Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = longitudinal vibrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 (registering DOI) - 2 Aug 2025
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

16 pages, 3807 KiB  
Article
Optimization of Machining Efficiency of Aluminum Honeycomb Structures by Hybrid Milling Assisted by Longitudinal Ultrasonic Vibrations
by Oussama Beldi, Tarik Zarrouk, Ahmed Abbadi, Mohammed Nouari, Mohammed Abbadi, Jamal-Eddine Salhi and Mohammed Barboucha
Processes 2025, 13(8), 2348; https://doi.org/10.3390/pr13082348 - 23 Jul 2025
Viewed by 299
Abstract
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative [...] Read more.
The use of aluminum honeycomb structures is fast expanding in advanced sectors such as the aeronautics, aerospace, marine, and automotive industries. However, processing these structures represents a major challenge for producing parts that meet the strict standards. To address this issue, an innovative manufacturing method using longitudinal ultrasonic vibration-assisted cutting, combined with a CDZ10 hybrid cutting tool, was developed to optimize the efficiency of traditional machining processes. To this end, a 3D numerical model was developed using the finite element method and Abaqus/Explicit 2017 software to simulate the complex interactions among the cutting tool and the thin walls of the structures. This model was validated by experimental tests, allowing the study of the influence of milling conditions such as feed rate, cutting angle, and vibration amplitude. The numerical results revealed that the hybrid technology significantly reduces the cutting force components, with a decrease ranging from 10% to 42%. In addition, it improves cutting quality by reducing plastic deformation and cell wall tearing, which prevents the formation of chips clumps on the tool edges, thus avoiding early wear of the tool. These outcomes offer new insights into optimizing industrial processes, particularly in fields with stringent precision and performance demands, like the aerospace sector. Full article
Show Figures

Figure 1

16 pages, 3620 KiB  
Article
Wind Tunnel Experimental Study on Dynamic Coupling Characteristics of Flexible Refueling Hose–Drogue System
by Yinzhu Wang, Jiangtao Huang, Qisheng Chen, Enguang Shan and Yufeng Guo
Aerospace 2025, 12(7), 646; https://doi.org/10.3390/aerospace12070646 - 21 Jul 2025
Viewed by 151
Abstract
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping [...] Read more.
During the process of flexible aerial refueling, the flexible structure of the hose drogue assembly is affected by internal and external interference, such as docking maneuvering, deformation of the hose, attitude changes, and body vibrations, causing the hose to swing and the whipping phenomenon, which greatly limits the success rate and safety of aerial refueling operations. Based on a 2.4 m transonic wind tunnel, high-speed wind tunnel test technology of a flexible aerial refueling hose–drogue system was established to carry out experimental research on the coupling characteristics of aerodynamics and multi-body dynamics. Based on the aid of Videogrammetry Model Deformation (VMD), high-speed photography, dynamic balance, and other wind tunnel test technologies, the dynamic characteristics of the hose–drogue system in a high-speed airflow and during the approach of the receiver are obtained. Adopting flexible multi-body dynamics, a dynamic system of the tanker, hose, drogue, and receiver is modeled. The cable/beam model is based on an arbitrary Lagrange–Euler method, and the absolute node coordinate method is used to describe the deformation, movement, and length variation in the hose during both winding and unwinding. The aerodynamic forces of the tanker, receiver, hose, and drogue are modeled, reflecting the coupling influence of movement of the tanker and receiver, the deformation of the hose and drogue, and the aerodynamic forces on each other. The tests show that during the approach of the receiver (distance from 1000 mm to 20 mm), the sinking amount of the drogue increases by 31 mm; due to the offset of the receiver probe, the drogue moves sideways from the symmetric plane of the receiver. Meanwhile, the oscillation magnitude of the drogue increases (from 33 to 48 and from 48 to 80 in spanwise and longitudinal directions, respectively). The simulation results show that the shear force induced by the oscillation of the hose and the propagation velocity of both the longitudinal and shear waves are affected by the hose stiffness and Mach number. The results presented in this work can be of great reference to further increase the safety of aerial refueling. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 3523 KiB  
Article
Sustainable Tunable Anisotropic Ultrasound Medical Phantoms for Skin, Skeletal Muscle, and Other Fibrous Biological Tissues Using Natural Fibers and a Bio-Elastomeric Matrix
by Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Maria Monteiro, Ana Arieira, Filipe Silva, Betina Hinckel, Ana Leal and Óscar Carvalho
J. Compos. Sci. 2025, 9(7), 370; https://doi.org/10.3390/jcs9070370 - 16 Jul 2025
Viewed by 456
Abstract
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, [...] Read more.
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, especially in wave-based diagnostics and therapeutic ultrasound. Current materials like gelatine and agarose fall short in reproducing the complex interplay between the solid and fluid components found in biological tissues. To address this, we developed a soft, anisotropic composite whose dynamic mechanical properties resemble fibrous biological tissues such as skin and skeletal muscle. This material enables wave propagation and vibration studies in controllably anisotropic media, which are rare and highly valuable. We demonstrate the tunability of damping and stiffness aligned with fiber orientation, providing a versatile platform for modeling soft-tissue dynamics and validating biomechanical simulations. The phantoms achieved Young’s moduli of 7.16–11.04 MPa for skin and 0.494–1.743 MPa for muscles, shear wave speeds of 1.51–5.93 m/s, longitudinal wave speeds of 1086–1127 m/s, and sound absorption coefficients of 0.13–0.76 dB/cm/MHz, with storage, loss, and complex moduli reaching 1.035–6.652 kPa, 0.1831–0.8546 kPa, and 2.138–10.82 kPa. These values reveal anisotropic response patterns analogous to native tissues. This novel natural fibrous composite system affords sustainable, low-cost ultrasound phantoms that support both mechanical fidelity and acoustic realism. Our approach offers a route to next-gen tissue-mimicking phantoms for elastography, wave propagation studies, and dynamic calibration across diverse clinical and research applications. Full article
Show Figures

