Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = long-term in vitro cell culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1248 KiB  
Article
In Vitro Silencing of MHC-I in Keratinocytes by Herpesvirus US11 Protein to Model Alloreactive Suppression
by Frederik Schlottmann, Sarah Strauß, Peter Maria Vogt and Vesna Bucan
Eur. Burn J. 2025, 6(3), 47; https://doi.org/10.3390/ebj6030047 - 21 Aug 2025
Viewed by 29
Abstract
Background: Secondary rejection remains a major obstacle in skin allografting. Some viruses, such as human herpesvirus and cytomegalovirus, evade immune detection through proteins like the unique short glycoprotein 11 (US11), which down-regulates major histocompatibility complex (MHC) class I expression. This study explores the [...] Read more.
Background: Secondary rejection remains a major obstacle in skin allografting. Some viruses, such as human herpesvirus and cytomegalovirus, evade immune detection through proteins like the unique short glycoprotein 11 (US11), which down-regulates major histocompatibility complex (MHC) class I expression. This study explores the use of recombinant US11 protein as a biopharmaceutical approach to reduce MHC-I expression and thus decrease alloreactivity in human primary keratinocytes. Methods: Human keratinocytes were treated with recombinant US11 protein, and MHC-I expression was assessed via Western blot and flow cytometry. To evaluate immunomodulatory effects, US11-stimulated keratinocytes were co-cultured with peripheral blood mononuclear cells (PBMCs), and interferon-gamma (IFN-γ) levels were measured by ELISA. Additionally, ex vivo human skin tissue was stimulated with US11 to assess long-term MHC-I modulation. Results: US11 treatment significantly reduced MHC-I surface expression in keratinocytes. Co-cultures showed decreased IFN-γ secretion, indicating lower T cell activation. Human skin tissue stimulated with US11 exhibited reduced MHC-I expression after 7 days. Conclusions: This proof-of-concept study suggests that recombinant US11 protein may serve as an effective biopharmaceutical to reduce keratinocyte immunogenicity. Further in vitro and in vivo studies are warranted to validate its potential for clinical application in skin transplantation. Full article
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
MicroRNA210 Suppresses Mitochondrial Metabolism and Promotes Microglial Activation in Neonatal Hypoxic–Ischemic Brain Injury
by Shirley Hu, Yanelly Lopez-Robles, Guofang Shen, Elena Liu, Lubo Zhang and Qingyi Ma
Cells 2025, 14(15), 1202; https://doi.org/10.3390/cells14151202 - 5 Aug 2025
Viewed by 605
Abstract
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms [...] Read more.
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms remain elusive. In the present study, using miR210 knockout (KO) mice and microglial cultures, we tested the hypothesis that miR210 promotes microglial activation and neuroinflammation through suppressing mitochondrial function in microglia after HI. Neonatal HI brain injury was conducted on postnatal day 9 (P9) wild-type (WT) and miR210 knockout (KO) mouse pups. We found that miR210 KO significantly reduced brain infarct size at 48 h and improved long-term locomotor functions assessed by an open field test three weeks after HI. Moreover, miR210 KO mice exhibited reduced IL1β levels, microglia activation and immune cell infiltration after HI. In addition, in vitro studies of microglia exposed to oxygen–glucose deprivation (OGD) revealed that miR210 inhibition with LNA reduced OGD-induced expression of Il1b and rescued OGD-mediated downregulation of mitochondrial iron–sulfur cluster assembly enzyme (ISCU) and mitochondrial oxidative phosphorylation activity. To validate the link between miR210 and microglia activation, isolated primary murine microglia were transfected with miR210 mimic or negative control. The results showed that miR210 mimic downregulated the expression of mitochondrial ISCU protein abundance and induced the expression of proinflammatory cytokines similar to the effect observed with ISCU silencing RNA. In summary, our results suggest that miR210 is a key regulator of microglial proinflammatory activation through reprogramming mitochondrial function in neonatal HI brain injury. Full article
(This article belongs to the Special Issue Non-Coding RNAs as Regulators of Cellular Function and Disease)
Show Figures

