Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = long-term prediction of PM2.5 concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11528 KB  
Article
Spring Dust Intensity Monitoring at Hourly Intervals Using Himawari-8 Satellite Images and Artificial Intelligence Method
by Jiafu Zhao, Pengfei Chen and Xiaolong Sun
Remote Sens. 2025, 17(20), 3407; https://doi.org/10.3390/rs17203407 (registering DOI) - 11 Oct 2025
Abstract
To achieve accurate monitoring of dust intensity, this study developed a coupled model based on a convolutional neural network (CNN) and a bidirectional long short-term memory network (Bi-LSTM) to monitor dust intensity in a 24 h dynamic pattern. During this process, progressive dust [...] Read more.
To achieve accurate monitoring of dust intensity, this study developed a coupled model based on a convolutional neural network (CNN) and a bidirectional long short-term memory network (Bi-LSTM) to monitor dust intensity in a 24 h dynamic pattern. During this process, progressive dust temporal (PDT) features reflecting the temporal dynamics of dust events, including clear-sky state values, adjacent observation state values, and current observation state values for spectral indices and brightness temperatures, were first designed. Then, a PCBNet model combining CNN and Bi-LSTM was established and compared with PCLNet (CNN and LSTM), random forest (RF), and support vector machine (SVM) using only single-time observations, as well as PDT-RF and PDT-SVM, which used PDT features as inputs. Finally, a dust intensity product was generated by the optimal model, and its relationship with PM10 concentrations at air quality stations was examined. Furthermore, a dust storm event in April 2021 was analyzed to evaluate the ability of the products to capture event dynamics. The results indicate that PCBNet achieved the highest accuracy among all models on the validation dataset. Predicted dust intensity levels were well correlated with PM10 concentrations, and the monitoring product effectively tracked the spatiotemporal evolution of dust event. Full article
14 pages, 5022 KB  
Article
PM2.5 Concentration Prediction Model Utilizing GNSS-PWV and RF-LSTM Fusion Algorithms
by Mingsong Zhang, Li Li, Galina Dick, Jens Wickert, Huafeng Ma and Zehua Meng
Atmosphere 2025, 16(10), 1147; https://doi.org/10.3390/atmos16101147 - 30 Sep 2025
Viewed by 223
Abstract
Inadequate screening of features and insufficient extraction of multi-source time-series data potentially result in insensitivity to historical noise and poor extraction of features for PM2.5 concentration prediction models. Precipitable water vapor (PWV) data obtained from the Global Navigation Satellite System (GNSS), along [...] Read more.
Inadequate screening of features and insufficient extraction of multi-source time-series data potentially result in insensitivity to historical noise and poor extraction of features for PM2.5 concentration prediction models. Precipitable water vapor (PWV) data obtained from the Global Navigation Satellite System (GNSS), along with air quality and meteorological data collected in Suzhou city from February 2021 to July 2023, were employed in this study. The Spearman correlation analysis and Random Forest (RF) feature importance assessment were used to select key input features, including PWV, PM10, O3, atmospheric pressure, temperature, and wind speed. Based on RF, Long Short-Term Memory (LSTM), and Multilayer Perceptron (MLP) algorithms, four PM2.5 concentration prediction models were developed using sliding window and fusion algorithms. Experimental results show that the root mean square error (RMSE) of the 1 h PM2.5 concentration prediction model using the RF-LSTM fusion algorithm is 4.36 μg/m3, while its mean absolute error (MAE) and mean absolute percentage error (MAPE) values are 2.63 μg/m3 and 9.3%. Compared to the individual LSTM and MLP algorithms, the RMSE of the RF-LSTM PM2.5 prediction model improves by 34.7% and 23.2%, respectively. Therefore, the RF-LSTM fusion algorithm significantly enhances the prediction accuracy of the 1 h PM2.5 concentration model. As for the 2 h, 3 h, 6 h, 12 h, and 24 h PM2.5 prediction models using the RF-LSTM fusion algorithm, their RMSEs are 5.6 μg/m3, 6.9 μg/m3, 9.9 μg/m3, 12.6 μg/m3, and 15.3 μg/m3, and their corresponding MAPEs are 13.8%, 18.3%, 28.3%, 38.2%, and 48.2%, respectively. Their prediction accuracy decreases with longer forecasting time, but they can effectively capture the fluctuation trends of future PM2.5 concentrations. The RF-LSTM PM2.5 prediction models are efficient and reliable for early warning systems in Suzhou city. Full article
(This article belongs to the Special Issue GNSS Remote Sensing in Atmosphere and Environment (2nd Edition))
Show Figures