Figure 1

18 pages, 2268 KiB  
Article
Effects of a Novel Mechanical Vibration Technology on the Internal Stress Distribution and Macrostructure of Continuously Cast Billets
by Shuai Liu, Jianliang Zhang, Hui Zhang and Minglin Wang
Metals 2025, 15(7), 794; https://doi.org/10.3390/met15070794 - 14 Jul 2025
Viewed by 248
Abstract
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of [...] Read more.
In this paper, a new mechanical vibration technology applied to continuous casting production is studied, which is used to break the dendrite at the solidification front, expand the equiaxed dendrite zone, and improve the center quality of the billet. The exciting force of this vibration technology is provided by a new type of vibration equipment (Vibration roll) independently developed and designed. Firstly, an investigation is conducted into the impacts of vibration acceleration, vibration frequency, and the contact area between the Vibration roll (VR) and the billet surface on the internal stress distribution within the billet shell, respectively. Secondly, the billet with and without vibration treatment was sampled and analyzed through industrial tests. The results show that the area ratio of equiaxed dendrites in transverse specimens treated with vibration technology was 11.96%, compared to 6.55% in untreated specimens. Similarly, for longitudinal samples, the linear ratio of equiaxed dendrites was observed to be 34.56% in treated samples and 22.95% in untreated samples. Compared to the specimens without mechanical vibration, the billet treated with mechanical vibration exhibits an increase in the area ratio and linear ratio of equiaxed dendrite ratio by 5.41% and 11.61%, respectively. Moreover, the probability of bridging at the end of solidification of the billet treated by vibration technology was significantly reduced, and the central porosity and shrinkage cavities of the billet were significantly improved. This study provides the first definitive evidence that the novel mechanical vibration technology can enhance the quality of the billet during the continuous casting process. Full article
Show Figures

