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Abstract: Low salinity water (LSW) injection is a promising Enhanced Oil Recovery (EOR) technique
that has the potential to improve oil recovery and has been studied by many researchers. LSW
flooding in carbonates has been widely evaluated by coreflooding tests in prior studies. A closer look
at the literature on LSW in carbonates indicates a number of gaps and shortcomings. It is difficult to
understand the exact relationship between different controlling parameters and the LSW effect in
carbonates. The active mechanisms involved in oil recovery improvement are still uncertain and more
analyses are required. To predict LSW performance and study the mechanisms of oil displacement,
data collected from available experimental studies on LSW injection in carbonates were analyzed
using data analysis approaches. We used linear regression to study the linear relationships between
single parameters and the incremental recovery factor (RF). Correlations between rock, oil, and
brine properties and tertiary RF were weak and negligible. Subsequently, we analyzed the effect of
oil/brine parameters on LSW performance using multivariable linear regression. Relatively strong
linear correlations were found for a combination of oil/brine parameters and RF. We also studied the
nonlinear relationships between parameters by applying machine learning (ML) nonlinear models,
such as artificial neural network (ANN), support vector machine (SVM), and decision tree (DT).
These models showed better data fitting results compared to linear regression. Among the applied
ML models, DT provided the best correlation for oil/brine parameters, as ANN and SVM overfitted
the testing data. Finally, different mechanisms involved in the LSW effect were analyzed based on the
changes in the effluent PDIs concentration, interfacial tension, pH, zeta potential, and pressure drop.

Keywords: low salinity waterflooding; carbonates; data-driven analysis; machine learning; SVM;
ANN; DT

1. Introduction

Estimates show that approximately 60% of the world’s oil reserves are held in carbon-
ate reservoirs [1]. The amount of oil that can be produced from these reservoirs by natural
production is below 30%. This small value of oil recovery is due to the heterogeneity, low
matrix permeability, presence of fractures, and oil-wet conditions in carbonates. Hence,
enhanced oil recovery (EOR) methods are required to reduce the residual oil and increase
oil production. Low salinity water (LSW) flooding is one of the promising techniques for
EOR in carbonate formations. It is a process of injecting low saline water with an optimized
ion composition into the reservoir in order to recover incremental oil [2].

A survey of the literature shows that based on the type of crude oil and the properties
of the reservoir and injection/formation brines, several mechanisms are proposed to
explain the performance of LSW flooding. Multicomponent ionic exchange (MIE) [3–5],
reduction in interfacial tension [6,7], expansion of the electric double layer [8–12], and
rock dissolution [13–17], micro-dispersion formation [18,19] are the main mechanisms
suggested by researchers to explain the incremental oil recovery by LSW in carbonates.

Most of these mechanisms result in the alteration of wettability in carbonate rock,
which is the most desirable and widely accepted reason for improving oil recovery by
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LSW. It is believed that some rock/fluid and fluid/fluid properties control oil recovery
improvement using LSW, which should be considered to achieve a successful outcome.

Most carbonates are observed to be neutral or oil-wet [20]. This wettability can
be related to the retention of the carboxylic group, with negative charging of heavy oil
compounds on the positively charged rock surface. Injection of LSW with specific ions and
interaction between the injected active ions, called potential determining ions (PDIs), and
rock surfaces may alter the initial wettability, resulting in oil detachment and incremental
oil recovery. PDIs are primarily sulfate, calcium, and magnesium (SO4

2−, Ca2+, Mg2+) ions
that interact with the carbonate surface. Hence, the amount of active ions in the injected
brine and the porous media are essential for alteration in fluid/rock interactions and the
LSW performance [21–25]. The concentrations of inactive ions, such as Na+ and Cl−, are
also critical in influencing different mechanisms [26,27].

The acidic number (AN) is defined as the amount of KOH (in mg) required to neu-
tralize 1 g of oil [28]. AN is another controlling parameter during LSW injection, as it
determines the amount of carboxylic group in the crude oil, which has a major influence
on the carbonate wettability. The effect of base number (BN), which is the quantity of the
basic components in oil, is less than the effect of AN [29]. The importance of tempera-
ture during LSW flooding in limestones was investigated in different studies [21,30,31].
Measurements from several studies have identified that the wettability alteration in car-
bonates also involves changing the effluent pH during LSW injection [32,33]. Hence, AN,
temperature, and pH are additional parameters affecting the success of LSW flooding in
carbonate formations.