Figure 1

27 pages, 4841 KB  
Article
BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer
by Xinyi Mao, Gen Liu, Jian Wang and Yongbo Lai
Sustainability 2025, 17(19), 8631; https://doi.org/10.3390/su17198631 - 25 Sep 2025
Viewed by 374
Abstract
Predicting the concentrations of air pollutants, particularly PM2.5, with accuracy and dependability is crucial for protecting human health and preserving a healthy natural environment. This research proposes a deep learning-based, robust prediction system to predict regional PM2.5 concentrations for the [...] Read more.
Predicting the concentrations of air pollutants, particularly PM2.5, with accuracy and dependability is crucial for protecting human health and preserving a healthy natural environment. This research proposes a deep learning-based, robust prediction system to predict regional PM2.5 concentrations for the next one to twenty-four hours. To start, the input features of the prediction system are initially screened using a correlation analysis of various air pollutants and meteorological factors. Next, the BiTCN-ISInformer prediction model with a two-branch parallel architecture is constructed. On the one hand, the model improves the probabilistic sparse attention mechanism in the traditional Informer network by optimizing the sampling method from a single sparse sampling to a synergistic mechanism combining sparse sampling and importance sampling, which improves the prediction accuracy and reduces the computational complexity of the model; on the other hand, through the introduction of the bi-directional time-convolutional network (BiTCN) and the design of parallel architecture, the model is able to comprehensively model the short-term fluctuations and long-term trends of the temporal data and effectively increase the inference speed of the model. According to experimental research, the proposed model performs better in terms of prediction accuracy and performance than the most advanced baseline model. In the single-step and multi-step prediction experiments of Shanghai’s PM2.5 concentration, the proposed model has a root mean square error (RMSE) ranging from 2.010 to 10.029 and a mean absolute error (MAE) ranging from 1.436 to 6.865. As a result, the prediction system proposed in this research shows promise for use in air pollution early warning and prevention. Full article
Show Figures

Figure 1

29 pages, 2906 KB  
Article
Spatiotemporal Graph Convolutional Network-Based Long Short-Term Memory Model with A* Search Path Navigation and Explainable Artificial Intelligence for Carbon Monoxide Prediction in Northern Cape Province, South Africa
by Israel Edem Agbehadji and Ibidun Christiana Obagbuwa
Atmosphere 2025, 16(9), 1107; https://doi.org/10.3390/atmos16091107 - 21 Sep 2025
Viewed by 406
Abstract
Background: The emission of air pollutants into the atmosphere is a global issue as it contributes to global warming and climate-related issues. Human activities like the burning of fossil fuel influence changes in weather patterns—resulting in issues such as a rise in sea [...] Read more.
Background: The emission of air pollutants into the atmosphere is a global issue as it contributes to global warming and climate-related issues. Human activities like the burning of fossil fuel influence changes in weather patterns—resulting in issues such as a rise in sea levels, among other things. Identifying road network routes within Northern Cape Province in South Africa that are less exposed to air pollutants like carbon monoxide is the issue this study seeks to address. Methods: The method used for our predictions is based on a graph convolutional network (GCN) and long short-term memory (LSTM). The GCN extracts geospatial characteristics, and the LSTM captures both nonlinear relationships and temporal dependencies in an air pollutant and meteorological dataset. Furthermore, an A* search strategy identifies the path from one location to another with the lowest carbon monoxide concentrations within a road network. The explainable artificial intelligence (xAI) technique is used to describe the nonlinear relationship between the target variable and features. Meteorological and air pollutant data in the form of statistical mean, minimum, and maximum values were leveraged, and a random sampling technique was utilized to fill the data gap to help train the predictive model (GCN-LSTM-A*). Results: The predictive model was evaluated with mean squared error (MSE) and root mean squared error (RMSE) values within two multi-time steps (8 and 16 h) with MSEs of 0.1648 and 0.1701, respectively. The LIME technique, which provides explanations of features, shows that Wind_speed and NO2 and NOx concentrations decreased the predicted CO, whereas PM2.5, PM10, relative humidity, and O3 increased the predicted CO of the route. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

