+ as interpolant ions, oil, water and gas production, pressure, and rock and fluid properties along the core and in the effluent was made. The results show a high recovery factor for CO2 (62%) and CO2-LSWAG (85%), even in immiscible conditions. The mineral dissolution and porosity variations were more pronounced for CO2-LSWAG than CO2. The simulation results showed that Mg2+ as an interpolant improves oil recovery more than SO42− because Mg2+ concentration in the aqueous phase after LSW injection leads to relative permeability values, which are more favorable. Full article
(This article belongs to the Special Issue Oil Field Chemicals and Enhanced Oil Recovery)
Show Figures

Figure 1

11 pages, 1968 KiB  
Article
Improved Oil Recovery from Carbonate Reservoirs by Tuning Injection Seawater Composition
by Jiazhong Wu, Fanghui Liu, Siyu Yang, Haishui Han, Xinglong Chen and Hui Yang
Energies 2022, 15(17), 6405; https://doi.org/10.3390/en15176405 - 1 Sep 2022
Cited by 1 | Viewed by 1888
Abstract
In order to improve the adaptability of low-salinity waterflooding technology in some areas where freshwater resources are scarce, we aimed at implementing the low-salinity effect (LSE) in carbonate reservoirs through tuning injection seawater composition. LSE of ion tuning water (ITW) was verified by [...] Read more.
In order to improve the adaptability of low-salinity waterflooding technology in some areas where freshwater resources are scarce, we aimed at implementing the low-salinity effect (LSE) in carbonate reservoirs through tuning injection seawater composition. LSE of ion tuning water (ITW) was verified by the results of core flooding tests, obtaining a water-free recovery factor of 50.7% and cumulative oil recovery of 77.2%. The micro mechanisms behind it were revealed via direct force-measuring and Zeta parameter (Zetap) measuring. Our results are expected to provide a new LSW strategy via tuning injection seawater composition in the case of carbonate reservoirs. Full article
Show Figures

Figure 1

17 pages, 1674 KiB  
Article
Data-Driven Analyses of Low Salinity Waterflooding in Carbonates
by Rashida Salimova, Peyman Pourafshary and Lei Wang
Appl. Sci. 2021, 11(14), 6651; https://doi.org/10.3390/app11146651 - 20 Jul 2021
Cited by 8 | Viewed by 3116
Abstract
Low salinity water (LSW) injection is a promising Enhanced Oil Recovery (EOR) technique that has the potential to improve oil recovery and has been studied by many researchers. LSW flooding in carbonates has been widely evaluated by coreflooding tests in prior studies. A [...] Read more.
Low salinity water (LSW) injection is a promising Enhanced Oil Recovery (EOR) technique that has the potential to improve oil recovery and has been studied by many researchers. LSW flooding in carbonates has been widely evaluated by coreflooding tests in prior studies. A closer look at the literature on LSW in carbonates indicates a number of gaps and shortcomings. It is difficult to understand the exact relationship between different controlling parameters and the LSW effect in carbonates. The active mechanisms involved in oil recovery improvement are still uncertain and more analyses are required. To predict LSW performance and study the mechanisms of oil displacement, data collected from available experimental studies on LSW injection in carbonates were analyzed using data analysis approaches. We used linear regression to study the linear relationships between single parameters and the incremental recovery factor (RF). Correlations between rock, oil, and brine properties and tertiary RF were weak and negligible. Subsequently, we analyzed the effect of oil/brine parameters on LSW performance using multivariable linear regression. Relatively strong linear correlations were found for a combination of oil/brine parameters and RF. We also studied the nonlinear relationships between parameters by applying machine learning (ML) nonlinear models, such as artificial neural network (ANN), support vector machine (SVM), and decision tree (DT). These models showed better data fitting results compared to linear regression. Among the applied ML models, DT provided the best correlation for oil/brine parameters, as ANN and SVM overfitted the testing data. Finally, different mechanisms involved in the LSW effect were analyzed based on the changes in the effluent PDIs concentration, interfacial tension, pH, zeta potential, and pressure drop. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