A closer look at the literature on LSW in carbonates indicates a number of gaps and
shortcomings. It is challenging to understand the relationship between various parameters
and the low salinity effect in carbonates. The mechanisms involved in increasing oil
recovery are still not clear and more analyses are required. The data available from
the literature can be analyzed, using data analysis methods, to predict the performance
of LSW in carbonates and study the active mechanisms of oil displacement. By data
analysis, it is possible to develop linear and nonlinear relationships between the variables
and the recovery factor. Machine learning (ML) can be applied as a powerful tool to
develop these models. ML methods have been successfully implemented in different
aspects of “Exploration & Production” operations, such as analyzing LSW flooding in
sandstones [34,35], fracture pressure predictions [36], relative permeability estimation [37],
liquid holdup modeling in two-phase fluid flow [38], and phase classification problems [39].

Different parameters affect LSW performance (such as rock properties, oil acidity,
injected water composition, temperature, and pH) but the relationships between them and
oil recovery remain unclear. The influences of these parameters on the active mechanisms
have not been clarified. Hence, a comprehensive study is required to examine different
oil displacement studies to answer these questions. In this work, the available data of oil
displacement at the core scale are collected and the effect of different parameters on active
mechanisms and the performance of LSW are analyzed.

2. Methodology
2.1. Data Collection and Cleaning

Experimental studies of oil displacement by LSW in carbonates, available in the
literature, were carefully studied and the relevant core flooding tests were extracted.
Fluid/rock properties and experimental results were collected in an unbiased manner,
from the tables and graphs in various sources [3,17,21,24,30–33,40–64]. Each data entry
corresponds to a core flooding test. Both secondary and tertiary modes of LSW flooding in
carbonates were considered in the data extraction process. The data from 145 core flooding
tests were extracted and compiled. The laboratory experiments of oil displacement tests
by LSW injection in limestone cores were categorized to extract information about the
injection mode, injection sequences, and the controlling parameters that affect oil recovery.
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The rock/fluid properties, which control the performance of LSW flooding, are shown
in Table 1, including the number of available data points for each controlling parame-
ter. Because not all of the parameters were reported in every LSW flooding experiment,
there is a significant number of missing data for some parameters, which affects the ac-
curacy of our models. Table 2 shows the minimum, maximum and mean values of the
controlling parameters.

Table 1. Number of data points extracted from the literature for different rock/fluid parameters.

Parameter
Number of Data Points

Secondary Mode Tertiary Mode

Porosity, % 20 112
Permeability, mD 28 117

Initial water saturation Swi, % 23 116
Formation water composition, ppm 26 117

Formation water salinity, ppm 24 114
Secondary injected brine composition, ppm 25 114

Secondary injected brine salinity, ppm 25 116
Tertiary injected brine composition, ppm - 112

Tertiary injected brine salinity, ppm - 114
Crude oil acid number, mgKOH/g 7 87
Crude oil base number, mgKOH/g 1 64

Viscosity of oil, cp 16 106
Density of oil, cp 25 98

Residual oil saturation Sor, % 7 37
pH of effluent brine 0 27
Test temperature, ◦C 8 100

Secondary recovery factor, %OOIP 28 117
Tertiary recovery factor, %OOIP - 117

IFT, mN/m 5 25
Contact angle 2 27

Effluent cations concentration, ppm 3 20
Effluent SO4

2− concentration, ppm 1 9
Pressure drop, psi 2 60

Zeta potential 9 18

Table 2. Statistical measures of the parameters.

Parameter Min Max Mean

Permeability, mD 0.40 200.60 32.70
Low salinity, ppm 0 193,230 22,315

SO4
2− concentration (LS), ppm 0 9222 930

Cation concentration (LS), ppm 0.0 13,454.5 1416.0
SO4

2− concentration (HS), ppm 0 4290 534
Cation concentration (HS), ppm 14.34 61,480.00 15,879.00

AN, mgKOH/g 0.08 4.60 0.57
BN, mgKOH/g 0.01 2.49 0.50
Temperature, ◦C 20 250 88

The low number of secondary core flooding tests in the literature indicates the greater
importance of the application of LSW in tertiary mode and as an EOR approach. Hence, this
study focused on analyzing data collected from tertiary core flooding experiments. There
are 117 data points that show the incremental oil recovery by LSW injection in the tertiary
mode. These data points range from 0 to 42% of OOIP (original oil in place), with a mean
of 6.17% and standard deviation of 7.6%. Figure 1 shows the distribution of incremental oil
recovery by tertiary recovery.
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Figure 1. Probability of incremental recovery factor achieved by tertiary stage injection, %OOIP.