22 pages, 3520 KB  
Article
A Deep Learning–Random Forest Hybrid Model for Predicting Historical Temperature Variations Driven by Air Pollution: Methodological Insights from Wuhan
by Yu Liu and Yuanfang Du
Atmosphere 2025, 16(9), 1056; https://doi.org/10.3390/atmos16091056 - 8 Sep 2025
Viewed by 801
Abstract
With the continuous acceleration of industrialization, air pollution has become increasingly severe and has, to some extent, contributed to the progression of global climate change. Against this backdrop, accurate temperature forecasting plays a vital role in various fields, including agricultural production, energy scheduling, [...] Read more.
With the continuous acceleration of industrialization, air pollution has become increasingly severe and has, to some extent, contributed to the progression of global climate change. Against this backdrop, accurate temperature forecasting plays a vital role in various fields, including agricultural production, energy scheduling, environmental governance, and public health protection. To improve the accuracy and stability of temperature prediction, this study proposes a hybrid modeling approach that integrates convolutional neural networks (CNNs), Long Short-Term Memory (LSTM) networks, and random forests (RFs). This model fully leverages the strengths of CNNs in extracting local spatial features, the advantages of LSTM in modeling long-term dependencies in time series, and the capabilities of RF in nonlinear modeling and feature selection through ensemble learning. Based on daily temperature, meteorological, and air pollutant observation data from Wuhan during the period 2015–2023, this study conducted multi-scale modeling and seasonal performance evaluations. Pearson correlation analysis and random forest-based feature importance ranking were used to identify two key pollutants (PM2.5 and O3) and two critical meteorological variables (air pressure and visibility) that are strongly associated with temperature variation. A CNN-LSTM model was then constructed using the meteorological variables as input to generate preliminary predictions. These predictions were subsequently combined with the concentrations of the selected pollutants to form a new feature set, which was input into the RF model for secondary regression, thereby enhancing the overall model performance. The main findings are as follows: (1) The six major pollutants exhibit clear seasonal distribution patterns, with generally higher concentrations in winter and lower in summer, while O3 shows the opposite trend. Moreover, the influence of pollutants on temperature demonstrates significant seasonal heterogeneity. (2) The CNN-LSTM-RF hybrid model shows excellent performance in temperature prediction tasks. The predicted values align closely with observed data in the test set, with a low prediction error (RMSE = 0.88, MAE = 0.66) and a high coefficient of determination (R2 = 0.99), confirming the model’s accuracy and robustness. (3) In multi-scale forecasting, the model performs well on both daily (short-term) and monthly (mid- to long-term) scales. While daily-scale predictions exhibit higher precision, monthly-scale forecasts effectively capture long-term trends. A paired-sample t-test on annual mean temperature predictions across the two time scales revealed a statistically significant difference at the 95% confidence level (t = −3.5299, p = 0.0242), indicating that time granularity has a notable impact on prediction outcomes and should be carefully selected and optimized based on practical application needs. (4) One-way ANOVA and the non-parametric Kruskal–Wallis test were employed to assess the statistical significance of seasonal differences in daily absolute prediction errors. Results showed significant variation across seasons (ANOVA: F = 2.94, p = 0.032; Kruskal–Wallis: H = 8.82, p = 0.031; both p < 0.05), suggesting that seasonal changes considerably affect the model’s predictive performance. Specifically, the model exhibited the highest RMSE and MAE in spring, indicating poorer fit, whereas performance was best in autumn, with the highest R2 value, suggesting a stronger fitting capability. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

