Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = long-read assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 327
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

21 pages, 9690 KiB  
Article
Comparative Transcriptomic Analysis for Identification of Environmental-Responsive Genes in Seven Species of Threadfin Breams (Nemipterus)
by Zhaoke Dang, Qiaer Wu, Yanbo Zhou, Liangming Wang, Yan Liu, Changping Yang, Manting Liu, Qijian Xie, Cheng Chen, Shengwei Ma and Binbin Shan
Int. J. Mol. Sci. 2025, 26(15), 7118; https://doi.org/10.3390/ijms26157118 - 23 Jul 2025
Viewed by 193
Abstract
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying [...] Read more.
Members of the genus Nemipterus are economically important fish species distributed in the tropical and subtropical Indo-West Pacific region. The majority of species in this genus inhabit waters with sandy–muddy substrates on the continental shelf, although different species are found at slightly varying water depths. In this study, we sequenced seven species within the genus Nemipterus after identifying the specimens using complementary morphological analysis and DNA barcoding. Each species yielded over 40,000,000 clean reads, totaling over 300,000,000 clean reads across the seven species. A total of 276,389 unigenes were obtained after de novo assembly and a total of 168,010 (60.79%) unigenes were annotated in the protein database. The comprehensive functional annotation based on the KOG, GO, and KEGG databases revealed that these unigenes are mainly associated with numerous physiological, metabolic, and molecular processes, and that the seven species exhibit similarity in these aspects. By constructing a phylogenetic tree and conducting divergence time analysis, we found that N. bathybius and N. virgatus diverged most recently, approximately during the Neogene Period (14.9 Mya). Compared with other species, N. bathybius and N. virgatus are distributed in deeper water layers. Therefore, we conducted selection pressure analysis using these two species as the foreground branches and identified several environmental-responsive genes. The results indicate that genes such as aqp1, arrdc3, ISP2, Hip, ndufa1, ndufa3, pcyt1a, ctsk, col6a2, casp2 exhibit faster evolutionary rates during long-term adaptation to deep-water environments. Specifically, these genes are considered to be associated with adaptation to aquatic osmoregulation, temperature fluctuations, and skeletal development. This comprehensive analysis provides valuable insights into the evolutionary biology and environmental adaptability of threadfin breams, contributing to the conservation and sustainable management of these species. Full article
Show Figures

Figure 1

22 pages, 3350 KiB  
Article
De Novo Hybrid Assembly of the Tripterygium wilfordii Mitochondrial Genome Provides the Chromosomal Mitochondrial DNA Structure and RNA Editing Events
by Yisha Cai, Suxin Yang, Haimei Chen, Yang Ni, Jingling Li, Jinghong Zhang and Chang Liu
Int. J. Mol. Sci. 2025, 26(15), 7093; https://doi.org/10.3390/ijms26157093 - 23 Jul 2025
Viewed by 155
Abstract
Tripterygium wilfordii has extremely important pharmaceutical value in both traditional and modern medicine. The mitogenome of T. wilfordii was subjected to assembly and annotation with Nanopore long reads and Illumina short reads in this study. The mitogenome is 720,306 bp in length and [...] Read more.
Tripterygium wilfordii has extremely important pharmaceutical value in both traditional and modern medicine. The mitogenome of T. wilfordii was subjected to assembly and annotation with Nanopore long reads and Illumina short reads in this study. The mitogenome is 720,306 bp in length and is responsible for encoding 55 specific genes, including 35 protein-coding genes (PCGs), 17 transfer RNA (tRNA) genes, and 3 ribosomal RNA (rRNA) genes. Upon repetitive sequence analysis, 223 simple sequence repeats (SSRs), 24 long tandem repeats (LTRs), and 47 dispersed repetitive sequences (DRSs) were identified. The 24 common PCGs were used for phylogenetic analysis, which revealed that T. wilfordii is more closely related to Euonymus alatus. Moreover, mitochondrial plastid DNA (MTPT) analysis revealed eight MTPTs in the mitochondrial genome. Furthermore, 600 RNA-editing sites were detected in the protein-coding genes according to RNA-seq results. Among these genes, the ccmB gene contained the greatest number of sites, followed by the nad4 gene. This is the first study to report the T. wilfordii mitogenome and illustrate its linear structure. The findings of this study will help elucidate the evolution of the T. wilfordii mitogenome and facilitate its potential application in genetic breeding. Full article
(This article belongs to the Collection Feature Papers in Molecular Informatics)
Show Figures