The collected data points were organized and prepared for regression analysis. Differ-
ent units for parameters (such as the composition of brines, total salinities, temperature, and
pressure drop) were reported in the literature. Hence, all data were converted to a unified
unit system in order to make comparative analyses. Different dimensionless numbers, such
as dimensionless sulphate concentration (DS), cations concentration (DC), salinity (DTDS),
acidity of oil (AB), and recovery factor (DRF), were developed to scale the controlling
parameters while preserving their physical significance, as shown in Equations (1)–(5).

DS =
SO4

2−(HS)− SO4
2−(LS)

TDS( HS)
(1)

DC =
Cations(HS)− Cations(LS)

TDS(HS)
(2)

DTDS =
TDS(HS)− TDS(LS)

TDS(HS)
(3)

AB =
AN
BN

(4)

DRF =
RF3 − RF2

100− Swi − RF2
(5)

where HS and LS show the high salinity and low salinity water conditions, respectively.
SO2−

4 is the concentration of sulphate (ppm), TDS is the total dissolved salts (ppm), Cations
is the concentration of cations, AN is the acid number of crude oil (mgKOH/g), BN is the
base number of crude oil (mgKOH/g), RF3 is the recovery factor after tertiary flooding
(% OOIP), RF2 is the recovery factor after secondary flooding (%OOIP), and Swi is the
initial water saturation (%).

The active mechanisms that explain the positive effect of LSW injection on oil recovery
enhancement are difficult to establish. To study the relationships between the proposed
mechanisms and the conditions required for LSW to work, data collected from available
coreflooding tests were statistically analyzed. Mechanisms such as MIE, rock dissolution,
IFT reduction, EDL expansion, and micro-dispersions were evaluated. By statistical analysis
of the controlling parameters (including effluent PDI concentration, wettability, pressure
drop, IFT, pH of effluent brine, and zeta potential), the occurrence of these mechanisms
was investigated.
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2.2. Data Analysis Methods

Machine learning (ML) methods were used to analyze the effect of single and multiple
controlling parameters on the incremental oil recovery by LSW. Linear and nonlinear corre-
lations were developed between different independent variables, such as dimensionless
rock/fluid properties and oil recovery factor. The correlation coefficients were calculated
to quantify the correlation strength.

Simple and multivariable linear regression models were applied to analyze the data.
Simple linear correlations were developed by the least-squares method, which minimizes
the summed squares of the vertical separation between the actual and the predicted
recovery factor values from the regression of each independent variable. Multivariable
linear regression models were used to study correlation among a group of independent
variables and recovery factors. Nonlinear regression methods are more accurate in data
analysis because they assume that the relationship between coefficients is not linear, which
is more realistic in many cases. Machine learning algorithms (such as decision tree (DT),
artificial neural network (ANN), and support vector machine (SVM)) were applied to
assess the contribution of different parameters to the LSW effect. Sensitivity analysis was
conducted to select the number of simulations, and 5000 simulations were run based on
the results of the analysis (Table 3). The best training and testing coefficients were obtained
with 5000 simulations for ML models.

Table 3. Sensitivity analysis for number of simulations.

Models

Number of Simulations

100 1000 5000

Training R Testing R Training R Testing R Training R Testing R

SVM 0.711 0.598 0.718 0.611 0.730 0.611
DT 0.678 0.657 0.685 0.613 0.687 0.628

ANN 0.751 0.527 0.759 0.592 0.754 0.593

ANN is based on the analysis of connections between components, which are also
known as neurons in input, hidden, and output layers [65]. Variables called weights
are assigned to the connections to represent the contribution of the input variables to
output [65]. The structure of ANN model was chosen based on the sensitivity analysis
(Table 4). Oil/brine parameters based on 500 data entries were used in the analysis. In the
ANN used here, 1 hidden layer with 4 neurons was chosen.

Table 4. Sensitivity analysis for ANN.