31 pages, 3109 KB  
Article
Spatial-Temporal Forecasting of Air Pollution in Saudi Arabian Cities Based on a Deep Learning Framework Enabled by AI
by Rafat Zrieq, Souad Kamel, Faris Al-Hamazani, Sahbi Boubaker, Rozan Attili and Marcos J. Araúzo-Bravo
Toxics 2025, 13(8), 682; https://doi.org/10.3390/toxics13080682 - 16 Aug 2025
Viewed by 1079
Abstract
Air pollution is steadily increasing due to industrialization, economic activities, and transportation. High levels pose a significant threat to human health and well-being worldwide. Saudi Arabia is a growing country with air quality indices ranging from moderate to unhealthy. Although there are many [...] Read more.
Air pollution is steadily increasing due to industrialization, economic activities, and transportation. High levels pose a significant threat to human health and well-being worldwide. Saudi Arabia is a growing country with air quality indices ranging from moderate to unhealthy. Although there are many monitoring stations distributed throughout the country, mathematical modeling of air pollution is still crucial for health and environmental decision-making. From this perspective, in this study, a data-driven approach based on pollutant records and a Deep Learning (DL) Long Short-Term Memory (LSTM) algorithm is carried out to perform temporal modeling of selected pollutants (PM10, PM2.5, CO and O3) based on time series combined with a spatial modeling focused on selected cities (Riyadh, Jeddah, Mecca, Rabigh, Abha, Dammam and Taif), covering ~48% of the total population of the country. The best forecasts were provided by LSTM in cases where the datasets used were of relatively large size. Numerically, the obtained performance metrics such as the coefficient of determination (R2) ranged from 0.2425 to 0.8073. The best LSTM results were compared to those provided by two ensemble methods, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost), where the merits of LSTM were confirmed mainly in terms of its ability to capture hidden relationships. We also found that overall, meteorological factors showed a weak association with pollutant concentrations, with ambient temperature exerting a moderate influence. However, incorporating ambient temperature into LSTM models did not lead to a significant improvement in predictive accuracy. The developed approach can be used to support decision-making in environmental and health domains, as well as to monitor pollutant concentrations based on historical time series records. Full article
Show Figures

Figure 1

32 pages, 9674 KB  
Article
A Spatiotemporal Multimodal Framework for Air Pollution Prediction Based on Bayesian Optimization—Evidence from Sichuan, China
by Fengfan Zhang, Jiabei Hu and Ming Zeng
Atmosphere 2025, 16(8), 958; https://doi.org/10.3390/atmos16080958 - 11 Aug 2025
Viewed by 835
Abstract
In regions characterized by complex terrain and diverse pollution sources, high-precision air pollution prediction remains challenging due to nonlinear spatiotemporal coupling and the difficulty of modeling local pollutant agglomeration. To address these issues, this study proposes a CNN–LSTM–Transformer multimodal prediction framework integrated with [...] Read more.
In regions characterized by complex terrain and diverse pollution sources, high-precision air pollution prediction remains challenging due to nonlinear spatiotemporal coupling and the difficulty of modeling local pollutant agglomeration. To address these issues, this study proposes a CNN–LSTM–Transformer multimodal prediction framework integrated with Bayesian Optimization. First, the Local Moran’s Index (LMI) is introduced as a spatial perception feature and concatenated with pollutant concentration sequences before being input into the CNN module. This design enhances the model’s ability to identify local pollutant clustering and spatial heterogeneity. Second, the LSTM architecture adopts a dual-channel structure: the main channel employs bidirectional LSTM to extract temporal dependencies, while the auxiliary channel uses unidirectional LSTM to capture evolutionary trends. A Transformer with a multi-head attention mechanism is then introduced to perform global modeling. Bayesian Optimization is employed to automatically adjust key hyperparameters, thereby improving the model’s stability and convergence efficiency. Empirical results based on atmospheric pollution monitoring data from Sichuan Province during 2021–2024 demonstrate that the proposed model outperforms various mainstream methods in predicting six pollutants in Chengdu. For instance, the MAE for PM2.5 decreased by 14.9–22.1%, while the coefficient of determination (R2) remained stable between 87% and 89%. The accuracy decay rate across four-day forecasts was controlled within 12.4%. Furthermore, in PM2.5 generalization prediction tasks across four other cities—Yibin, Zigong, Nanchong, and Mianyang—the model exhibited superior stability and robustness, achieving an average R2 of 87.4%. These findings highlight the model’s long-term stability and regional generalization capability, offering reliable technical support for air pollution prediction and control strategies in Sichuan Province and potentially beyond. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