Figure 1

14 pages, 4833 KiB  
Article
A High-Quality Chromosome-Level Genome Assembly and Comparative Analyses Provide Insights into the Adaptation of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae)
by Dan Zhang, Liangliang Li, Junchao Ma, Jianfeng Jin, Chunli Ding, Qiang Fang, Jianjun Jin, Zhulidezi Aishan and Xuebo Li
Biology 2025, 14(8), 913; https://doi.org/10.3390/biology14080913 - 22 Jul 2025
Viewed by 152
Abstract
Chrysomya megacephala, as one of the common blowflies, displays biological characteristics, such as ovoviviparity and carrion-feeding adaptation. Thus, this species is generally considered of significant ecological, medical, and forensic importance. However, without a high-quality pseudo-chromosome genome for C. megacephala, elucidating its [...] Read more.
Chrysomya megacephala, as one of the common blowflies, displays biological characteristics, such as ovoviviparity and carrion-feeding adaptation. Thus, this species is generally considered of significant ecological, medical, and forensic importance. However, without a high-quality pseudo-chromosome genome for C. megacephala, elucidating its evolutionary trajectory proved difficult. Herein, we assembled and analyzed a high-quality chromosome-level genome assembly of the C. megacephala, combined with PacBio HiFi long reads, Hi-C data, and Illumina reads. The pseudo-chromosomes assembly of C. megacephala spans 629.44 Mb, with 97.05% anchored to five chromosomes. Final assembly includes 1056 contigs (N50 = 1.68 Mb), and 97 scaffolds (N50 = 121.37 Mb), achieving 98.90% BUSCO completeness (n = 1367). Gene annotation predicted 17,071 protein-coding genes (95.60% BUSCO completeness), while repeat masking identified 244.26 Mb (38.82%) as repetitive elements. Additionally, 3740 non-coding RNAs were characterized. Gene family analyses resulted in 10,579 gene families, containing 151 gene families that experienced rapid evolution. Comparative genomic analyses showed that the expanded genes are related to reproduction and necrophagous habits. In addition, we annotated the gene family P450s, CCEs, IRs, GRs, and ORs, all of which represent remarkable expansion, playing a crucial role in the mechanism of locating the hosts for forensic insects. Our research establishes a high-quality genome sequence to facilitate subsequent molecular investigations into significant species within forensic entomology. Full article
Show Figures