Number of Layers Number of Neurons
Results

Training R Testing R

1 2 0.162 0.034
1 4 0.204 0.044
2 2 0.150 0.017

Coefficient of determination, R2, is the squared correlation coefficient, R. The values
of the coefficients vary from 0 to 1, representing a no linear relationship and good linear
relationship, respectively. R2 is calculated by:

R2 = 1− ∑N
i=1

(
RFi − ˆRFi

)2

∑N
i=1

(
RFi − RFi

)2 (6)

where ˆRFi is the predicted RF, and RFi is the mean of RF.
The DT method is a supervised ML algorithm which is based on a group of nodes

called root, decision, and leaf nodes [66]. Each leaf represents a numeric value for an
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important independent variable [67]. The SVM model is also a supervised learning method
that is used in handling regression and classification problems [67]. This model can fit
variables using a nonlinear transformation equation to predict responses of predictor
data [68,69].

p-value and coefficients of correlation and determination (R and R2, respectively)
were calculated for each regression model. p-value represents the probability that the null
hypothesis is true, and it shows if the change in the model is the cause of the desired result
or not. A low p-value is preferable for regression models.

When the number of variables increases, R2 usually increases, even with the same
data set. The adjusted R2 is used to minimize the impact of the number of variables, and it
is calculated by:

Adjusted R2 = 1− N − 1
N − k

(
1− R2

)
(7)

where k is the number of independent variables. To compare the results, we used the quali-
tative interpretation of the relationship strength based on the correlation coefficient [34].

3. Results and Discussion

Using data analysis approaches, we studied different rock/fluid properties to seek
effective parameters. We also analyzed the effect of the rock, fluid, and crude oil properties
(both individually and together) on the incremental oil recovery achieved by LSW flooding.
This section presents the findings of the clarification of effective parameters and active
mechanisms during LSW flooding, using data analysis methods.

3.1. Effect of LSW Governing Parameters on Oil Recovery

Injection of LSW affects the interaction between rock and fluids and alters parameters
such as wettability and surface charges. Although the dependence of LSW performance on
various controlling parameters in carbonates has been proved in different experimental
studies, there are some contradictions reported in the literature. The preliminary data
analysis of the incremental oil recovery by LSW shows that the crucial oil/brine/rock
parameters are permeability, salinity of brines, cations concentration, SO4

2− concentration,
AN, BN, and temperature. Table 5 summarizes the single-variable linear regression of
each parameter and incremental oil recovery. Only coefficients of correlation obtained
for temperature and BN showed weak linear relationships. Among the brine parameters,
the linear regression of SO4

2− concentration against RF showed better data-fitting than
the others. However, it is not enough to explain the variance of LSW effect. The linear
relationships between single parameters and the improved recovery factor are mostly
negligible, so a single parameter cannot explain the LSW performance in carbonates. It is
thus inferred that LSW effect is probably the synergistic result of several properties.

Table 5. Single-variable linear regression results.

Parameters Number of
Data Points

Correlation
Coefficient R

Strength of
Relationship *

Rock Permeability 118 0.1721 Negligible

Brine

Low salinity 117 0.1059 Negligible
Change in salinity 117 0.0460 Negligible

Cations 110 0.0290 Negligible
SO4

2− 107 0.1593 Negligible

Oil
AN 80 0.1848 Negligible
BN 60 0.2334 Weak

Temperature T 98 0.2647 Weak
* [0.01,0.2)—Negligible, [0.2,0.3)—Weak, [0.3,0.4)—Moderate, [0.4,0.7)—Strong, [0.7,1.0]—Very strong.

Since linear regression between single variables and incremental RF failed in the
interpretation of LSW performance, the combined effects of controlling parameters on the
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LSW effect were investigated. For this purpose, we analyzed the oil/brine effect using
multivariable regression and nonlinear regression techniques. The dimensionless numbers
shown in Equations (1)–(5) were applied to preserve the physical significance of controlling
parameters. The predicted RF values are calculated based on the estimated regression
coefficients using independent variables.

3.1.1. Linear Multivariable Regression

A total of 96 data points reported simultaneous PDIs and salinity in the experimental
studies available. If the acid number is also considered, the number of data points reduces to
42. We compared the effect of different combinations of these parameters by multivariable
linear regression, as shown in Table 6. Inclusion of salinity improved the regression model,
as the adjusted R2 becomes higher and the p-value for ion concentration variables decreased.
Adjusted R2 increased when TDS was added to the model, suggesting better data-fitting.
Figures 2 and 3 show the predicted RF from linear regression models for two cases against
actual RF values.