Figure 1

19 pages, 5491 KiB  
Article
Design of an Angled Single-Excitation Elliptical Vibration System
by Qiang Liu, Xiping He, Weiguo Wang and Yanning Yang
Micromachines 2025, 16(7), 808; https://doi.org/10.3390/mi16070808 - 13 Jul 2025
Viewed by 226
Abstract
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system [...] Read more.
An angled single-excitation elliptical vibration system for ultrasonic-assisted machining was developed in this paper, which was composed of a giant magnetostrictive transducer and an angled horn. Based on the continuous boundary conditions between the components, the frequency equation of the angled vibration system was derived, and the resonant frequencies of vibration systems with different angles were theoretically calculated. The finite element method was employed to investigate the impact of varying angles on the resonant frequency, elliptical trajectory, phase difference, and output amplitude of the vibration systems. The electrical impedance of the vibration system and the longitudinal and transverse vibration amplitudes at the end face of the horn were tested experimentally. The results show that the resonant frequency and phase difference in the vibration system decreased, the transverse amplitude of the output elliptical trajectory increased, and the longitudinal amplitude decreased with the increase in the included angle. The elliptical trajectories obtained from the test were generally consistent with the calculated results, and the calculated values of the resonant frequencies of the three angled vibration systems were in good agreement with the experimental test values. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

28 pages, 5370 KiB  
Article
Multiscale Evaluation of Recycled Plastic Corrugated Panels for Sustainable Construction
by Aaroon Joshua Das and Majid Ali
Buildings 2025, 15(14), 2423; https://doi.org/10.3390/buildings15142423 - 10 Jul 2025
Viewed by 500
Abstract
The global push for sustainable building practices has intensified the search for low-carbon, recyclable alternatives to traditional roofing materials. This study investigated the structural viability of corrugated panels fabricated from 100% post-consumer recycled HDPE and PP for roofing and cladding applications under real-world [...] Read more.
The global push for sustainable building practices has intensified the search for low-carbon, recyclable alternatives to traditional roofing materials. This study investigated the structural viability of corrugated panels fabricated from 100% post-consumer recycled HDPE and PP for roofing and cladding applications under real-world loading and environmental conditions. Promising main attributes include durability, corrosion resistance, and low environmental impact. Mechanical testing revealed a flexural strength of 8.4 MPa for rHDPE and 6.3 MPa for rPP. Under impact loading, rPP retained 53% of its initial strength, while rHDPE retained 28%, as validated by drop-weight and pendulum impact tests. Vibration testing (ASTM E1876) demonstrated that rPP exhibited 18% higher longitudinal damping, whereas rHDPE outperformed in out-of-plane vibration control. XRD and SEM-EDS confirmed distinct crystalline and morphological structures responsible for the observed behavior. Findings from this investigation, supported by prototype slab testing, confirm that integrating recycled plastics facilitates the creation of durable and sustainable building envelopes for circular construction practices. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Graphical abstract

17 pages, 2351 KiB  
Article
Modeling of Nomex Honeycomb Structure Milling Assisted by Longitudinal–Torsional Vibrations with a CZ10 Combined Tool: Optimization of Tool Wear and Surface Integrity
by Tarik Zarrouk, Jamal-Eddine Salhi, Mohammed Nouari and Mohammed Barboucha
Appl. Mech. 2025, 6(3), 47; https://doi.org/10.3390/applmech6030047 - 30 Jun 2025
Cited by 1 | Viewed by 407
Abstract
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this [...] Read more.
Machining Nomex honeycomb cores is essential for manufacturing components that meet the stringent requirements of industrial sectors, but the complexity of this type of structure material requires specialized techniques to minimize defects, ensure optimal surface quality and extend cutting tool life. For this reason, an innovative machining technology based on longitudinal–torsional ultrasonic vibration assistance has been integrated into a CZ10 combined cutting tool, with the aim of optimizing the efficiency of conventional machining processes. To this end, a three-dimensional numerical model based on the finite element method, developed using Abaqus/Explicit 2017 software, was used to simulate the complex interactions between the cutting tool and the thin walls of the structures to be machined. This study aimed to validate the numerical model through experimental tests, quantifying the surface condition, cutting force and tool wear, while evaluating the impact of key machining parameters, such as feed rate and wall thickness, on process performance. The obtained results reveal a substantial reduction in cutting forces, varying from 20 to 40%, as well as a notable improvement in surface finish and a significant extension of tool life. These conclusions open up new perspectives for the optimization of industrial processes, particularly in high-demand sectors such as aeronautics. Full article
Show Figures