Figure 1

23 pages, 4112 KiB  
Article
Metabolic Culture Medium Enhances Maturation of Human iPSC-Derived Cardiomyocytes via Cardiac Troponin I Isoform Induction
by Daria V. Goliusova, Agnessa P. Bogomolova, Alina V. Davidenko, Kristina A. Lavrenteva, Margarita Y. Sharikova, Elena A. Zerkalenkova, Ekaterina M. Vassina, Alexandra N. Bogomazova, Maria A. Lagarkova, Ivan A. Katrukha and Olga S. Lebedeva
Int. J. Mol. Sci. 2025, 26(15), 7248; https://doi.org/10.3390/ijms26157248 - 26 Jul 2025
Viewed by 719
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This [...] Read more.
Human induced pluripotent stem cell-derived cardiomyocytes (iCMs) provide a powerful platform for investigating cardiac biology. However, structural, metabolic, and electrophysiological immaturity of iCMs limits their capacity to model adult cardiomyocytes. Currently, no universally accepted criteria or protocols for effective iCMs maturation exist. This study aimed to identify practical culture conditions that promote iCMs maturation, thereby generating more physiologically relevant in vitro cardiac models. We evaluated the effects of short- and long-term culture in media supplemented with various stimulatory compounds under 2D conditions, focusing on intracellular content and localization of slow skeletal troponin I (ssTnI) and cardiac troponin I (cTnI) isoforms. Our findings demonstrate that the multicomponent metabolic maturation medium (MM-1) effectively enhances the transition toward a more mature iCM phenotype, as evidenced by increased cTnI expression and formation of cross-striated myofibrils. iCMs cultured in MM-1 more closely resemble adult cardiomyocytes and are compatible with high-resolution single-cell techniques such as electron microscopy and patch-clamp electrophysiology. This work provides a practical and scalable approach for advancing the maturation of iPSC-derived cardiac models, with applications in disease modeling and drug screening. Full article
Show Figures

Figure 1

20 pages, 3037 KiB  
Article
An Automated Microfluidic Platform for In Vitro Raman Analysis of Living Cells
by Illya Klyusko, Stefania Scalise, Francesco Guzzi, Luigi Randazzini, Simona Zaccone, Elvira Immacolata Parrotta, Valeria Lucchino, Alessio Merola, Carlo Cosentino, Ulrich Krühne, Isabella Aquila, Giovanni Cuda, Enzo Di Fabrizio, Patrizio Candeloro and Gerardo Perozziello
Biosensors 2025, 15(7), 459; https://doi.org/10.3390/bios15070459 - 16 Jul 2025
Viewed by 542
Abstract
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical [...] Read more.
We present a miniaturized, inexpensive, and user-friendly microfluidic platform to support biological applications. The system integrates a mini-incubator providing controlled environmental conditions and housing a microfluidic device for long-term cell culture experiments. The incubator is designed to be compatible with standard inverted optical microscopes and Raman spectrometers, allowing for the non-invasive imaging and spectroscopic analysis of cell cultures in vitro. The microfluidic device, which reproduces a dynamic environment, was optimized to sustain a passive, gravity-driven flow of medium, eliminating the need for an external pumping system and reducing mechanical stress on the cells. The platform was tested using Raman analysis and adherent tumoral cells to assess proliferation prior and subsequent to hydrogen peroxide treatment for oxidative stress induction. The results demonstrated a successful adhesion of cells onto the substrate and their proliferation. Furthermore, the platform is suitable for carrying out optical monitoring of cultures and Raman analysis. In fact, it was possible to discriminate spectra deriving from control and hydrogen peroxide-treated cells in terms of DNA backbone and cellular membrane modification effects provoked by reactive oxygen species (ROS) activity. The 800–1100 cm−1 band highlights the destructive effects of ROS on the DNA backbone’s structure, as its rupture modifies its vibration; moreover, unpaired nucleotides are increased in treated sample, as shown in the 1154–1185 cm−1 band. Protein synthesis deterioration, led by DNA structure damage, is highlighted in the 1257–1341 cm−1, 1440–1450 cm−1, and 1640–1670 cm−1 bands. Furthermore, membrane damage is emphasized in changes in the 1270, 1301, and 1738 cm−1 frequencies, as phospholipid synthesis is accelerated in an attempt to compensate for the membrane damage brought about by the ROS attack. This study highlights the potential use of this platform as an alternative to conventional culturing and analysis procedures, considering that cell culturing, optical imaging, and Raman spectroscopy can be performed simultaneously on living cells with minimal cellular stress and without the need for labeling or fixation. Full article
(This article belongs to the Special Issue Microfluidic Devices for Biological Sample Analysis)
Show Figures

