Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments
Abstract
:1. Introduction
2. Data
2.1. Geostationary Ocean Color Imager (GOCI)-II
2.2. In Situ Data
2.3. SMAP SSS
3. Methodology
- GOCI-II-derived SSS using Choi’s equation, subsequently referred to as ‘GII-C SSS’.
- GOCI-II-derived SSS using the machine learning model, subsequently referred to as ‘GII-RF SSS’.
3.1. Adjustment of GOCI-II Rrs to Align with GOCI Rrs
3.2. Methods Employed for Estimating GOCI-II-Derived SSS
3.3. Validation
4. Results of GOCI-II-Derived SSS
5. Discussions for limitations and Future Improvements of GOCI-II-Derived SSS
6. Conclusions
- Calibration enhancements: The accuracy of the GOCI-II-derived SSS is compromised by the algorithm’s reliance on pre-launch data, especially in turbid waters and across slot boundaries. Tailored atmospheric corrections and vicarious calibration specific to GOCI-II could address these issues.
- Extended temporal coverage: Limited to UTC03 images from August, the study acknowledges the vast data collection by the GOCI-II over the three years since its launch. This presents an opportunity to develop an integrated model capable of estimating SSS throughout different times and seasons.
- Incorporating additional variables: This study’s SSS estimation relied solely on four Rrs bands (490, 555, 660, and 680 nm). Expanding the range of Rrs bands and including SST, which is closely related to SSS in the ECS, could refine the accuracy of the GOCI-II-derived SSS. Machine learning approaches capable of handling the complex non-linear relationships between various input variables and seasonal changes could be instrumental in this enhancement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Son, Y.B.; Choi, J.K. Mapping the Changjiang Diluted Water in the East China Sea during summer over a 10-year period using GOCI satellite sensor data. Front. Mar. Sci. 2022, 9, 1024306. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, T.; Son, Y.B.; Hong, J.S.; Lee, J.H.; Chang, P.H.; Kim, S.K. Contribution of low-salinity water to sea surface warming of the East China Sea in the summer of 2016. Prog. Oceanogr. 2019, 175, 68–80. [Google Scholar] [CrossRef]
- Moh, T.; Cho, J.H.; Jung, S.K.; Kim, S.H.; Son, Y.B. Monitoring of the Changjiang River plume in the East China Sea using a wave glider. J. Coast. Res. 2018, 85, 26–30. [Google Scholar] [CrossRef]
- Senjyu, T.; Enomoto, H.; Matsuno, T.; Matsui, S. Interannual salinity variations in the Tsushima Strait and its relation to the Changjiang discharge. J. Oceanogr. 2006, 62, 681–692. [Google Scholar] [CrossRef]
- Kim, H.C.; Yamaguchi, H.; Yoo, S.; Zhu, J.; Okamura, K.; Kiyomoto, Y.; Tanaka, K.; Kim, S.W.; Park, T.; Oh, I.S.; et al. Distribution of Changjiang diluted water detected by satellite chlorophyll-a and its interannual variation during 1998–2007. J. Oceanogr. 2009, 65, 129–135. [Google Scholar] [CrossRef]
- Kwon, H.K.; Kim, G.; Hwang, J.; Lim, W.; Park, J.W.; Kim, T.H. Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water. Sci. Rep. 2018, 8, 12768. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; He, R.; Zong, H. Variability of Changjiang Diluted Water revealed by a 45-year long-term ocean hindcast and Self-Organizing Maps analysis. Cont. Shelf Res. 2017, 146, 37–46. [Google Scholar] [CrossRef]
- Choi, J.K.; Son, Y.B.; Park, M.S.; Hwang, D.J.; Ahn, J.H.; Park, Y.G. The Applicability of the Geostationary Ocean Color Imager to the Mapping of Sea Surface Salinity in the East China Sea. Remote Sens. 2021, 13, 2676. [Google Scholar] [CrossRef]
- Sung, T.; Sim, S.; Jang, E.; Im, J. Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning. Korean J. Remote Sens. 2022, 38, 747–763. [Google Scholar]
- Kim, D.W.; Kim, S.H.; Jo, Y.H. A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea. Korean J. Remote Sens. 2021, 37, 1307–1315. [Google Scholar]
- Reul, N.; Grodsky, S.A.; Arias, M.; Boutin, J.; Catany, R.; Chapron, B.; D’Amico, F.; Dinnat, E.; Donlon, C.; Fore, A.; et al. Sea surface salinity estimates from spaceborne L-band radiometers: An overview of the first decade of observation (2010–2019). Remote Sens. Environ. 2020, 242, 111769. [Google Scholar] [CrossRef]
- Dinnat, E.P.; Le Vine, D.M.; Boutin, J.; Meissner, T.; Lagerloef, G. Remote sensing of sea surface salinity: Comparison of satellite and in situ observations and impact of retrieval parameters. Remote Sens. 2019, 11, 750. [Google Scholar] [CrossRef]