Table 6. Multivariable linear regression results for brine parameters.

Variable R Adjusted R2 p-Value No of Data Points Strength of
Relationship *

C + DC 0.088 −0.0028 1.89 × 10−5; 0.39 96 Negligible
C + DC + DS 0.095 −0.0012 2.7 × 10−5; 0.39; 0.73 96 Negligible

C + DC + DS + DTDS 0.222 0.0181 0.14; 0.09; 0.05; 0.77 96 Weak
C + DC + AB 0.200 −0.0090 0.001; 0.35; 0.23 42 Weak

C + DC + AB + DTDS 0.278 0.0044 0.6; 0.3; 0.21; 0.22 42 Weak
C + DC + AB + DTDS + DS 0.290 −0.0150 0.72; 0.31; 0.29; 0.19; 0.60 42 Weak

* [0.01,0.2)—Negligible, [0.2,0.3)—Weak, [0.3,0.4)—Moderate, [0.4,0.7)—Strong, [0.7,1.0]—Very strong.

Figure 2. Predicted RF from linear regression and actual RF from experiments for brine parameters
(Predicted RF = 0.35 + 1.17 × DC − 1.433 × DS − 0.085 × DTDS).
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Figure 3. Predicted RF from linear regression and actual RF from experiments for oil/brine parame-
ters (Predicted RF = 0.023 − 0.158 × DC − 0.0058 × AB + 0.091 × DTDS − 0.48 × DS).

3.1.2. Nonlinear Multivariable Regression

Linear regression analysis did not show acceptable results to explain the relationship
between governing parameters and the LSW effect. The strengths of the relationships
from the multivariable linear regression model for different sets of variables were found
to be from negligible to weak. Hence, no linear relationship between parameters and RF
was established. We applied ML approaches and nonlinear regression models to further
analyze these parameters. Data analyses were conducted using three different ML models:
SVM, ANN, and DT. The random division of data points was achieved by separating
them into training and testing groups, in the proportion of 0.7 to 0.3. Average correlation
coefficients were obtained from 5000 simulations. The best-fit model was found to interpret
the LSW performance.

Oil/brine parameters were analyzed in this section. Different models and average
coefficients of correlation obtained from three ML techniques are shown in Table 7. The
best interpretation of LSW flooding based on brine parameters was achieved by DT with a
minimum leaf size of 10, and the correlation coefficients for training and testing data are the
highest among all ML models. A set of oil/brine properties, including dimensionless brine
parameters and AN, were analyzed based on 42 data entries. All three ML models showed
strong and very strong relationships between oil/brine parameters and RF; the data was a
better fit than the case with only brine parameters. For brine properties, DT provided the
best fit, as the average values of R are considered to be strong and moderate for training
and testing data, respectively. For oil/brine parameters, ANN showed the highest training
results for average R (0.75) but overfitted the testing data. DT yielded high correlation
coefficients (0.68 for training and 0.63 for testing) with negligible overfitting, exhibiting
good performance. Figures 4 and 5 show predicted RF values from the DT model and
actual RF values for brine and oil/brine parameters. The average values and ranges of
R, obtained from 5000 simulations, are illustrated in Figures 4 and 5. Table 8 shows the
strengths of nonlinear relationships for these ML models.
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Table 7. The results obtained from three ML models for different sets of parameters.

Parameters Number of
Data Points Model Average R for

Training Data
Average R for
Testing Data

DC + DS + DTDS 96
ANN 0.20 0.04
SVM 0.24 0.18
DT 0.57 0.35

DC + DS + DTDS + AB 42
ANN 0.75 0.59
SVM 0.73 0.61
DT 0.68 0.63

Figure 4. Predicted RF from DT and actual RF from experiments for brine parameters.

Figure 5. Predicted RF from DT and actual RF from experiments for oil/brine parameters.
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Table 8. Strength of nonlinear relationship for brine and oil/brine parameters.