Figure 1

26 pages, 7157 KiB  
Article
Succinimidyl Alginate-Modified Fibrin Hydrogels from Human Plasma for Skin Tissue Engineering
by Ana Matesanz, Raúl Sanz-Horta, Alberto Gallardo, Cristina Quílez, Helmut Reinecke, Pablo Acedo, Diego Velasco, Enrique Martínez-Campos, José Luis Jorcano and Carlos Elvira
Gels 2025, 11(7), 540; https://doi.org/10.3390/gels11070540 - 11 Jul 2025
Viewed by 417
Abstract
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro [...] Read more.
Plasma-derived fibrin hydrogels are widely used in tissue engineering because of their excellent biological properties. Specifically, human plasma-derived fibrin hydrogels serve as 3D matrices for autologous skin graft production, skeletal muscle repair, and bone regeneration. Nevertheless, for advanced applications such as in vitro skin equivalents and engineered grafts, the intrinsic limitations of native fibrin hydrogels in terms of long-term mechanical stability and resistance to degradation need to be addressed to enhance the usefulness and application of these hydrogels in tissue engineering. In this study, we chemically modified plasma-derived fibrin by incorporating succinimidyl alginate (SA), a version of alginate chemically modified to introduce reactive succinimidyl groups. These NHS ester groups (N-hydroxysuccinimide esters), attached to the alginate backbone, are highly reactive toward the primary amine groups present in plasma proteins such as fibrinogen. When mixed with plasma, the NHS groups covalently bond to the amine groups in fibrin, forming stable amide linkages that reinforce the fibrin network during hydrogel formation. This chemical modification improved mechanical properties, reduces contraction, and enhanced the stability of the resulting hydrogels. Hydrogels were prepared with a final fibrinogen concentration of 1.2 mg/mL and SA concentrations of 0.5, 1, 2, and 3 mg/mL. The objective was to evaluate whether this modification could create a more stable matrix suitable for supporting skin tissue development. The mechanical and microstructure properties of these new hydrogels were evaluated, as were their biocompatibility and potential to create 3D skin models in vitro. Dermo-epidermal skin cultures with primary human fibroblast and keratinocyte cells on these matrices showed improved dermal stability and better tissue structure, particularly SA concentrations of 0.5 and 1 mg/mL, as confirmed by H&E (Hematoxylin and Eosin) staining and immunostaining assays. Overall, these results suggest that SA-functionalized fibrin hydrogels are promising candidates for creating more stable in vitro skin models and engineered skin grafts, as well as for other types of engineered tissues, potentially. Full article
Show Figures