19 pages, 2631 KB  
Article
Urban Air Quality Management: PM2.5 Hourly Forecasting with POA–VMD and LSTM
by Xiaoqing Zhou, Xiaoran Ma and Haifeng Wang
Processes 2025, 13(8), 2482; https://doi.org/10.3390/pr13082482 - 6 Aug 2025
Viewed by 546
Abstract
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the [...] Read more.
The accurate and effective prediction of PM2.5 concentrations is crucial for mitigating air pollution, improving environmental quality, and safeguarding public health. To address the challenge of strong temporal correlations in PM2.5 concentration forecasting, this paper proposes a novel hybrid model that integrates the Particle Optimization Algorithm (POA) and Variational Mode Decomposition (VMD) with the Long Short-Term Memory (LSTM) network. First, POA is employed to optimize VMD by adaptively determining the optimal parameter combination [k, α], enabling the decomposition of the original PM2.5 time series into subcomponents while reducing data noise. Subsequently, an LSTM model is constructed to predict each subcomponent individually, and the predictions are aggregated to derive hourly PM2.5 concentration forecasts. Empirical analysis using datasets from Beijing, Tianjin, and Tangshan demonstrates the following key findings: (1) LSTM outperforms traditional machine learning models in time series forecasting. (2) The proposed model exhibits superior effectiveness and robustness, achieving optimal performance metrics (e.g., MAE: 0.7183, RMSE: 0.8807, MAPE: 4.01%, R2: 99.78%) in comparative experiments, as exemplified by the Beijing dataset. (3) The integration of POA with serial decomposition techniques effectively handles highly volatile and nonlinear data. This model provides a novel and reliable tool for PM2.5 concentration prediction, offering significant benefits for governmental decision-making and public awareness. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

11 pages, 1161 KB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 613
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