Parameters Model
Strength of Relationship *

Training Data Testing Data

DC + DS + DTDS
ANN Weak Negligible
SVM Weak Negligible
DT Strong Moderate

DC + DS + DTDS + AB
ANN Very strong Strong
SVM Very strong Strong
DT Strong Strong

* [0.01,0.2)—Negligible, [0.2,0.3)—Weak, [0.3,0.4)—Moderate, [0.4,0.7)—Strong, [0.7,1.0]—Very strong.

Using linear regression, we showed that the LSW effect could not be modeled based
on a single parameter, it is the result of combined contributions by several parameters.
Therefore, we made predictions of LSW based on a set of main parameters and discovered
that the best prediction was made using oil/brine properties. ML models helped us to
achieve better results in explaining the connection between a set of controlling parameters
and the incremental RF by LSW flooding.

3.2. Linking Mechanisms to Parameters

In previous studies, different mechanisms were proposed for governing LSW perfor-
mance in carbonates [6,9,12,14]. The change in PDI concentration (Ca2+, Mg2+ and SO4

2−

ions) in the injected and effluent brine can be used to study the MIE and rock dissolution
mechanisms. When MIE is dominant, Ca2+, Mg2+ and SO4

2− decrease due to the adsorp-
tion of ions onto the rock surface. In contrast, the rock dissolution mechanism involves
a rise in the effluent Ca2+ and SO4

2− concentrations. Alterations in IFT values explain
the IFT reduction mechanism. Change in zeta potential can be evidence to show the EDL
expansion mechanism.

A total of 24 data recordings of Ca2+ concentration changes in the effluent were found
in the literature. RF values observed for cases with either an increase, a decrease or no
change in effluent Ca2+ concentration are compared in Figure 6. A relatively equal number
of rises and reductions of Ca2+ concentration were found in the experimental studies
(13 and 10 data points). A similar RF is achieved when either an increase or a decrease in
Ca2+ concentration was measured, which means that MIE and rock dissolution mechanisms
have almost the same strength in detaching and recovering oil.

Figure 6. Average incremental RF vs. effluent Ca2+ concentration change.
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There are nine data points containing the effluent Mg2+ concentration collected from
experimental studies. Approximately the same number of data points reported an increase
and a decrease in Mg2+ concentrations. Average RF and temperature were higher when
Mg2+ ion concentrations decreased in the effluent (Figure 7). This can be explained by
the effect of temperature on increased Mg2+ activity towards the carbonate surface, which
results in the adsorption of cations [23].

Figure 7. Average incremental RF vs. Mg2+ concentration change.

SO4
2− concentration change in the effluent brine was reported in 14 coreflooding tests,

as shown in Figure 8. Reduction of SO4
2− concentrations in effluent was recorded in seven

tests and an increase in anion concentration was measured in six experiments. Higher
average RF corresponded to decreases in SO4

2− concentration which, in combination with
Ca2+ reduction, supports the MIE mechanism.

Figure 8. Average incremental RF vs. SO4
2− concentration change.

Changes in the concentrations of all PDIs should be analyzed together, to evaluate
the possible active mechanism. Table 9 shows the recordings of ion changes in the effluent
brine and proposed mechanisms for these cases. Alteration in PDIs is an indicator of the
MIE/rock dissolution mechanism. It is generally accepted that a simultaneous decrease in
cations and anion concentrations in the effluent shows the ion exchange on the carbonate
rock surface. On the other hand, an increase in these ions is due to the dissolution of the
carbonate surface.
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Table 9. Proposed mechanisms based on PDI concentration change.

Paper Mg2+ Ca2+ SO42− Proposed Mechanism

Austad et al., 2012 Increase Increase Rock dissolution
Chandrasekhar et al., 2016 No change Increase Increase Rock dissolution

Awolayo et al., 2014 Decrease Decrease MIE
Awolayo et al., 2016 Increase Decrease Rock dissolution

Gupta et al., 2011 No change Increase Rock dissolution
Mohammadkhani et al., 2018 Increase Decrease MIE

Vo et al., 2012 No change Increase Rock dissolution
Chandreskaer et al., 2018 Decrease Decrease MIE

Brine/oil interfacial tension reduction was suggested as a mechanism that is active
during LSW flooding, which affects the capillary force and reduces the residual oil. There
were 17 measurements of IFT collected from experiments after the secondary and tertiary
stages of flooding. In the coreflooding tests, measurements mostly indicated a decrease
in IFT. We also analyzed RF for different ranges of IFT decrease and noticed that higher
incremental oil is recovered by greater changes in IFT, as shown in Figure 9. Hence, this
mechanism can be considered effective only if the change in IFT is large enough.