Figure 1

19 pages, 2403 KiB  
Article
Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
by Ivo Yotov, Georgi Todorov, Todor Gavrilov and Todor Todorov
Energies 2025, 18(13), 3341; https://doi.org/10.3390/en18133341 - 25 Jun 2025
Viewed by 250
Abstract
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. [...] Read more.
This study examines how the frequency of an innovative energy harvester is tuned and how it behaves. This harvester transforms thermal energy into mechanical oscillations of two polyvinylidene fluoride (PVDF) piezoelectric beams, which produce electrical energy via a shape memory alloy (SMA) thread. The oscillation frequency is modified by two magnetic weights that are positioned symmetrically on the SMA thread and interact with stationary NdFeB permanent magnets. The SMA thread shifts laterally due to longitudinal thermal contraction and expansion induced by a constant-temperature heater. Temperature gradients above the heater trigger cyclical variations in the length of the SMA thread, leading to autonomous vibrations of the masses in both the vertical and horizontal planes. An experimental apparatus was constructed to analyze the harvester by tracking the motions of the masses and the voltages produced by the piezoelectric beams. Information was gathered regarding the correlation between output voltage and power with the consumer’s load resistance. These outcomes were confirmed using a multiphysics dynamic simulation that incorporated the interconnections among mechanical, thermal, magnetic, and electrical systems. The findings indicate that the use of permanent magnets increases the bending vibration frequency from 8.3 Hz to 9.2 Hz. For a heater maintained at 70 °C, this boosts the output power from 1.9 µW to 8.18 µW. A notable property of the considered energy harvester configuration is its ability to operate at cryogenic temperatures. Full article
Show Figures

Figure 1

22 pages, 3922 KiB  
Article
Research on the Dynamic Characteristics of a Typical Medium–Low-Speed Maglev Train–Bridge System Influenced by the Transverse Stiffness of Pier Tops
by Yanghua Cui, Xiangrong Guo, Hongwei Mao and Jianghao Liu
Appl. Sci. 2025, 15(12), 6628; https://doi.org/10.3390/app15126628 - 12 Jun 2025
Viewed by 302
Abstract
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been [...] Read more.
With the continuous development of maglev transportation technology, medium–low-speed maglev trains have been widely implemented in many countries. However, due to the limitations of existing specifications, the stiffness limit values of the large-span main girders used in medium–low-speed maglev trains have not been unified. To address this issue, this study takes a specific bridge on a dedicated maglev line as an example and uses self-developed software to model the vehicle–bridge dynamic system. The natural vibration characteristics and vehicle–bridge coupling vibration response of the bridge are calculated and analyzed. Based on this, the influence of pier top stiffness on the dynamic characteristics of a typical medium–low-speed maglev train–bridge system under different working conditions is investigated, with a focus on the lateral line stiffness at the pier top. The results show that vehicle speed has no significant effect on the lateral displacement of the main girder, the lateral displacement of the pier top, the lateral acceleration of the pier top, and the transverse and longitudinal angles of the beam end, and no obvious regularity is observed. However, in the double-track operating condition, the vertical deflection of the main girder is significantly higher than that in the single-track operating condition. As the lateral linear stiffness at the pier top increases, the fundamental frequency of the bridge’s lateral bending vibration gradually increases, while the fundamental frequency of longitudinal floating gradually decreases. The lateral displacements, including those of the main girder, pier top, and beam ends, all decrease, whereas the lateral and vertical vibration accelerations of the main girder and the train are less affected by the lateral stiffness at the pier top. Full article
Show Figures