Figure 1

17 pages, 5071 KiB  
Article
Defactinib in Combination with Mitotane Can Be an Effective Treatment in Human Adrenocortical Carcinoma
by Henriett Butz, Lőrinc Pongor, Lilla Krokker, Borbála Szabó, Katalin Dezső, Titanilla Dankó, Anna Sebestyén, Dániel Sztankovics, József Tóvári, Sára Eszter Surguta, István Likó, Katalin Mészáros, Andrea Deák, Fanni Fekete, Ramóna Vida, László Báthory-Fülöp, Erika Tóth, Péter Igaz and Attila Patócs
Int. J. Mol. Sci. 2025, 26(13), 6539; https://doi.org/10.3390/ijms26136539 - 7 Jul 2025
Viewed by 653
Abstract
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter [...] Read more.
Adrenocortical carcinoma (ACC) is an aggressive cancer with a poor prognosis. Mitotane, the only FDA-approved treatment for ACC, targets adrenocortical cells and reduces cortisol levels. Although it remains the cornerstone of systemic therapy, its overall impact on long-term outcomes is still a matter of ongoing clinical debate. Drug repurposing is a cost-effective way to identify new therapies, and defactinib, currently in clinical trials as part of combination therapies for various solid tumours, may enhance ACC treatment. We aimed to assess its efficacy in combination with mitotane. We tested the combination of mitotane and defactinib in H295R, SW13, and mitotane-sensitive and -resistant HAC15 cells, using functional assays, transcriptomic profiling, 2D and 3D cultures, bioprinted tissues, and xenografts. We assessed drug interactions with NMR and toxicity in vivo, as mitotane and defactinib have never been previously administered together. Genomic data from 228 human ACC and 158 normal adrenal samples were also analysed. Transcriptomic analysis revealed dysregulation of focal adhesion along with mitotane-related pathways. Focal adhesion kinase (FAK) signalling was enhanced in ACC compared to normal adrenal glands, with PTK2 (encoding FAK) upregulated in 44% of tumour samples due to copy number alterations. High FAK signature scores correlated with worse survival outcomes. FAK inhibition by defactinib, both alone and in combination with mitotane, showed effective anti-tumour activity in vitro. No toxicity or drug—drug interactions were observed in vivo. Combination treatment significantly reduced tumour volume and the number of macrometastases compared to those in the mitotane and control groups, with defactinib-treated tumours showing increased necrosis in xenografts. Defactinib combined with conventionally used mitotane shows promise as a novel combination therapy for ACC and warrants further investigation. Full article
(This article belongs to the Special Issue Signalling Pathways in Metabolic Diseases and Cancers)
Show Figures

Graphical abstract

13 pages, 2392 KiB  
Article
A Novel Single-Layer Microfluidic Device for Dynamic Stimulation, Culture, and Imaging of Mammalian Cells
by Adil Mustafa, Antonella La Regina, Elisa Pedone, Ahmet Erten and Lucia Marucci
Biosensors 2025, 15(7), 427; https://doi.org/10.3390/bios15070427 - 3 Jul 2025
Viewed by 582
Abstract
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies [...] Read more.
The possibility of tightly controlling the cellular microenvironment within microfluidic devices represents an important step toward precision analysis of cellular phenotypes in vitro. Microfluidic platforms that allow both long-term mammalian cell culture and dynamic modulation of the culture environment can support quantitative studies of cells’ responses to drugs. Here, we report the design and testing of a novel microfluidic device of simple production (single Polydimethylsiloxane layer), which integrates a micromixer with vacuum-assisted cell loading for long-term mammalian cell culture and dynamic mixing of four different culture media. Finite element modeling was used to predict flow rates and device dimensions to achieve diffusion-based fluid mixing. The device showed efficient mixing and dynamic exchange of media in the cell-trapping chambers, and viability of mammalian cells cultured for long-term in the device. This work represents the first attempt to integrate single-layer microfluidic mixing devices with vacuum-assisted cell-loading systems for mammalian cell culture and dynamic stimulation. Full article
(This article belongs to the Special Issue Microfluidics for Biomedical Applications (3rd Edition))
Show Figures