Figure 9. Average incremental RF vs. Change in IFT.

Changes in zeta potential (due to the reduced concentration of cations, such as Mg2+

and Ca2+, in LSW) results in the predominance of repulsive forces [9]. Thus, the EDL
expands, and water-wet films become thicker and more stable. As a result, oil components
are desorbed, and oil recovery is improved [9]. There are 14 experimental measurements of
zeta potential of carbonate rock before and after the contact with LSW; 12 of them reported
that zeta potential changed for more than 6 mV and became more negative, as shown in
Figure 10. Even a small change in zeta potential can yield a noticeable improvement in oil
recovery. Hence, zeta potential cannot solely show the LSW active mechanism.

During LSW injection, pressure drop is expected to decrease due to a change in
relative permeability as a result of switching from high to low salinity brines [56]. We
collected the recordings of pressure change and found 56 data points reporting decreases
in pressure drop and no change was observed in only two experiments. Approximately
the same average RF was obtained for both cases, which shows that pressure drop should
be analyzed along with other parameters to evaluate the performance of LSW.
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Figure 10. Average incremental RF vs. zeta potential change.

Alteration of the wettability to a more water-wet state was also observed in almost all
experimental studies, by comparing the contact angle and wettability index values before
and after LSW tests. From a total of 61 data points, 57 core flooding tests reported a change
of wettability toward a more water-wet state. Alteration toward more oil-wet conditions
was only found in four experiments. More water-wet conditions were achieved due to
alteration in the rock surface by MIE, rock dissolution, and expansion of EDL mechanisms
that detach the oil from the rock.

Different mechanisms have been suggested by researchers. There are 54 recordings
of mechanisms proposed for LSW flooding tests in the literature. Figure 11 compares the
number of tests that mentioned different mechanisms. The most popular mechanisms were
rock dissolution and EDL expansion. MIE was suggested as an active mechanism for LSW
injection on eleven occasions, based on PDI concentration measurements. IFT reduction is
the least popular mechanism in experimental studies. Reduction in IFT is not large enough
to significantly change the capillary number.

Figure 11. Number of data points for proposed mechanisms.

LSW performance cannot be explained by one mechanism, as different parameters
(such as PDI concentration change, IFT reduction, and zeta potential) are found to have a
correlation with oil recovery. However, all of these mechanisms contribute to the wetta-
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bility alteration and after a change of wettability toward a water-wet state, oil recovery is
improved by LSW.

4. Conclusions

• Different single parameters (such as salinity, contrast in salinity change, PDI concen-
tration, oil acidity, base number of crude oil, permeability, and temperature) were
individually analyzed using linear regression to study their correlation with the incre-
mental oil recovery by LSW flooding. Negligible and weak relationships indicate that
a single parameter is not sufficient to explain the performance of LSW injection.

• Among groups of parameters, a set of oil/brine parameters that include AN, alter-
ation in salinity, SO4

2− and cation concentrations, showed the best, but still weak,
correlation. So, linear correlations are insufficient to forecast LSW potential.

• A nonlinear relationship between parameters and RF was observed using ML models.
Among the ML models, DT produced the best correlation for brine only parameters;
the correlation coefficients for training and testing data were 0.57 and 0.35, respectively.
For oil/brine parameters, all models showed strong and very strong relationships.
However, ANN and SVM showed unsatisfactory results for testing data due to
overfitting. In contrast, less overfitting was achieved by DT, where the correlation
coefficients for training and testing data were 0.68 and 0.63, respectively.

• Several mechanisms involved in the LSW process and the LSW effect cannot be
explained by a single mechanism. MIE and rock dissolution are the most widely
accepted mechanisms in the literature. These mechanisms result in wettability al-
teration in coreflooding tests in carbonates. Our studies showed that, by analyzing
oil/brine parameters, a better understanding of the active mechanisms during LSW
can be achieved, and it is possible to predict the mechanism by analyzing parameters
such as salinity, ion concentrations, pH, and IFT.

• Future research should be further conducted to confirm these findings by increasing
the data set size. In addition, with more experimental data, other parameters should
be added to the model to show fluid/fluid interactions.
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