22 pages, 1534 KB  
Article
Predictability of Air Pollutants Based on Detrended Fluctuation Analysis: Ekibastuz Сoal-Mining Center in Northeastern Kazakhstan
by Oleksandr Kuchanskyi, Andrii Biloshchytskyi, Yurii Andrashko, Alexandr Neftissov, Svitlana Biloshchytska and Sergiy Bronin
Urban Sci. 2025, 9(7), 273; https://doi.org/10.3390/urbansci9070273 - 16 Jul 2025
Viewed by 1532
Abstract
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating [...] Read more.
Environmental comfort and air pollution are among the most important indicators for assessing the population’s quality of life in urban agglomerations. This study aims to explore long-term memory in air pollution time series by analyzing the dynamics of the Hurst exponent and evaluating the predictability index. This type of statistical pre-forecast analysis is essential for developing accurate forecasting models for such time series. The effectiveness of air quality monitoring systems largely depends on the precision of these forecasts. The Ekibastuz coal-mining center, which houses one of the largest coal-fired power stations in Kazakhstan and the world, with a capacity of about 4000 MW, was chosen as an example for the study. Data for the period from 1 March 2023 to 31 December 2024 were collected and analyzed at the Ekibastuz coal-fired power station. During the specified period, 14 indicators (67,527 observations) were collected at 10 min intervals, including mass concentrations of CO, NO, NO2, SO2, PM2.5, and PM10, as well as current mass consumption of CO, NO, NO2, SO2, dust, and NOx. The detrended fluctuation analysis of a time series of air pollution indicators was used to calculate the Hurst exponent and identify long-term memory. Changes in the Hurst exponent in regards to dynamics were also investigated, and a predictability index was calculated to monitor emissions of pollutants in the air. Long-term memory is recorded in the structure of all the time series of air pollution indicators. Dynamic analysis of the Hurst exponent confirmed persistent time series characteristics, with an average Hurst exponent of about 0.7. Identifying the time series plots for which the Hurst exponent is falling (analysis of the indicator of dynamics), along with the predictability index, is a sign of an increase in the influence of random factors on the time series. This is a sign of changes in the dynamics of the pollutant release concentrations and may indicate possible excess emissions that need to be controlled. Calculating the dynamic changes in the Hurst exponent for the emission time series made it possible to identify two distinct clusters corresponding to periods of persistence and randomness in the operation of the coal-fired power station. The study shows that evaluating the predictability index helps fine-tune the parameters of time series forecasting models, which is crucial for developing reliable air pollution monitoring systems. The results obtained in this study allow us to conclude that the method of trended fluctuation analysis can be the basis for creating an indicator of the level of air pollution, which allows us to quickly respond to possible deviations from the established standards. Environmental services can use the results to build reliable monitoring systems for air pollution from coal combustion emissions, especially near populated areas. Full article
Show Figures

Figure 1

16 pages, 33950 KB  
Article
VDMS: An Improved Vision Transformer-Based Model for PM2.5 Concentration Prediction
by Tong Zhao and Meixia Qu
Appl. Sci. 2025, 15(13), 7346; https://doi.org/10.3390/app15137346 - 30 Jun 2025
Viewed by 438
Abstract
China’s accelerating industrialization has led to worsening air pollution, characterized by recurrent haze episodes. The accurate quantification of PM2.5 distribution is crucial for air quality assessment and public health management. Although traditional prediction models can effectively identify PM2.5 concentration fluctuations with [...] Read more.
China’s accelerating industrialization has led to worsening air pollution, characterized by recurrent haze episodes. The accurate quantification of PM2.5 distribution is crucial for air quality assessment and public health management. Although traditional prediction models can effectively identify PM2.5 concentration fluctuations with moderate accuracy, their dependence relies heavily on extensive ground-based monitoring station data, limiting their applicability in areas with sparse monitoring coverage. To address this limitation, this study proposes a novel algorithm for high-precision PM2.5 concentration prediction, termed VDMS (Vision Transformer with DLSTM Multi-Head Self-Attention and Self-supervision). Based on the traditional Vision Transformer (ViT) architecture, VDMS incorporates a Double-Layered Long Short-Term Memory (DLSTM) network and a Multi-Head Self-Attention mechanism to enhance the model’s capacity to capture temporal sequence features and global dependencies. These enhancements contribute to greater stability and robustness in feature representation, ultimately improving prediction performance. Cross-validation experimental results show that the VDMS model outperforms benchmark models in PM2.5 concentration prediction tasks, achieving a coefficient of determination (R2) of 0.93, a root mean square error (RMSE) of 4.05 μg/m3, and a mean absolute error (MAE) of 3.23 μg/m3. Furthermore, experiments conducted in areas with sparse ground monitoring stations demonstrate that the model maintains high predictive accuracy, further validating its applicability and generalization capability in data-limited scenarios. Moreover, the VDMS model adopts a modular design, offering strong scalability that allows its architecture to be adjusted according to specific requirements. This adaptability renders it suitable for monitoring various atmospheric pollutants, providing essential technical support for precise environmental management and air quality forecasting. Full article
(This article belongs to the Special Issue Air Quality Monitoring, Analysis and Modeling)
Show Figures