Figure 1

22 pages, 1855 KiB  
Article
Taxonomic Profile of Cultivable Microbiota from Adult Sheep Follicular Fluid and Its Effects on In Vitro Development of Prepubertal Lamb Oocytes
by Slavcho Mrenoshki, Letizia Temerario, Antonella Mastrorocco, Grazia Visci, Elisabetta Notario, Marinella Marzano, Nicola Antonio Martino, Daniela Mrenoshki, Giovanni Michele Lacalandra, Graziano Pesole and Maria Elena Dell’Aquila
Animals 2025, 15(13), 1951; https://doi.org/10.3390/ani15131951 - 2 Jul 2025
Viewed by 470
Abstract
The aims of the present study were to analyze the taxonomic profile and to evaluate the functional effects of sheep FF cultivable microbiota on prepubertal lamb oocytes PLOs developmental potential. Ovarian FFs were recovered from slaughtered adult sheep via the aspiration of developing [...] Read more.
The aims of the present study were to analyze the taxonomic profile and to evaluate the functional effects of sheep FF cultivable microbiota on prepubertal lamb oocytes PLOs developmental potential. Ovarian FFs were recovered from slaughtered adult sheep via the aspiration of developing follicles and used for microbiota propagation. Bacterial pellets underwent 16S rRNA gene sequencing and targeted culturomics, whereas cell-free supernatants were used as supplements for the in vitro maturation (IVM) of slaughtered PLOs. For the first time, bacteria presence in adult sheep FF was detected, with the first report of Streptococcus infantarius subsp. infantarius (as a species) and Burkholderia cepacia (as a genus and species) in either animal or human FF. The short- and long-term effects of bacterial metabolites on PLO maturation and embryonic development were demonstrated. As short-term effects, the addition of FF microbiota metabolites did not affect the oocyte nuclear maturation and mitochondria distribution pattern, except in one of the examined supernatants, which reduced all quantitative bioenergetic/oxidative parameters. As long-term effects, one of them reduced the total cleavage rate after in vitro embryo culture (IVC). In conclusion, microbiota/bacteria are present in adult sheep FF and may influence reproductive outcomes in vitro. Future studies may reveal the beneficial in vitro effects using the microbiome from preovulatory follicles. Full article
Show Figures

Figure 1

19 pages, 1241 KiB  
Systematic Review
Therapeutic Potential of Rho Kinase Inhibitors in Corneal Disease: A Systematic Review of Preclinical and Clinical Studies
by Laura Andreea Ghenciu, Diana Andrei, Claudia Borza, Roxana Iacob, Emil Robert Stoicescu, Sorin Lucian Bolintineanu, Daniela Iacob and Ovidiu Alin Haţegan
Biomedicines 2025, 13(7), 1602; https://doi.org/10.3390/biomedicines13071602 - 30 Jun 2025
Viewed by 946
Abstract
Background/Objectives: Rho-associated coiled-coil-containing protein kinase inhibitors (ROCKis) have now become known as modulators of corneal endothelial wound repair and cell survival. However, evidence remains fragmented across laboratory and clinical reports. We performed a systematic review to synthesize preclinical and clinical data on ROCKis [...] Read more.
Background/Objectives: Rho-associated coiled-coil-containing protein kinase inhibitors (ROCKis) have now become known as modulators of corneal endothelial wound repair and cell survival. However, evidence remains fragmented across laboratory and clinical reports. We performed a systematic review to synthesize preclinical and clinical data on ROCKis in corneal disease, assess their efficacy and safety, and identify research gaps. Methods: We searched PubMed, Web of Science, Scopus, and Google Scholar (until May 2025) for English-language original studies evaluating ROCKis in corneal models or patients. Inclusion criteria encompassed in vitro, ex vivo, in vivo, and clinical trials reporting functional outcomes (endothelial cell density, wound closure, visual acuity). Results: Thirty-one studies met criteria: 14 preclinical studies and 17 clinical studies. Preclinical models (rabbit, porcine, human explants) uniformly showed ROCKis (Y-27632, Ripasudil, Netarsudil, H-1152) accelerate corneal endothelial cell proliferation, migration, and restoration of a hexagonal monolayer with improved barrier and pump function over days to weeks. In 17 clinical investigations, topical Ripasudil or Netarsudil and cultured cell injections achieved significant corneal thinning, endothelial cell density and central corneal thickness changes, and visual acuity improvements (≥2 lines) with minimal adverse events. Overall bias was moderate in non-randomized studies and low in the RCTs. Conclusions: ROCKis demonstrate consistent pro-regenerative effects on corneal endothelium in multiple models and show promising clinical efficacy in Fuchs endothelial dystrophy and pseudophakic endothelial failure. Future work should explore novel delivery systems and larger controlled trials to optimize dosing, safety, and long-term outcomes. Full article
(This article belongs to the Special Issue Molecular Research in Ocular Pathology)
Show Figures