Figure 1

22 pages, 6676 KiB  
Article
Design of a Longitudinal-Bending Elliptical Vibration Ultrasonic Transducer with a Bent Horn
by Zhiyong Huang, Mingshuo Zhang, Jiteng Li, Xinggang Jiang, Daxi Geng and Deyuan Zhang
Actuators 2025, 14(6), 280; https://doi.org/10.3390/act14060280 - 8 Jun 2025
Viewed by 942
Abstract
The thin and straight horn of the ultrasonic transducer is located in the center of the thick transducer, so that the tool tip of the ultrasonic vibration turning tool holder cannot be located on the outermost side of the entire tool holder, which [...] Read more.
The thin and straight horn of the ultrasonic transducer is located in the center of the thick transducer, so that the tool tip of the ultrasonic vibration turning tool holder cannot be located on the outermost side of the entire tool holder, which leads to the structural interference between the tool holder and the part during turning. In order to solve this problem, this paper proposes a longitudinal-bending elliptical vibration ultrasonic transducer with a bending horn for ultrasonic vibration-assisted cutting (UVAC). The designed transducer can be used for the partial separation continuous high-speed elliptic ultrasonic vibration cutting (HEUVC) of external surface and internal cavity. The ultrasonic vibration amplitude of the transducer can meet the needs of HEUVC. When using an ultrasonic transducer with a bending horn for HEUVC, compared with conventional cutting (CC), HEUVC can improve the tool life by about 50%. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

19 pages, 3021 KiB  
Article
Theoretical Analysis of Low-Frequency Sound Absorption Owing to the Vibration of Lightweight Powder Using a 1D Beam Model
by Shuichi Sakamoto, Yuya Kawakami, Hiroaki Soeta and Yosuke Kubo
Materials 2025, 18(11), 2611; https://doi.org/10.3390/ma18112611 - 3 Jun 2025
Viewed by 404
Abstract
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein [...] Read more.
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein acoustic energy is converted into kinetic energy and subsequently dissipated through interparticle interactions. These lightweight, fine powders are artificially engineered acoustic materials. Despite their structural simplicity, they exhibit emergent and complex sound absorption behaviors through fundamental vibrational mechanisms. Representing the powder layer with a transfer matrix simplifies model-based development and enhances versatility as an acoustic element. The powder layer was modeled as a longitudinally oscillating 1D beam, and transfer matrix of the powder layer was derived. To verify the obtained transfer matrix, the experimental values were compared with the theoretical values for a single powder layer. In addition, both were compared for the case of other acoustic elements stacked on top of each other, which were close to each other. The theoretical values were compared with the experimental values, which were close to each other. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

16 pages, 4930 KiB  
Article
Trade-Off for CFRP Quality Using High-Frequency Ultrasonic-Assisted Drilling Under Lubricant Absence
by Khaled Hamdy and Saood Ali
Lubricants 2025, 13(6), 241; https://doi.org/10.3390/lubricants13060241 - 26 May 2025
Viewed by 442
Abstract
Carbon fiber reinforced polymers (CFRPs) are significantly vital for industries. However, the drilling process of a CFRP is considered a challenge due to its nature, which causes delamination, fiber pull-out, peel-up, high friction, and a decrease in cutting tool life. Wet drilling is [...] Read more.
Carbon fiber reinforced polymers (CFRPs) are significantly vital for industries. However, the drilling process of a CFRP is considered a challenge due to its nature, which causes delamination, fiber pull-out, peel-up, high friction, and a decrease in cutting tool life. Wet drilling is necessary for minimizing defects, and lubricants are very costly. In the current work, ultrasonic-assisted drilling (UAD) with a longitudinal vibration of 39.7 kHz was applied to the drill bit in the feed direction, used for CFRPs, and compared with conventional drilling (CD). Low spindle speeds under 5000 rpm were applied with different feed rates. The morphology, delamination factor, and cutting forces were investigated through the specific input machining parameters for CD and UAD. SEM was applied to study the morphology of the hole entrance and exit as well as the burr heights of evacuated chips. UAD with 39.7 kHz succeeded in minimizing the surface roughness by 50% compared with the surface roughness resulting from CD and could drill high-precision holes for CFRPs with a trade-off concept, besides achieving near-zero delamination (K ≃ 1) in the absence of a lubricant, which is being extended for industrial application. Full article
Show Figures