Figure 1

19 pages, 12441 KiB  
Article
Mitogenome Characteristics and Intracellular Gene Transfer Analysis of Four Adansonia Species
by Tingting Hu, Fengjuan Zhou, Lisha Wang, Xinwei Hu, Zhongxiang Li, Xinzeng Li, Daoyuan Zhou and Hui Wang
Genes 2025, 16(7), 846; https://doi.org/10.3390/genes16070846 - 21 Jul 2025
Viewed by 223
Abstract
Adansonia L. (1753) belongs to the family Malvaceae and is commonly known as the baobab tree. This species holds significant cultural and ecological value and is often referred to as the ‘tree of life.’ Although its nuclear genome has been reported, the mitogenome [...] Read more.
Adansonia L. (1753) belongs to the family Malvaceae and is commonly known as the baobab tree. This species holds significant cultural and ecological value and is often referred to as the ‘tree of life.’ Although its nuclear genome has been reported, the mitogenome has not yet been studied. Mitogenome research is crucial for understanding the evolution of the entire genome. In this study, we assembled and analyzed the mitogenomes of four Adansonia species by integrating short-read and long-read data. The results showed that the mitogenomes of all four Adansonia species were resolved as single circular sequences. Their total genome lengths ranged from 507,138 to 607,344 bp and contained a large number of repetitive sequences. Despite extensive and complex rearrangements between the mitogenomes of Adansonia and other Malvaceae species, a phylogenetic tree constructed based on protein-coding genes clearly indicated that Adansonia is more closely related to the Bombax. Selection pressure analysis suggests that the rps4 gene in Adansonia may have undergone positive selection compared to other Malvaceae species, indicating that this gene may play a significant role in the evolution of Adansonia. Additionally, by analyzing intracellular gene transfer between the chloroplast, mitochondria, and nuclear genomes, we found that genes from the chloroplast and mitochondria can successfully transfer to each chromosome of the nuclear genome, and the psbJ gene from the chloroplast remains intact in both the mitochondrial and nuclear genomes. This study enriches the genetic information of Adansonia and provides important evidence for evolutionary research in the family Malvaceae. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2374 KiB  
Article
The Complete Genomes of Microcystis ichthyoblabe Kützing and Microcystis protocystis (Crow) Komárek & Anagnostidis Reveal the Complexity and Plasticity of Microcystis Genomes
by Jina Kim, Hyaekang Kim, Jaeduk Goh, Seung Won Nam, Eu Jin Chung, Miyoung Shin, Donghyeok Seol, Ki Hwan Kim and Woori Kwak
Microorganisms 2025, 13(7), 1693; https://doi.org/10.3390/microorganisms13071693 - 18 Jul 2025
Viewed by 459
Abstract
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the [...] Read more.
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the genus. In this study, we present the first complete genome sequences of two morphospecies, M. ichthyoblabe FBCC-A1114 and M. protocystis FBCC-A270. Using long-read sequencing, both genomes were assembled into single circular chromosomes of 5.84 Mb and 5.76 Mb, respectively. Phylogenetic analyses placed both strains within genospecies G, alongside M. aeruginosa and M. viridis. Comparative analysis of biosynthetic gene clusters revealed that, while most genospecies G members harbor aeruginosin, cyanobactin, and microviridin gene clusters, the two newly sequenced strains lack cyanobactin and microcystin clusters but retain the microginin cluster. Synteny analysis demonstrated high structural conservation between the two genomes, while notable structural variations were observed when compared with M. aeruginosa NIES-298. These findings reveal both functional and structural plasticity within the genospecies, suggesting ecotype diversification driven by environmental adaptation. The newly assembled genomes provide critical resources to refine classification frameworks and advance our understanding of Microcystis genomic diversity. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 600 KiB  
Review
Long-Read Sequencing and Structural Variant Detection: Unlocking the Hidden Genome in Rare Genetic Disorders
by Efthalia Moustakli, Panagiotis Christopoulos, Anastasios Potiris, Athanasios Zikopoulos, Despoina Mavrogianni, Grigorios Karampas, Nikolaos Kathopoulis, Ismini Anagnostaki, Ekaterini Domali, Alexandros T. Tzallas, Peter Drakakis and Sofoklis Stavros
Diagnostics 2025, 15(14), 1803; https://doi.org/10.3390/diagnostics15141803 - 17 Jul 2025
Viewed by 452
Abstract
Rare genetic diseases are often caused by structural variants (SVs), such as insertions, deletions, duplications, inversions, and complex rearrangements. However, due to the technical limitations of short-read sequencing, these variants remain underdiagnosed. Long-read sequencing technologies, including Oxford Nanopore and Pacific Biosciences high-fidelity (HiFi), [...] Read more.
Rare genetic diseases are often caused by structural variants (SVs), such as insertions, deletions, duplications, inversions, and complex rearrangements. However, due to the technical limitations of short-read sequencing, these variants remain underdiagnosed. Long-read sequencing technologies, including Oxford Nanopore and Pacific Biosciences high-fidelity (HiFi), have recently advanced to the point that they can accurately find SVs throughout the genome, including in previously unreachable areas like repetitive sequences and segmental duplications. This study underscores the transformative role of long-read sequencing in diagnosing rare diseases, emphasizing the bioinformatics tools designed for detecting and interpreting structural variants (SVs). Comprehensive methods are reviewed, including methylation profiling, RNA-seq, phasing analysis, and long-read sequencing. The effectiveness and applications of well-known tools like Sniffles2, SVIM, and cuteSV are also assessed. Case studies illustrate how this technique has revealed new pathogenic pathways and solved cases that were previously undetected. Along with outlining potential future paths like telomere-to-telomere assemblies and pan-genome integration, we also address existing issues, including cost, clinical validation, and computational complexity. For uncommon genetic illnesses, long-read sequencing has the potential to completely change the molecular diagnostic picture as it approaches clinical adoption. Full article
(This article belongs to the Special Issue Challenges in Monitoring and Diagnosis in Medical Sciences)
Show Figures