13 pages, 9121 KiB  
Technical Note
The Applicability of the Geostationary Ocean Color Imager to the Mapping of Sea Surface Salinity in the East China Sea
by Jong-Kuk Choi, Young-Baek Son, Myung-Sook Park, Deuk-Jae Hwang, Jae-Hyun Ahn and Young-Gyu Park
Remote Sens. 2021, 13(14), 2676; https://doi.org/10.3390/rs13142676 - 7 Jul 2021
Cited by 11 | Viewed by 3112
Abstract
During the summer season, low-salinity water (LSW) inputs from the Changjiang River are observed as filamentous or lens-like features in the East China Sea. Sea surface salinity (SSS) is an important factor in ocean science, and is used to estimate oceanic carbon fluxes, [...] Read more.
During the summer season, low-salinity water (LSW) inputs from the Changjiang River are observed as filamentous or lens-like features in the East China Sea. Sea surface salinity (SSS) is an important factor in ocean science, and is used to estimate oceanic carbon fluxes, trace red tides, and calculate other physical processes at the surface. In this study, a proxy was developed using remote sensing reflectance (Rrs) from the Geostationary Ocean Color Imager (GOCI) centered at 490 nm (band 3), 555 nm (band 4), 660 nm (band 5), and 680 nm (band 6), and salinity (data from summer cruises during the period of 2011–2016). It was then validated to map LSW plumes in the East China Sea. The GOCI-derived surface salinity was determined by the empirical relationships between Rrs at the four bands and in situ wave glider SSS data (August 2016), and was validated with synchronous in situ hydrographic SSS data (August 2011, 2012, 2013, and 2016). The GOCI-derived SSS was considered reliable in terms of the validation with the in situ measurement with a high coefficient of determination along with a low RMSE (R2 = 0.803, RMSE = 0.914, N = 21), and in comparisons with two previous models that were used to derive SSS in the East China Sea. The GOCI-derived SSS was successfully used to examine time-series variations on diurnal and daily scales, and the effects of a typhoon in terms of marine physical and biological properties in combination with the chlorophyll-a concentration and sea surface temperature. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

18 pages, 7041 KiB  
Article
Numerical Simulation of Low Salinity Water Flooding on Core Samples for an Oil Reservoir in the Nam Con Son Basin, Vietnam
by DoanHuy Hien, Pham Huy Giao, Pham Quy Ngoc, Nguyen Minh Quy, Bui Viet Dung, Dinh Duc Huy, Pham Truong Giang and Hoang Long
Energies 2021, 14(9), 2658; https://doi.org/10.3390/en14092658 - 6 May 2021
Cited by 6 | Viewed by 3275
Abstract
Low-salinity water flooding (LSWF) is environment-friendly and operates similarly to conventional waterflooding without the need for synthetic chemical materials. The application of LSWF makes sense in Vietnam as HC production has steadily declined since 2002, and the majority of main oil fields have [...] Read more.
Low-salinity water flooding (LSWF) is environment-friendly and operates similarly to conventional waterflooding without the need for synthetic chemical materials. The application of LSWF makes sense in Vietnam as HC production has steadily declined since 2002, and the majority of main oil fields have become near mature and mature fields. In the next years, Enhanced Oil Recovery (EOR) should be a top priority for Petro Vietnam to boost its oil production, for which the key issue is how to select a suitable EOR technology. In this study, LSWF of the Lower Miocene sand using low salinity water from Lower Oligocene sand was investigated. Previously at the Ruby field in the Cuu Long Basin, an LSWF feasibility study was carried out based on a conventional core flooding experiment, which is time-consuming and costly. This study targets the Chim Sao field in the Nam Con Son Basin, for which a cheaper and faster assessing method is required. As a result, a numerical code written in Matlab was developed and successfully validated with the core flooding experiment results obtained at the Ruby field. The LSWF simulation was conducted using the multiple ion-exchange mechanisms (MIE), and the results obtained showed an increase in the oil recovery factor by 2.19% for the Lower Miocene Sand. Another important outcome of this study is the innovative proposal and successful simulation to use the abundant low salinity water from the underlying Lower Oligocene sand as a natural LSW source to inject into the Lower Miocene oil reservoir that can be a decisive factor to help apply LSWF in practice on a wide scale not only for Chim Sao but also other similar oil fields in southern offshore Vietnam. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

15 pages, 19006 KiB  
Article
Quantifying the Low Salinity Waterflooding Effect
by Omar Chaabi, Mohammed Al Kobaisi and Mohamed Haroun
Energies 2021, 14(7), 1979; https://doi.org/10.3390/en14071979 - 2 Apr 2021
Cited by 7 | Viewed by 2579
Abstract
Low salinity waterflooding (LSW) has shown promising results in terms of increasing oil recovery at laboratory scale. In this work, we study the LSW effect, at laboratory scale, and provide a basis for quantifying the effect at field scale by extracting reliable relative [...] Read more.
Low salinity waterflooding (LSW) has shown promising results in terms of increasing oil recovery at laboratory scale. In this work, we study the LSW effect, at laboratory scale, and provide a basis for quantifying the effect at field scale by extracting reliable relative permeability curves. These were achieved by experimental and numerical interpretation of laboratory core studies. Carbonate rock samples were used to conduct secondary and tertiary unsteady-state coreflooding experiments at reservoir conditions. A mathematical model was developed as a research tool to interpret and further validate the physical plausibility of the coreflooding experiments. At core scale and a typical field rate of ~1 ft/day, low salinity water (LS) resulted in not only ~20% higher oil recovery compared to formation water (FW) but also recovered oil sooner. LS water also showed capability of reducing the residual oil saturation when flooded in tertiary mode. The greater oil recovery caused by LSW can be attributed to altering the wettability of the rock to less oil-wet as confirmed by the numerically extracted relative permeability curves. Full article
(This article belongs to the Special Issue Modeling Multiphase Flow and Reactive Transport in Porous Media)
Show Figures

Figure 1

23 pages, 4750 KiB  
Article
A Core Flood and Microfluidics Investigation of Nanocellulose as a Chemical Additive to Water Flooding for EOR
by Reidun C. Aadland, Salem Akarri, Ellinor B. Heggset, Kristin Syverud and Ole Torsæter
Nanomaterials 2020, 10(7), 1296; https://doi.org/10.3390/nano10071296 - 1 Jul 2020
Cited by 26 | Viewed by 4470
Abstract
Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the [...] Read more.
Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms. Full article
(This article belongs to the Special Issue Application of Nanoparticles for Oil Recovery)
Show Figures

Figure 1

22 pages, 3884 KiB  
Article
Time-Domain Nuclear Magnetic Resonance Determination of Wettability Alteration: Analysis for Low-Salinity Water
by Bryan X. Medina-Rodriguez, Teresa Reilly, Heng Wang, Erik Robert Smith, Griselda Garcia-Olvera, Vladimir Alvarado and Saman Aryana
Appl. Sci. 2020, 10(3), 1017; https://doi.org/10.3390/app10031017 - 4 Feb 2020
Cited by 9 | Viewed by 5394
Abstract
Wettability has been shown to influence oil recovery. This property has become central to low-salinity (LSW) and smart (SWF) water flooding recovery mechanisms research. The challenge lies in the fact that oil recovery results from the combined effects of solid-liquid and liquid-liquid interactions. [...] Read more.
Wettability has been shown to influence oil recovery. This property has become central to low-salinity (LSW) and smart (SWF) water flooding recovery mechanisms research. The challenge lies in the fact that oil recovery results from the combined effects of solid-liquid and liquid-liquid interactions. This demands methods that allow an independent interpretation of wettability alteration contributions. The primary objective of this work is to assess changes in wettability through the application of Time-Domain Nuclear Magnetic Resonance (TD-NMR) T 2 distribution and diffusion coefficient, starting with a well-controlled porous system, that is, glass beads, and then a model rock (Berea), in the presence of one phase, either oil or brine exclusively. Subsequently, two-phase fluid saturation was tested. For the glass beads, dimethyldichlorosilane was used to induce a hydrophobic response, as confirmed by contact angle experiments on slides of the same material. Sodium sulfate was used for its known positive influence on oil recovery during LSW and SWF. In cases where alteration of surface properties was expected, a leftward shift of the average T 2 distribution curve modes, accompanied by a reduction on the diffusion coefficient during the aging process was observed. The results of this work confirm that fluid-solid interactions during LSW and SWF, namely a shift in wettability, take place after the injection of low-salinity water. Full article
(This article belongs to the Special Issue Applications of Low Field Magnetic Resonance)
Show Figures

Figure 1

15 pages, 3216 KiB  
Article
Effect of Salinity on Silica Nanoparticle Adsorption Kinetics and Mechanisms for Fluid/Rock Interaction with Calcite
by Aly A. Hamouda and Rockey Abhishek
Nanomaterials 2019, 9(2), 213; https://doi.org/10.3390/nano9020213 - 6 Feb 2019
Cited by 23 | Viewed by 4095
Abstract
This study addresses the kinetics of silica nanoparticle adsorption on calcite from a solution at three salinities: deionized water (DIW), synthetic seawater (SSW), and low salinity water (LSW). The nanoparticle adsorption mechanisms and the effects on calcite dissolution are addressed. It was shown [...] Read more.
This study addresses the kinetics of silica nanoparticle adsorption on calcite from a solution at three salinities: deionized water (DIW), synthetic seawater (SSW), and low salinity water (LSW). The nanoparticle adsorption mechanisms and the effects on calcite dissolution are addressed. It was shown that nanoparticle adsorption was best described with the second-order-kinetic model and that silica nanoparticle adsorption reduced calcite dissolution. This was confirmed by measuring the Ca2+ ion concentration, the pH, and by estimating the amount of calcite dissolved. This is an important conclusion of this work, especially as LSW as an enhanced oil recovery technique is a candidate for use in chalk fields. Less formation damage/dissolution of chalk when silica nanoparticles are combined with LSW can lower the risk of reservoir subsidence. Intraparticle diffusion and the pseudo-second-order models, indicated a reduction in the adsorption rate with increasing nanoparticle concentration in LSW. This is explained by possible repulsive forces among the nanoparticles as they diffuse from the bulk fluid onto the calcite surface. Ion charges reduce the repulsion among the nanoparticles through shielding. However, an increasing nanoparticle concentration reduces the shielding efficiency by the ions. Estimates of the surface forces confirmed that nanoparticle–mineral interaction is less attractive in LSW as compared to SSW and DIW. Full article
(This article belongs to the Special Issue Application of Nano-Technology for Oil Recovery)
Show Figures