Figure 1

16 pages, 2301 KiB  
Article
Research on Numerical Calculation Methods for Modelling the Dynamics of Diesel Engine Crankshaft System Substructures
by Zhongxu Tian, Zengbin Sun, Yun Zhou and You Zhou
Appl. Sci. 2025, 15(10), 5551; https://doi.org/10.3390/app15105551 - 15 May 2025
Viewed by 386
Abstract
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic [...] Read more.
The complex structure of a diesel engine crankshaft, combined with diverse and dynamically changing loads, leads to the interaction of torsional, bending, and longitudinal vibrations. These complexities present challenges in achieving comprehensive and efficient dynamic modelling and analysis. This paper presents a dynamic modelling and numerical computation method for the crankshaft system based on the substructure dynamic model to address this. Specifically, the primary degrees of freedom (DOFs) of the crankshaft system are transformed through coupling between master and slave node DOFs and DOF condensation. A numerical method for free vibration analysis is developed using Cholesky decomposition and Jacobi iteration, while a dynamic response is computed based on the Newmark-β implicit integration algorithm. Additionally, an adaptive step-size control strategy based on the energy gradient criterion was proposed by introducing a dynamic relaxation factor, significantly enhancing computational efficiency. The study further examines the influence of primary DOF selection, coupling region size between master and finite element nodes, bearing support stiffness, and integration step size on the dynamic response. Numerical case studies demonstrate that the substructure model, with fewer DOFs, accurately characterizes the dynamic behaviour of the crankshaft by appropriately selecting primary DOFs and computational parameters, thereby enabling efficient dynamic analysis. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

19 pages, 8026 KiB  
Article
Analysis of Wind-Induced Vibration Response in Additional Conductors and Fittings Based on the Finite Element Method
by Like Pan, Aobo Yang, Tong Xing, Yuan Yuan, Wei Wang and Yang Song
Energies 2025, 18(10), 2487; https://doi.org/10.3390/en18102487 - 12 May 2025
Viewed by 332
Abstract
Wind-induced vibrations in additional conductors on electrified railway catenary systems pose a risk to operational safety and long-term structural performance. This study investigates the dynamic response of these components under wind excitation through nonlinear finite element analysis. A wind speed spectrum model is [...] Read more.
Wind-induced vibrations in additional conductors on electrified railway catenary systems pose a risk to operational safety and long-term structural performance. This study investigates the dynamic response of these components under wind excitation through nonlinear finite element analysis. A wind speed spectrum model is developed using wind tunnel tests and field data, and the autoregressive method is used to generate realistic wind fields incorporating longitudinal, lateral, and vertical components. A detailed finite element model of the additional conductors and fittings was constructed using the Absolute Nodal Coordinate Formulation to account for large deformations. Time domain simulations with the Newmark-β method were conducted to analyze vibration responses. The results show that increased wind speeds lead to greater vibration amplitudes, and the stochastic nature of wind histories significantly affects vibration modes. Higher conductor tension effectively reduces vibrations, while longer spans increase flexibility and susceptibility to oscillation. The type of fitting also influences system stability; support-type fittings demonstrate lower stress fluctuations, reducing the likelihood of resonance. This study enhances understanding of wind-induced responses in additional conductor systems and informs strategies for vibration mitigation in high-speed railway infrastructure. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop