Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester
Abstract
1. Introduction
2. Architecture of the Vibration-Based Energy Harvester and Its Natural Frequency Tuning System
3. Composing the Dynamical Model by Combining the Interactions of the Different Physical Domains
3.1. Elsatic and Thermal Parameters of the SMA Thread and Bending of the Piezoelectric Cantilevers
3.2. Determination of Magnetic Forces and Their Potential Energy
3.3. Derivation of the Lagrange Equations of the Second Kind
4. Experimental Studies on the Influence of Magnetic Tuning
5. Comparison of Theoretical and Experimental Data to Validate the Dynamic Model
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Yang, Y.; Soh, C.K. Toward Broadband Vibration-Based Energy Harvesting. J. Intell. Mater. Syst. Struct. 2010, 21, 1867–1897. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, L.; Li, H. Vibration Energy Harvesting Using Macro-Fiber Composites. Smart Mater. Struct. 2009, 18, 115025. [Google Scholar] [CrossRef]
- Arnold, D.P. Review of Microscale Magnetic Power Generation. IEEE Trans. Magn. 2007, 43, 3940–3951. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Issues in Mathematical Modeling of Piezoelectric Energy Harvesters. Smart Mater. Struct. 2008, 17, 065016. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Adam, N.; Tapparello, C.; Ayatollahi, H.; Heinzelman, W. Energy-Harvesting Wireless Sensor Networks (EH-WSNs). ACM Trans. Sens. Netw. 2018, 14, 1–50. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy Harvesting in Wireless Sensor Networks: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Wei, C.; Jing, X. A Comprehensive Review on Vibration Energy Harvesting: Modelling and Realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.; Lee, G.; Kim, C.; Ahn, S. Shape Memory Alloy (SMA)-Based Microscale Actuators with 60% Deformation Rate and 1.6 KHz Actuation Speed. Small 2018, 14, 1801023. [Google Scholar] [CrossRef]
- AbuZaiter, A.; Nafea, M.; Mohamed Ali, M.S. Development of a Shape-Memory-Alloy Micromanipulator Based on Integrated Bimorph Microactuators. Mechatronics 2016, 38, 16–28. [Google Scholar] [CrossRef]
- Wang, Z.; Hang, G.; Wang, Y.; Li, J.; Du, W. Embedded SMA Wire Actuated Biomimetic Fin: A Module for Biomimetic Underwater Propulsion. Smart Mater. Struct. 2008, 17, 025039. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Lin, H.S.; Lee, H.T. The Relationship between of Fracture Behaviors and Thermomechanical Effects of Alloy AA2024 of T3 and T81 Temper Designations Using the Center Crack Tensile Test. Mater. Sci. Eng. A 2005, 394, 28–35. [Google Scholar] [CrossRef]
- Li, T.; Chen, Y.H.; Ma, J. Frequency Dependence of Piezoelectric Vibration Velocity. Sens. Actuators A Phys. 2007, 138, 404–410. [Google Scholar] [CrossRef]
- Qiu, Y.; Sun, S.; Xu, C.; Wang, Y.; Tian, Y.; Liu, A.; Hou, X.; Chai, H.; Zhang, Z.; Wu, H. The Frequency-Response Behaviour of Flexible Piezoelectric Devices for Detecting the Magnitude and Loading Rate of Stimuli. J. Mater. Chem. C Mater. 2021, 9, 584–594. [Google Scholar] [CrossRef]
- Dechant, E.; Fedulov, F.; Fetisov, L.; Shamonin, M. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting. Appl. Sci. 2017, 7, 1324. [Google Scholar] [CrossRef]
- Shi, G.; Yang, Y.; Chen, J.; Peng, Y.; Xia, H.; Xia, Y. A Broadband Piezoelectric Energy Harvester with Movable Mass for Frequency Active Self-Tuning. Smart Mater. Struct. 2020, 29, 055023. [Google Scholar] [CrossRef]
- Shahruz, S.M. Design of Mechanical Band-Pass Filters for Energy Scavenging. J. Sound. Vib. 2006, 292, 987–998. [Google Scholar] [CrossRef]
- Shahruz, S.M. Limits of Performance of Mechanical Band-Pass Filters Used in Energy Scavenging. J. Sound. Vib. 2006, 293, 449–461. [Google Scholar] [CrossRef]
- Cui, Y.; Mo, S.; Hu, W.; Lu, D. Effective Beam Mass of Diametrically Driven Self-Accelerating Beams in Photonic Lattices. Phys. Lett. A 2023, 489, 129159. [Google Scholar] [CrossRef]
- Staszak, N.; Gajewski, T.; Garbowski, T. Effective Stiffness of Thin-Walled Beams with Local Imperfections. Materials 2022, 15, 7665. [Google Scholar] [CrossRef]
- Xue, H.; Hu, Y.; Wang, Q. Broadband Piezoelectric Energy Harvesting Devices Using Multiple Bimorphs with Different Operating Frequencies. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2104–2108. [Google Scholar] [CrossRef]
- Chen, S.; Ma, L.; Chen, T.; Liu, H.; Sun, L.; Wang, J. Modeling and Verification of a Piezoelectric Frequency-up-Conversion Energy Harvesting System. Microsyst. Technol. 2017, 23, 2459–2466. [Google Scholar] [CrossRef]
- Žižys, D.; Gaidys, R.; Ostaševičius, V.; Narijauskaitė, B. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator—High Frequency Piezoelectric Energy Harvester. Sensors 2017, 17, 970. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Kiziroglou, M.E.; Yates, D.C.; Yeatman, E.M. A Motion-Powered Piezoelectric Pulse Generator for Wireless Sensing via FM Transmission. IEEE Internet Things J. 2015, 2, 5–13. [Google Scholar] [CrossRef]
- Ibrahima, D.S.; Muthalif, A.G.A.; Saleh, T. A Piezoelectric Based Energy Harvester with Magnetic Interactions: Modelling and Simulation. Adv. Mat. Res. 2015, 1115, 549–554. [Google Scholar] [CrossRef]
- Upadrashta, D.; Yang, Y.; Tang, L. Material Strength Consideration in the Design Optimization of Nonlinear Energy Harvester. J. Intell. Mater. Syst. Struct. 2015, 26, 1980–1994. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Lee, H.P.; Yang, Y.; Zhang, X. A Review of the Inerter and Inerter-Based Vibration Isolation: Theory, Devices, and Applications. J. Franklin Inst. 2022, 359, 7677–7707. [Google Scholar] [CrossRef]
- Bouhedma, S.; Zheng, Y.; Lange, F.; Hohlfeld, D. Magnetic Frequency Tuning of a Multimodal Vibration Energy Harvester. Sensors 2019, 19, 1149. [Google Scholar] [CrossRef]
- Yang, C.-L.; Chen, K.-W.; Chen, C.-D. Model and Characterization of a Press-Button-Type Piezoelectric Energy Harvester. IEEE/ASME Trans. Mechatron. 2019, 24, 132–143. [Google Scholar] [CrossRef]
- Cottone, F.; Vocca, H.; Gammaitoni, L. Nonlinear Energy Harvesting. Phys. Rev. Lett. 2009, 102, 080601. [Google Scholar] [CrossRef]
- Tang, L.; Yang, Y.; Soh, C.-K. Improving Functionality of Vibration Energy Harvesters Using Magnets. J. Intell. Mater. Syst. Struct. 2012, 23, 1433–1449. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Inman, D.J.; Lin, J.; Liu, S.; Wang, Z. Broadband Tristable Energy Harvester: Modeling and Experiment Verification. Appl. Energy 2014, 133, 33–39. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Wang, W. Wideband Quin-Stable Energy Harvesting via Combined Nonlinearity. AIP Adv. 2017, 7, 045314. [Google Scholar] [CrossRef]
- Bouzelata, Y.; Kurt, E.; Uzun, Y.; Chenni, R. Mitigation of High Harmonicity and Design of a Battery Charger for a New Piezoelectric Wind Energy Harvester. Sens. Actuators A Phys. 2018, 273, 72–83. [Google Scholar] [CrossRef]
- Iqbal, M.; Khan, F.U. Hybrid Vibration and Wind Energy Harvesting Using Combined Piezoelectric and Electromagnetic Conversion for Bridge Health Monitoring Applications. Energy Convers. Manag. 2018, 172, 611–618. [Google Scholar] [CrossRef]
- Gupta, R.; Tomar, M.; Kumar, A.; Gupta, V. Performance of Magnetoelectric PZT/Ni Multiferroic System for Energy Harvesting Application. Smart Mater. Struct. 2017, 26, 035002. [Google Scholar] [CrossRef]
- Dąbrowska, A.; Greszta, A. Analysis of the Possibility of Using Energy Harvesters to Power Wearable Electronics in Clothing. Adv. Mater. Sci. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Tian, W.; Ling, Z.; Yu, W.; Shi, J. A Review of MEMS Scale Piezoelectric Energy Harvester. Appl. Sci. 2018, 8, 645. [Google Scholar] [CrossRef]
- Park, J.Y.; Salauddin, M.; Rasel, M.S. Nanogenerator for Scavenging Low Frequency Vibrations. J. Micromechanics Microengineering 2019, 29, 053001. [Google Scholar] [CrossRef]
- Kou, J.; Liu, Y.; Zhu, Y.; Zhai, J. Progress in Piezotronics of Transition-Metal Dichalcogenides. J. Phys. D Appl. Phys. 2018, 51, 493002. [Google Scholar] [CrossRef]
- Yotov, I.; Todorov, G.; Todorov, T. Study of Self-Excited Thermomechanical Oscillator with Shape Memory Alloys. Actuators 2024, 13, 182. [Google Scholar] [CrossRef]
- Yotov, I.; Todorov, G.; Gieva, E.; Todorov, T. Dynamics of a Self-Excited Vibrating Thermal Energy Harvester with Shape Memory Alloys and PVDF Cantilevers. Actuators 2024, 14, 8. [Google Scholar] [CrossRef]
- Dynalloy Inc. Technical Characteristics of Flexinol Actuator Wire. Available online: https://dynalloy.com/#smaller (accessed on 14 November 2024).