Figure 1

16 pages, 1962 KiB  
Article
Influence of RGD in Elastin-Based Coatings on Morphology and Differentiation of Three-Dimensional Adipocyte Spheroids
by Sheetal Chowdhury, Joshua S. Speed, Gene L. Bidwell and Amol V. Janorkar
Coatings 2025, 15(7), 763; https://doi.org/10.3390/coatings15070763 - 27 Jun 2025
Viewed by 420
Abstract
Three-dimensional (3D) in vitro adipocyte models provide physiologically relevant platforms for studying adipogenesis and obesity-related metabolic dysfunction. However, long-term adipocyte culture is often hindered by limited cell–matrix adhesion and spheroid detachment. Previously, we demonstrated that elastin-like polypeptide (ELP)–polyethyleneimine (PEI) coatings functionalized with a [...] Read more.
Three-dimensional (3D) in vitro adipocyte models provide physiologically relevant platforms for studying adipogenesis and obesity-related metabolic dysfunction. However, long-term adipocyte culture is often hindered by limited cell–matrix adhesion and spheroid detachment. Previously, we demonstrated that elastin-like polypeptide (ELP)–polyethyleneimine (PEI) coatings functionalized with a trivalent RGD motif enhanced spheroid retention during frequent media changes. The present study investigates the long-term functional consequences of RGD incorporation over a 28-day culture period. 3T3-L1 preadipocytes were seeded, differentiated, and matured on ELP-PEI or ELP-(RGD)3-PEI coatings. Spheroid morphology, triglyceride content, expression of PPAR-γ, adiponectin, HIF-1α genes, and insulin-stimulated glucose uptake were assessed. Both coatings supported initial spheroid formation, but only ELP-PEI maintained the 3D architecture and supported adipogenic maturation and insulin responsiveness. ELP-(RGD)3-PEI promoted early retention but led to spheroid disassembly by mid-culture; notably, by day 28, cells reaggregated into abnormally large spheroids with impaired metabolic function, likely due to continued proliferation. These findings highlight the critical role of extracellular matrix-mediated cell–cell versus cell–substrate interactions in maintaining 3D culture fidelity. While RGD enhances adhesion, it disrupts spheroid integrity and compromises adipogenic and metabolic maturation. Taken together, ELP-PEI coatings offer a more conducive microenvironment for long-term 3D adipocyte culture and hold promise for modeling obesity-associated metabolic dysfunction in vitro. Full article
Show Figures