- Kim, Y.J.; Han, D.; Jang, E.; Im, J.; Sung, T. Remote sensing of sea surface salinity: Challenges and research directions. GIScience Remote Sens. 2023, 60, 2166377. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Z. Development of a MODIS data based algorithm for retrieving nearshore sea surface salinity along the northern Gulf of Mexico coast. Int. J. Remote Sens. 2018, 39, 3497–3511. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H. Remotely sensed sea surface salinity in the hyper-saline Arabian Gulf: Application to landsat 8 OLI data. Estuar. Coast. Shelf Sci. 2017, 187, 168–177. [Google Scholar] [CrossRef]
- Cao, K.; Sun, W.; Chen, L.; Meng, J.; Zhang, J. Retrieval and Analysis of Sea Surface Salinity in the Adjacent Waters of the Yangtze River Estuary Based on Multisource Satellite Data. J. Coast. Res. 2020, 36, 590–599. [Google Scholar] [CrossRef]
- Qing, S.; Zhang, J.; Cui, T.; Bao, Y. Retrieval of sea surface salinity with MERIS and MODIS data in the Bohai Sea. Remote Sens. Environ. 2013, 136, 117–125. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Zaitchik, B.F.; Hoffman, M.J.; Guikema, S.D.; Geiger, E.F. Remotely sensed estimates of surface salinity in the Chesapeake Bay: A statistical approach. Remote Sens. Environ. 2012, 123, 522–531. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, Y.J.; Jeong, J.Y.; Jo, Y.H. Estimation of hourly sea surface salinity in the east China sea using geostationary ocean color imager measurements. Remote Sens. 2020, 12, 755. [Google Scholar] [CrossRef]
- Sasaki, H.; Siswanto, E.; Nishiuchi, K.; Tanaka, K.; Hasegawa, T.; Ishizaka, J. Mapping the low salinity Changjiang Diluted Water using satellite-retrieved colored dissolved organic matter (CDOM) in the East China Sea during high river flow season. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Keith, D.J.; Lunetta, R.S.; Schaeffer, B.A. Optical models for remote sensing of colored dissolved organic matter absorption and salinity in New England, Middle Atlantic and gulf coast Estuaries USA. Remote Sens. 2016, 8, 283. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sens. Environ. 2017, 201, 115–132. [Google Scholar] [CrossRef]
- Bi, J.; Liu, Y.; Kong, X.; Wang, L.; Cai, X.; Nie, L.; Zhan, C.; Li, G.; Wang, F.; Wang, X.; et al. An improved sea surface salinity retrieval algorithm for the Chinese Bohai Sea based on hyperspectral reconstruction and its applicability analysis. J. Sea Res. 2023, 195, 102437. [Google Scholar] [CrossRef]
- Sun, D.; Su, X.; Qiu, Z.; Wang, S.; Mao, Z.; He, Y. Remote Sensing Estimation of Sea Surface Salinity from GOCI Measurements in the Southern Yellow Sea. Remote Sens. 2019, 11, 775. [Google Scholar] [CrossRef]
- Nakada, S.; Kobayashi, S.; Hayashi, M.; Ishizaka, J.; Akiyama, S.; Fuchi, M.; Nakajima, M. High-resolution surface salinity maps in coastal oceans based on geostationary ocean color images: Quantitative analysis of river plume dynamics. J. Oceanogr. 2018, 74, 287–304. [Google Scholar] [CrossRef]
- Liu, J.; Bellerby, R.G.; Zhu, Q.; Ge, J. Estimating sea surface salinity in the East China Sea using satellite remote sensing and machine learning. Earth Space Sci. 2023, 10, e2023EA003230. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Y.; Yin, X. Aquarius sea surface salinity retrieval in coastal regions based on deep neural networks. Remote Sens. Environ. 2023, 284, 113357. [Google Scholar] [CrossRef]
- Choi, J.K.; Park, M.S.; Han, K.S.; Kim, H.C.; Im, J. One Year of GOCI-II Launch Present and Future. Korean J. Remote Sens. 2021, 37, 1229–1234. [Google Scholar]
- Ahn, J.H.; Park, Y.J. Atmospheric Correction Algorithm for GOCI-II data. In GOCI-II Algorithm Theoretical Basis Document; Korea Ocean Satellite Center of Korea Institute of Ocean Science and Technology: Busan, Republic of Korea, 2021. [Google Scholar]
- Ahn, J.H.; Park, Y.J. Estimating water reflectance at near-infrared wavelengths for turbid water atmospheric correction: A preliminary study for GOCI-II. Remote Sens. 2020, 12, 3791. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, K.S.; Lee, E.K.; Bae, S.J.; Lee, K.S.; Moon, J.E.; Han, T.H.; Park, Y.J. Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations. Korean J. Remote Sens. 2021, 37, 1259–1268. [Google Scholar]
- Ocean Data in Grid Framework. Available online: http://www.khoa.go.kr/oceangrid/gis/category/reference/distribution.do (accessed on 12 January 2023).
- Ha, K.J.; Nam, S.; Jeong, J.Y.; Moon, I.J.; Lee, M.; Yun, J.; Jang, C.J.; Kim, Y.S.; Byun, D.S.; Heo, K.Y.; et al. Observations utilizing Korea Ocean Research Stations and their applications for process studies. Bull. Am. Meteorol. Soc. 2019, 100, 2061–2075. [Google Scholar] [CrossRef]
- NIFS Korea Oceanographic Data Center. Available online: https://www.nifs.go.kr/kodc/soo_list.kodc (accessed on 12 January 2023).
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined active/passive retrievals of ocean vector wind and sea surface salinity with SMAP. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Fore, A.; Yueh, S.; Tang, W.; Hayashi, A. SMAP Salinity and Wind Speed Data User’s Guide Version 5.0; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2020. [Google Scholar]
- Qin, S.; Wang, H.; Zhu, J.; Wan, L.; Zhang, Y.; Wang, H. Validation and correction of sea surface salinity retrieval from SMAP. Acta Oceanol. Sin. 2020, 39, 148–158. [Google Scholar] [CrossRef]
- Park, M.S.; Jung, H.C.; Lee, S.; Ahn, J.H.; Bae, S.; Choi, J.K. The GOCI-II early mission ocean color products in comparison with the GOCI toward the continuity of Chollian multi-satellite ocean color data. Korean J. Remote Sens. 2021, 37, 1281–1293. [Google Scholar]
- Kesavakumar, B.; Shanmugam, P.; Venkatesan, R. Enhanced Sea Surface Salinity Estimates Using Machine-Learning Algorithm With SMAP and High-Resolution Buoy Data. IEEE Access 2022, 10, 74304–74317. [Google Scholar] [CrossRef]
- Han, K.H.; Hong, S. Ocean Salinity Retrieval and Prediction for Soil Moisture Active Passive Satellite Using Data-To-Data Translation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4204415. [Google Scholar] [CrossRef]
- Rajabi-Kiasari, S.; Hasanlou, M. An efficient model for the prediction of SMAP sea surface salinity using machine learning approaches in the Persian Gulf. Int. J. Remote Sens. 2020, 41, 3221–3242. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Jang, E.; Im, J.; Park, G.H.; Park, Y.G. Estimation of fugacity of carbon dioxide in the East Sea using in situ measurements and Geostationary Ocean Color Imager satellite data. Remote Sens. 2017, 9, 821. [Google Scholar] [CrossRef]
- Jang, E.; Kim, Y.J.; Im, J.; Park, Y.G.; Sung, T. Global sea surface salinity via the synergistic use of SMAP satellite and HYCOM data based on machine learning. Remote Sens. Environ. 2022, 273, 112980. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, S.H.; Baek, J.Y.; Lee, J.S.; Jo, Y.H. GOCI-II based sea surface salinity estimation using machine learning for the first-year summer. Int. J. Remote Sens. 2022, 43, 6605–6623. [Google Scholar] [CrossRef]
- Ahn, J.H.; Park, Y.J.; Kim, W.; Lee, B. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Opt. Express 2016, 24, 29659–29669. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Lim, T.; Ahn, J.H.; Choi, J.K. A Preliminary Analysis on the Radiometric Difference Across the Level 1B Slot Images of GOCI-II. Korean J. Remote Sens. 2021, 37, 1269–1279. [Google Scholar]