- Mitrev, R.; Todorov, T.; Fursov, A.; Ganev, B. Theoretical and Experimental Study of a Thermo-Mechanical Model of a Shape Memory Alloy Actuator Considering Minor Hystereses. Crystals 2021, 11, 1120. [Google Scholar] [CrossRef]
- Mitrev, R.; Todorov, T.S. A Case Study of Experimental Evaluation of the Properties of Shape Memory Alloy Wires. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; p. 060010. [Google Scholar] [CrossRef]
- Todorov, T.S.; Mitrev, R.P.; Tudjarov, B.N.; Nikolov, R.F. Qualitative Analysis of Oscillating Magnetomechanical System. IOP Conf. Ser. Mater. Sci. Eng. 2449 2019, 618, 012054. [Google Scholar] [CrossRef]
- Preumont, A. Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Sessler, G.M. Piezoelectricity in Polyvinylidenefluoride. J. Acoust. Soc. Am. 1981, 70, 1596–1608. [Google Scholar] [CrossRef]
- Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons: New York, NY, USA, 2003. [Google Scholar]
- Stöckel, D. Industrial Applications of Nickel-Titanium Shape Memory Alloys. In Proceedings of the ESOMAT 1989—Ist European Symposium on Martensitic Transformations in Science and Technology, Les Ulis, France, 9–10 March 1989; pp. 223–230. [Google Scholar]
Parameter | Symbol | Value | Unit |
---|---|---|---|
Imaginary magnetic mass | 8.14 × 10−5 | Nm2 | |
Imaginary initial gap and | 0.00032 | m | |
Translation magnetic coordinate | 0.010 | m | |
Piezoelectric cantilever thickness | 28 × 10−9 | m | |
Piezoelectric cantilever length | 0.0235 | m | |
Piezoelectric cantilever width | 0.0102 | m | |
PVDF dielectric permittivity | 9.7396 × 10−11 * | F/m | |
Piezoelectric compliance at constant electric field | 0.384 × 10−10 * | Pa−1 | |
PVDF piezoelectric charge coefficient | −27.1 * | pC/N | |
PVDF electromechanical coupling coefficient | 16 * | % | |
Longitudinal Young’s modulus of PVDF | 2.5 * | GPa | |
Supports half-distance | l | 0.026 | m |
NiTi thread half-length | ls0 | 0.25 | m |
Mass of the ferromagnetic sphere | 3.5 × 10−3 | kg | |
Gravity acceleration | 9.81 | m/s2 | |
Lengths of NiTi thread for end sections | 0.14 | m | |
Length of the middle section of the NiTi thread | 0.24 | m | |
NiTi thread diameter of | 0.00025 | m | |
Young’s modulus for NiTi in fully twined martensite | 21.7 ** | GPa | |
Young’s modulus for NiTi in partially twined martensite | 0.56 ** | GPa | |
Young’s modulus for NiTi in detwinned martensite | 11.1 ** | GPa | |
Young’s modulus for NiTi in austenite | 55.5 ** | GPa | |
Yield strain for twined martensite | 0.0024 ** | -- | |
Minimum strain of twinned martensite | 0.0044 ** | -- | |
Starting austenite temperature of NiTi | 55.99 ** | °C | |
Final austenite temperature of NiTi | 64.05 ** | °C | |
Starting martensitic temperature of NiTi | 25.24 ** | °C | |
Final martensitic temperature of NiTi | 21.44 ** | °C | |
Austenite correction temperature | 0.01 | °C | |
Austenite coefficient | 1.95 | -- | |
Martensitic correction temperature | 0.01 | °C | |
Martensitic coefficient | 2.17 | -- | |
Start position of maximum temperature | 0.0095 | m | |
End position of maximum temperature | 0.023 | m | |
Conditional slope length | 0.0042 | m | |
Room temperature | 20 | °C | |
Maximum temperature of NiTi thread | 70 | °C | |
Longitudinal damping coefficient | βx | 0.00042 | kg/s |
Transverse damping coefficient | βy | 0.0014 | kg/s |
Load resistance | From 1 × 106 to 40 × 106 | Ω | |
Initial speed along | 0 | m/s | |
Initial speed along | 0 | m/s | |
Starting position | −0.1 | m | |
Starting position | 0.01 | m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yotov, I.; Todorov, G.; Gavrilov, T.; Todorov, T. Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester. Energies 2025, 18, 3341. https://doi.org/10.3390/en18133341
Yotov I, Todorov G, Gavrilov T, Todorov T. Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester. Energies. 2025; 18(13):3341. https://doi.org/10.3390/en18133341
Chicago/Turabian StyleYotov, Ivo, Georgi Todorov, Todor Gavrilov, and Todor Todorov. 2025. "Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester" Energies 18, no. 13: 3341. https://doi.org/10.3390/en18133341
APA StyleYotov, I., Todorov, G., Gavrilov, T., & Todorov, T. (2025). Magnetic Frequency Tuning of a Shape Memory Alloy Thermoelectric Vibration Energy Harvester. Energies, 18(13), 3341. https://doi.org/10.3390/en18133341