Figure 1

16 pages, 1945 KiB  
Article
Assembly and Comparative Analysis of Complete Mitochondrial Genome Sequence of Endangered Medicinal Plant Trichopus zeylanicus
by Biju Vadakkemukadiyil Chellappan, P. R. Shidhi, Anu Sasi, Rashid Ismael Hag Ibrahim and Hamad Abu Zahra
Curr. Issues Mol. Biol. 2025, 47(7), 553; https://doi.org/10.3390/cimb47070553 - 16 Jul 2025
Viewed by 284
Abstract
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read [...] Read more.
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read sequencing technologies, followed by extensive annotation and comparative analysis. The circular mitogenome spans 709,127 bp with a GC content of 46%, encoding 32 protein-coding genes, 17 tRNAs, and three rRNAs. Comparative analysis with other monocot mitochondrial genomes revealed conserved gene clusters but also significant lineage-specific rearrangements. Despite genome size similarities, T. zeylanicus displayed marked divergence in gene order, suggesting that genome size does not necessarily correlate with structural conservation. The genome contains 6.7% chloroplast-derived sequences and 324 predicted RNA-editing sites, predominantly in the first and second codon positions. Phylogenetic analysis based on mitochondrial genes placed T. zeylanicus as a distinct lineage within Dioscoreales, supporting its evolutionary uniqueness. This work provides the first mitogenomic resource for Dioscoreales and advances our understanding of mitochondrial diversity and evolution in monocots. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Graphical abstract

13 pages, 1126 KiB  
Article
Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae)
by Jemma Hudson, Sunita B. Sumanam, Bronwyn E. Campbell, Lachlan Coff, Barbara F. Nowak, Paul A. Ramsland, Neil D. Young and Nathan J. Bott
Pathogens 2025, 14(7), 680; https://doi.org/10.3390/pathogens14070680 - 10 Jul 2025
Viewed by 353
Abstract
Parasitic diseases can be a significant constraint on aquaculture industries, which continue to develop in response to the rise in global demand for sustainable protein sources. Blood flukes, Cardicola forsteri and Cardicola orientalis, are economically significant parasites of Southern bluefin tuna (Australia), [...] Read more.
Parasitic diseases can be a significant constraint on aquaculture industries, which continue to develop in response to the rise in global demand for sustainable protein sources. Blood flukes, Cardicola forsteri and Cardicola orientalis, are economically significant parasites of Southern bluefin tuna (Australia), Pacific bluefin tuna (Japan), and Atlantic bluefin tuna (Mediterranean) as they are responsible for blood vessel obstruction in the gills leading to branchitis and mortalities when untreated. Here, we have defined the mitochondrial genomes for these species—the first for any aporocotylids. Oxford nanopore long-read sequencing was used to sequence C. orientalis from a single individual. The mitochondrial genome of C. forsteri was assembled and curated from available sequence data. Both Cardicola spp. mitogenomes contained 12 protein coding, 2 ribosomal and 22 tRNA genes, with the gene order matching that of Asian schistosomes. A control region was identified for each species which contained long and short repeats; the region for C. forsteri was longest, and the overall pattern differed between the two species. A surprisingly high nucleotide diversity was observed between the two species, generating interest into the mitochondrial genes of related species. This paper provides a useful resource for future genetics-based research of aporocotylids and other flatworm parasites of socioeconomic significance. Full article
(This article belongs to the Special Issue Genomic Insights into Parasites of Fishes)
Show Figures