Figure 1

19 pages, 1355 KB  
Article
Mathematical Evaluation of Classical and Quantum Predictive Models Applied to PM2.5 Forecasting in Urban Environments
by Jesús Cáceres-Tello and José Javier Galán-Hernández
Mathematics 2025, 13(12), 1979; https://doi.org/10.3390/math13121979 - 16 Jun 2025
Cited by 1 | Viewed by 478
Abstract
Air quality modeling has become a strategic area within data science, particularly in urban contexts where pollution exhibits high variability and nonlinear dynamics. This study provides a mathematical and computational comparison between two predictive paradigms: the classical Long Short-Term Memory (LSTM) model, designed [...] Read more.
Air quality modeling has become a strategic area within data science, particularly in urban contexts where pollution exhibits high variability and nonlinear dynamics. This study provides a mathematical and computational comparison between two predictive paradigms: the classical Long Short-Term Memory (LSTM) model, designed for sequential analysis of time series, and the quantum model Quantum Support Vector Machine (QSVM), based on kernel methods applied in Hilbert spaces. Both approaches are applied to real PM2.5 concentration data collected at the Plaza Castilla monitoring station (Madrid) over the period 2017–2024. The LSTM model demonstrates moderate accuracy for smooth seasonal trends but shows limited performance in detecting extreme pollution events. In contrast, the QSVM achieves perfect binary classification through a quantum kernel based on angle encoding, with significantly lower training time and computational cost. Beyond the empirical results, this work highlights the growing potential of Quantum Artificial Intelligence as a hybrid paradigm capable of extending the boundaries of classical models in complex environmental prediction tasks. The implications point toward a promising transition to quantum-enhanced predictive systems aimed at advancing urban sustainability. Full article
Show Figures

Figure 1

25 pages, 8055 KB  
Article
On the Application of Long Short-Term Memory Neural Network for Daily Forecasting of PM2.5 in Dakar, Senegal (West Africa)
by Ahmed Gueye, Serigne Abdoul Aziz Niang, Ismaila Diallo, Mamadou Simina Dramé, Moussa Diallo and Ali Ahmat Younous
Sustainability 2025, 17(12), 5421; https://doi.org/10.3390/su17125421 - 12 Jun 2025
Viewed by 859
Abstract
This study aims to optimize daily forecasts of the PM2.5 concentrations in Dakar, Senegal using a long short-term memory (LSTM) neural network model. Particulate matter, aggravated by factors such as dust, traffic, and industrialization, poses a serious threat to public health, especially in [...] Read more.
This study aims to optimize daily forecasts of the PM2.5 concentrations in Dakar, Senegal using a long short-term memory (LSTM) neural network model. Particulate matter, aggravated by factors such as dust, traffic, and industrialization, poses a serious threat to public health, especially in developing countries. Existing models such as the Autoregressive integrated moving average (ARIMA) have limitations in capturing nonlinear relationships and complex dynamics in environmental data. Using four years of daily data collected at the Bel Air station, this study shows that the LSTM neural network model provides more accurate forecasts with a root mean square error (RMSE) of 3.2 μg/m3, whereas the RMSE for ARIMA is about 6.8 μg/m3. The LSTM model predicts reliably up to 7 days in advance, accurately reproducing extreme values, especially during dust event outbreaks and peak travel periods. Computational analysis shows that using Graphical Processing Unit and Tensor Processing Unit processors significantly reduce the execution time, improving the model efficiency while maintaining high accuracy. Overall, these results highlight the usefulness of the LSTM network for air quality prediction and its potential for public health management in Dakar. Full article
(This article belongs to the Special Issue Sustainable Urban Designs to Enhance Human Health and Well-Being)
Show Figures