- Jang, E.; Kim, Y.J.; Im, J.; Park, Y.G. Improvement of SMAP sea surface salinity in river-dominated oceans using machine learning approaches. GISci. Remote Sens. 2021, 58, 138–160. [Google Scholar] [CrossRef]
- Li, T.; Cheng, X. Estimating daily full-coverage surface ozone concentration using satellite observations and a spatiotemporally embedded deep learning approach. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102356. [Google Scholar] [CrossRef]
- Sim, S.; Lee, E.; Seo, M.; Seong, N.H.; Jeong, D.; Woo, J.; Han, K.S. Deep neural network-based spatial gap-filling of MODIS ice surface temperatures over the Arctic using satellite and reanalysis data. Remote Sens. Lett. 2022, 13, 1213–1221. [Google Scholar] [CrossRef]
GOCI | GOCI-II | ||
---|---|---|---|
Observation mode | Local (2500 km × 2500 km) | Local (2500 km × 2500 km) | Full disk (12,800 km × 12,800 km) |
Spatial resolution | 500 m | 250 m | 1 km |
Slots | 16 slots | 12 slots | 235 slots |
Temporal resolution | 8 times/day (00:15–07:15 UTC) | 10 times/day (23:15–08:15 UTC) | 1 time/day (20–10 UTC) |
Data available period | June 2010– March 2021 | July 2020 1–present | |
Spectral bands | 8 bands (412, 443, 490, 555, 660, 680, 745, 865 nm) | 13 bands (380, 412, 443, 490, 510, 555, 620, 660, 680, 709, 745, 865 nm, and wide band) |
Spectral Band | N | RMSD (psu) | rRMSD (%) | R2 | Rrs Conversion Equations | |
---|---|---|---|---|---|---|
Slope | Offset | |||||
490 nm | 6,965,107 | 0.0014 | 25.82 | 0.955 | 0.87 | −0.0001 |
555 nm | 6,963,670 | 0.0013 | 20.84 | 0.980 | 0.91 | −0.0001 |
660 nm | 6,511,454 | 0.0008 | 33.40 | 0.973 | 0.90 | 0 |
680 nm | 6,486,741 | 0.0007 | 32.22 | 0.975 | 1.11 | −0.0002 |
In Situ Data | GII-C SSS | GII-RF SSS | GOCI- Derived SSS | SMAP L2B SSS | SMAP L3 SSS | |
---|---|---|---|---|---|---|
I-ORS | N | 16 | 16 | 14 | 24 | 62 |
R2 | 0.023 | 0.021 | 0.149 | 0.755 | 0.718 | |
RMSD (psu) | 3.656 | 2.574 | 4.242 | 1.155 | 1.149 | |
rRMSD (%) | 12.29 | 8.65 | 15.10 | 3.91 | 3.90 | |
NIFS | N | 46 | 46 | 17 | 44 | 86 |
R2 | 0.395 | 0.168 | 0.427 | 0.719 | 0.750 | |
RMSD (psu) | 1.766 | 1.644 | 1.660 | 0.890 | 0.843 | |
rRMSD (%) | 5.86 | 5.45 | 5.72 | 2.93 | 2.78 | |
Whole | N | 62 | 62 | 31 | 68 | 148 |
R2 | 0.110 | 0.115 | 0.003 | 0.738 | 0.743 | |
RMSD (psu) | 2.401 | 1.927 | 3.105 | 0.991 | 0.983 | |
rRMSD (%) | 7.99 | 6.41 | 10.86 | 3.30 | 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, E.; Choi, J.-K.; Ahn, J.-H. Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments. Remote Sens. 2024, 16, 2111. https://doi.org/10.3390/rs16122111
Jang E, Choi J-K, Ahn J-H. Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments. Remote Sensing. 2024; 16(12):2111. https://doi.org/10.3390/rs16122111
Chicago/Turabian StyleJang, Eunna, Jong-Kuk Choi, and Jae-Hyun Ahn. 2024. "Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments" Remote Sensing 16, no. 12: 2111. https://doi.org/10.3390/rs16122111
APA StyleJang, E., Choi, J. -K., & Ahn, J. -H. (2024). Continuity and Enhancements in Sea Surface Salinity Estimation in the East China Sea Using GOCI and GOCI-II: Challenges and Further Developments. Remote Sensing, 16(12), 2111. https://doi.org/10.3390/rs16122111