Figure 1

22 pages, 2342 KiB  
Article
Poly-(D,L)-Lactide-ε-Caprolactone-Methacrylate Is a Suitable Scaffold Material for In Vitro Cartilage Regeneration
by Michelle Sophie Wunderer, Veronika Sparenberg, Christoph Biehl, Klaus Liefeith and Katrin Susanne Lips
Int. J. Mol. Sci. 2025, 26(12), 5837; https://doi.org/10.3390/ijms26125837 - 18 Jun 2025
Viewed by 411
Abstract
Due to the limited regeneration of cartilage, new implant materials are needed. Biodegradable polymers poly-(D,L)-lactide-ε-caprolactone-methacrylate (LCM) and polyamid-ε-caprolactone-methacrylate (ACM) were recently established and coated with heparin, making them able to prevent blood coagulation and cartilage mineralization. The aim of this study was to [...] Read more.
Due to the limited regeneration of cartilage, new implant materials are needed. Biodegradable polymers poly-(D,L)-lactide-ε-caprolactone-methacrylate (LCM) and polyamid-ε-caprolactone-methacrylate (ACM) were recently established and coated with heparin, making them able to prevent blood coagulation and cartilage mineralization. The aim of this study was to analyze the suitability of LCM and ACM alone or coated with heparin (the latter are abbreviated as LCMH and ACMH, respectively) as implant material for cartilage repair. Therefore, mesenchymal stem cells were chondrogenically differentiated in 2D cultures with polymer discs. Differentiation was induced by the supplementation of cell medium with dimethyloxalylglycine, TGF-β, and BMP2. After 5 days, no increase in proinflammatory factors was observed. Cell viability declined on ACM and ACMH discs. During early chondrogenesis, SOX9 expression increased on LCM and LCMH discs, while TRPV4 expression decreased on ACMH discs. At day 20, the level of collagen type II increased on LCM, LCMH, and ACM discs, demonstrating the ability of chondrogenic development on these implants. In summary, coating with heparin showed no advantages compared to pure LCM and ACM. For cartilage repair, LCM is more suitable than ACM in this 2D in vitro model, which needs to be verified by long-term 3D models and in vivo studies. Full article
(This article belongs to the Special Issue Advances in Molecular Research of Cartilage: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 4805 KiB  
Article
Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins
by María Serrano-Albal, Jon Romero-Aguirregomezcorta, Sebastián Cánovas, Sonia Heras, Joaquín Gadea, Pilar Coy and Raquel Romar
Animals 2025, 15(12), 1763; https://doi.org/10.3390/ani15121763 - 14 Jun 2025
Viewed by 501
Abstract
Assisted reproductive technologies are vital in cattle breeding to improve genetic selection and productivity. While early-life differences between artificially inseminated (AI) and in vitro-produced (IVP) cattle have been studied, long-term physiological, haematological, and biochemical effects remain unclear. This observational study assessed AI and [...] Read more.
Assisted reproductive technologies are vital in cattle breeding to improve genetic selection and productivity. While early-life differences between artificially inseminated (AI) and in vitro-produced (IVP) cattle have been studied, long-term physiological, haematological, and biochemical effects remain unclear. This observational study assessed AI and IVP cattle from 1.5 to 5 years of age to determine if early differences persist. IVP cattle were produced after the transfer of the embryo produced by supplementing (RF-IVP group) or not supplementing (C-IVP) the embryo culture with oviductal and uterine fluids. Physical evaluations showed body mass index increased until 3.5 years, while temperature and respiratory rate declined with age, with no significant differences between AI and IVP groups. Haematological analysis revealed age-related changes, including decreased red and white blood cell counts and increased mean corpuscular volume and haemoglobin. AI cattle had higher white blood cell counts than IVP groups. Sex significantly influenced many haematological variables. Biochemical analysis showed age-related increases in total protein, creatinine, and urea, and decreases in glucose and alkaline phosphatase. AI cattle had lower cholesterol and creatinine than IVP groups. Despite group differences, all values remained within normal ranges. Sex affected albumin, cholesterol, triglycerides, and creatine kinase. This study provides the first long-term haematological and biochemical reference values for cattle from different reproductive methods, showing that age is the main influencing factor and supporting IVP cattle as a viable alternative to AI in breeding programs. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

15 pages, 5607 KiB  
Article
Constructive Neuroengineering of Crossing Multi-Neurite Wiring Using Modifiable Agarose Gel Platforms
by Soya Hagiwara, Kazuhiro Tsuneishi, Naoya Takada and Kenji Yasuda
Gels 2025, 11(6), 419; https://doi.org/10.3390/gels11060419 - 30 May 2025
Cited by 1 | Viewed by 430
Abstract
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. [...] Read more.
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. In this study, we developed a modifiable agarose gel-based platform that enables real-time microstructure fabrication using an infrared (IR) laser system under live-cell conditions. This approach allows for the stepwise construction of directional neurite paths, including sequential microchannel formation, cell chamber fabrication, and controlled neurite–neurite crossings. To support long-term neuronal health and network integrity in agarose microstructures, we incorporated direct glial co-culture into the system. A comparative analysis showed that co-culture significantly enhanced neuronal adhesion, neurite outgrowth, and survival over several weeks. The feeder layer configuration provided localized trophic support while maintaining a clear separation between glial and neuronal populations. Dynamic wiring experiments further confirmed the platform’s precision and compatibility. Neurites extended through newly fabricated channels and crossed pre-existing neurites without morphological damage, even when laser fabrication occurred after initial outgrowth. Time-lapse imaging showed a temporary growth cone stalling at crossing points, followed by successful elongation in all tested samples. Furthermore, the direct laser irradiation of extending neurites during microstructure modification did not visibly impair neurite elongation, suggesting minimal morphological damage under the applied conditions. However, potential effects on molecular signaling and electrophysiological function remain to be evaluated in future studies. Together, these findings establish a powerful, flexible system for constructive neuroengineering. The platform supports long-term culture, real-time modification, and multidirectional wiring, offering new opportunities for studying neural development, synaptic integration, and regeneration in vitro. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