Figure 1

16 pages, 2965 KB  
Article
Comparison of Selected Ensemble Supervised Learning Algorithms Used for Meteorological Normalisation of Particulate Matter (PM10)
by Karolina Gora and Mateusz Rzeszutek
Sustainability 2025, 17(12), 5274; https://doi.org/10.3390/su17125274 - 7 Jun 2025
Viewed by 727
Abstract
Air pollution, particularly PM10 particulate matter, poses significant health risks related to respiratory and cardiovascular diseases as well as cancer. Accurate identification of PM10 reduction factors is therefore essential for developing effective sustainable development strategies. According to the current state of [...] Read more.
Air pollution, particularly PM10 particulate matter, poses significant health risks related to respiratory and cardiovascular diseases as well as cancer. Accurate identification of PM10 reduction factors is therefore essential for developing effective sustainable development strategies. According to the current state of knowledge, machine learning methods are most frequently employed for this purpose due to their superior performance compared to classical statistical approaches. This study evaluated the performance of three machine learning algorithms—Decision Tree (CART), Random Forest, and Cubist Rule—in predicting PM10 concentrations and estimating long-term trends following meteorological normalisation. The research focused on Tarnów, Poland (2010–2022), with comprehensive consideration of meteorological variability. The results demonstrated superior accuracy for the Random Forest and Cubist models (R2 ~0.88–0.89, RMSE ~14 μg/m3) compared to CART (RMSE 19.96 μg/m3). Air temperature and boundary layer height emerged as the most significant predictive variables across all algorithms. The Cubist algorithm proved particularly effective in detecting the impact of policy interventions, making it valuable for air quality trend analysis. While the study confirmed a statistically significant annual decrease in PM10 concentrations (0.83–1.03 μg/m3), pollution levels still exceeded both the updated EU air quality standards from 2024 (Directive (EU) 2024/2881), which will come into force in 2030, and the more stringent WHO guidelines from 2021. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

18 pages, 5704 KB  
Article
Prediction of Sea Surface Chlorophyll-a Concentrations by Remote Sensing and Deep Learning
by Qingfeng Ruan, Delu Pan, Difeng Wang, Xianqiang He, Fang Gong and Qingjiu Tian
Remote Sens. 2025, 17(10), 1755; https://doi.org/10.3390/rs17101755 - 17 May 2025
Cited by 2 | Viewed by 1423
Abstract
Accurate prediction of the spatiotemporal distribution of chlorophyll-a (Chl-a) is essential for evaluating marine ecosystem health and predicting ecological disasters. Current methods struggle to capture short-term variability and periodic trends in Chl-a, especially in noise-prone coastal regions. This study aims to enhance the [...] Read more.
Accurate prediction of the spatiotemporal distribution of chlorophyll-a (Chl-a) is essential for evaluating marine ecosystem health and predicting ecological disasters. Current methods struggle to capture short-term variability and periodic trends in Chl-a, especially in noise-prone coastal regions. This study aims to enhance the prediction of marine Chl-a concentrations by introducing the chlorophyll-a concentration prediction model (ChlaPM), which was developed on the basis of a convolutional long short-term memory (ConvLSTM) network. The model integrates recent spatiotemporal feature extraction (RSTFE), periodic feature extraction (PFE), and denoising fusion (DNF) modules to effectively capture short-term spatiotemporal changes and periodic variations in Chl-a concentrations. In this study, the performance of ChlaPM in single-step and multistep predictions was evaluated using monthly average Chl-a remote sensing data spanning 1998–2023. The results indicate that compared with the RSTFE model, the ChlaPM model achieves substantial reductions in the root mean square error (RMSE) of 53.84%, 53.58%, and 49.70% for predicting Chl-a concentrations 1 month, 3 months, and 6 months into the future, respectively. These findings highlight the effectiveness of ChlaPM in addressing short-term variability and periodic trends and significantly enhances the accuracy of Chl-a prediction. Future work will focus on integrating additional relevant marine variables into the prediction model to further improve its prediction capabilities. Full article
(This article belongs to the Special Issue Artificial Intelligence for Ocean Remote Sensing (Second Edition))
Show Figures

Graphical abstract

Back to TopTop