Figure 1

11 pages, 2904 KiB  
Article
Effect of Clay Mineral Composition on Low-Salinity Water Flooding
by Shan Jiang, Pingping Liang and Yujiao Han
Energies 2018, 11(12), 3317; https://doi.org/10.3390/en11123317 - 28 Nov 2018
Cited by 9 | Viewed by 3679
Abstract
Low-salinity water (LSW) flooding technology has obvious operational and economic advantages, so it is applied to practice in many oilfields. However, there are differences in the oil recovery efficiencies in different oilfields, the reasons for which need to be further studied and discussed. [...] Read more.
Low-salinity water (LSW) flooding technology has obvious operational and economic advantages, so it is applied to practice in many oilfields. However, there are differences in the oil recovery efficiencies in different oilfields, the reasons for which need to be further studied and discussed. This paper studies the effect of different clay mineral compositions on low-salinity water flooding. For this purpose, three groups of core displacement experiments were designed with cores containing different clay mineral compositions for comparison. In the process of formation water and low-salinity water driving, the oil recovery and produced-water properties were measured. By comparing the two types of water flooding, it was found that the cores with the highest montmorillonite content had the best effect (5.7%) on low-salinity water flooding and the cores with the highest kaolinite content had the least effect (1.9%). This phenomenon is closely related to the difference in ion exchange capacity of the clay minerals. Moreover, after switching to low-salinity water flooding, the interfacial tension and wetting angle of the produced-water increased and the value of pH decreased, which are important mechanisms for enhancing oil recovery by low-salinity water flooding. This study reveals the influence of clay mineral composition on low-salinity water flooding and can provide more guidance for conventional and unconventional oilfield application of low-salinity water flooding technology. Full article
(This article belongs to the Special Issue Flow and Transport Properties of Unconventional Reservoirs 2018)
Show Figures

Figure 1

18 pages, 4767 KiB  
Article
Effect of Silica Nanoparticles on Fluid/Rock Interactions during Low Salinity Water Flooding of Chalk Reservoirs
by Rockey Abhishek, Aly A. Hamouda and Amr Ayoub
Appl. Sci. 2018, 8(7), 1093; https://doi.org/10.3390/app8071093 - 5 Jul 2018
Cited by 17 | Viewed by 4386
Abstract
The main objective of this work is to address the adsorption of Silica nanoparticles (NPs) dispersed in different brines on chalk surfaces and their effect on fluid/rock interaction. Isothermal static and dynamic adsorption on chalk are addressed here. Isothermal static adsorption showed increased [...] Read more.
The main objective of this work is to address the adsorption of Silica nanoparticles (NPs) dispersed in different brines on chalk surfaces and their effect on fluid/rock interaction. Isothermal static and dynamic adsorption on chalk are addressed here. Isothermal static adsorption showed increased adsorption of NPs at higher salinity. The tests were performed to cover wide range of injection scenarios with synthetic seawater (SSW) and low salinity water (LSW). The selected LSW composition here is based on 1:10 diluted SSW, which has shown to have superior performance compared to other ion compositions. The dynamic adsorption tests of NPs showed reduction of calcite dissolution of about 30% compared to LSW alone. That is, silica nanofluid hinders calcite dissolution i.e., has less effect on chalk matrix integrity which is a major concern in chalk reservoir, if low salinity is employed for enhanced oil recovery. Both scanning electron microscope images and pressure drop across the core during nanofluid injection indicated no throat blockage. Based on ion tracking and the monitored pH, the mechanism(s) for NP adsorption/desorption are suggested. The results from this study suggests a synergy wherein adding relatively small amount of silica NPs can improve the performance of low salinity floods. Full article
(This article belongs to the Special Issue Nanofluids and Their Applications)
Show Figures

Figure 1

Back to TopTop