20 pages, 1742 KiB  
Review
Developments and Applications of Liver-on-a-Chip Technology—Current Status and Future Prospects
by Joseph Mugaanyi, Jing Huang, Jiongze Fang, Arthur Musinguzi, Caide Lu and Zaozao Chen
Biomedicines 2025, 13(6), 1272; https://doi.org/10.3390/biomedicines13061272 - 22 May 2025
Viewed by 1580
Abstract
Background/Objectives: Liver-on-a-chip (LiOC) technology is increasingly recognized as a transformative platform for modeling liver biology, disease mechanisms, drug metabolism, and toxicity screening. Traditional two-dimensional (2D) in vitro models lack the complexity needed to replicate the liver’s unique microenvironment. This review aims to [...] Read more.
Background/Objectives: Liver-on-a-chip (LiOC) technology is increasingly recognized as a transformative platform for modeling liver biology, disease mechanisms, drug metabolism, and toxicity screening. Traditional two-dimensional (2D) in vitro models lack the complexity needed to replicate the liver’s unique microenvironment. This review aims to summarize recent advancements in LiOC systems, emphasizing their potential in biomedical research and translational applications. Methods: This narrative review synthesizes findings from key studies on the development and application of LiOC platforms. We explored innovations in material science and bioengineering, including microfluidic design, 3D printing, stem cell– and tissue-derived liver organoid integration, and co-culture strategies. Commercially available LiOC systems and their regulatory relevance were also evaluated. Results: LiOC systems have evolved from simple PDMS-based chips to complex, multicellular constructs incorporating hepatocytes, endothelial cells, Kupffer cells, and hepatic stellate cells. Recent studies demonstrate their superior ability to replicate liver-specific architecture and functions. Applications span cancer research, drug toxicity assessment (e.g., drug-induced liver injury prediction with >85% sensitivity), disease modeling, and regenerative medicine. Several platforms have gained FDA recognition and are in active use for preclinical drug testing. Conclusions: LiOC technology offers a more physiologically relevant alternative to traditional models and holds promise for reducing reliance on animal studies. While challenges remain, such as vascularization and long-term function, ongoing advancements are paving the way toward clinical and pharmaceutical integration. The technology is poised to play a key role in personalized medicine and next-generation therapeutic development. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

20 pages, 14790 KiB  
Article
Gap Junctional Interaction of Endothelial Progenitor Cells (EPC) with Endothelial Cells Induces Angiogenic Network Formation In Vitro
by Christina Buchberger, Petra Kameritsch, Hanna Mannell, Heike Beck, Ulrich Pohl and Kristin Pogoda
Int. J. Mol. Sci. 2025, 26(10), 4827; https://doi.org/10.3390/ijms26104827 - 18 May 2025
Viewed by 448
Abstract
Endothelial progenitor cells (EPC) are considered to support neovascularization and endothelial repair by being incorporated into newly formed or injured vessels and by improving vascularization in a paracrine manner by secreting proangiogenic factors. Here, we studied the role of gap junctional communication between [...] Read more.
Endothelial progenitor cells (EPC) are considered to support neovascularization and endothelial repair by being incorporated into newly formed or injured vessels and by improving vascularization in a paracrine manner by secreting proangiogenic factors. Here, we studied the role of gap junctional communication between EPC and endothelial cells in long-term co-cultures in vitro. The cultivation of endothelial cells together with mouse embryonic EPC (E 7.5) induced the spontaneous formation of angiogenic networks after 3–6 days consisting of both cell types, but not in the respective monocultures, whereas their respective cultivation on a basement matrix induced the formation of tube-like structures, as expected. The angiogenic network formation could not be mimicked by the incubation of endothelial cells with supernatants of EPC only. We therefore hypothesized that direct interaction and cell-cell communication is required to induce the angiogenic network formation in co-cultures with endothelial cells. Expression analysis demonstrated expression of the gap junctional protein connexin 43 (Cx43) in EPC. Moreover, dye injection studies as well as FACS analysis identified gap junctional communication between endothelial cells and EPC. The inhibition of gap junctions by pharmacological blockers significantly reduced the angiogenic network formation, confirming that gap junctional communication between both cell types is required for this process. Full article
Show Figures

Figure 1

Back to TopTop