Figure 1

33 pages, 498 KiB  
Review
Functional Genomics: From Soybean to Legume
by Can Zhou, Haiyan Wang, Xiaobin Zhu, Yuqiu Li, Bo Zhang, Million Tadege, Shihao Wu, Zhaoming Qi and Zhengjun Xia
Int. J. Mol. Sci. 2025, 26(13), 6323; https://doi.org/10.3390/ijms26136323 - 30 Jun 2025
Viewed by 486
Abstract
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, [...] Read more.
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, with low fat content (primarily unsaturated fats) and no cholesterol, making them essential for cardiovascular health and blood sugar management. Since the release of the soybean genome in 2010, genomic research in Fabaceae has advanced dramatically. High-quality reference genomes have been assembled for key species, including soybeans (Glycine max), common beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and model legumes like Medicago truncatula and Lotus japonicus, leveraging long-read sequencing, single-cell technologies, and improved assembly algorithms. These advancements have enabled telomere-to-telomere (T2T) assemblies, pan-genome constructions, and the identification of structural variants (SVs) and presence/absence variations (PAVs), enriching our understanding of genetic diversity and domestication history. Functional genomic tools, such as CRISPR-Cas9 gene editing, mutagenesis, and high-throughput omics (transcriptomics, metabolomics), have elucidated regulatory networks controlling critical traits like photoperiod sensitivity (e.g., E1 and Tof16 genes in soybeans), seed development (GmSWEET39 for oil/protein transport), nitrogen fixation efficiency, and stress resilience (e.g., Rpp3 for rust resistance). Genome-wide association studies (GWAS) and comparative genomics have further linked genetic variants to agronomic traits, such as pod size in peanuts (PSW1) and flowering time in common beans (COL2). This review synthesizes recent breakthroughs in legume genomics, highlighting the integration of multi-omic approaches to accelerate gene cloning and functional confirmation of the genes cloned. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
12 pages, 1229 KiB  
Article
Methodology for Extracting High-Molecular-Weight DNA from Field Collections of Macrofungi
by Leigh A. Burgoyne, Andy R. Nilsen, Teresa Lebel, Pamela S. Catcheside, Tom W. May, David Orlovich, Alan Kuo, Anna Lipzen, Kurt Labutti, Robert Riley, William Andreopoulos, Maxim Koriabine, Mi Yan, Vivian Ng, Igor V. Grigoriev and David E. A. Catcheside
J. Fungi 2025, 11(7), 490; https://doi.org/10.3390/jof11070490 - 27 Jun 2025
Viewed by 362
Abstract
Many macrofungi are impractical or impossible to culture. Consequently, DNA for long-read sequencing required for the assembly of high-quality genomes must be isolated from samples taken from the environment. Collection is often in remote locations, limiting the options for stabilising samples to methods [...] Read more.
Many macrofungi are impractical or impossible to culture. Consequently, DNA for long-read sequencing required for the assembly of high-quality genomes must be isolated from samples taken from the environment. Collection is often in remote locations, limiting the options for stabilising samples to methods that do not require refrigeration. Fungi contain species-specific arrays of metabolites that may complicate purification techniques and call for judgement to be made to apply appropriate modifications to the DNA extraction protocol in specific cases. The protocols and commentary we describe are informed by the preparation of DNA from a range of Australasian ectomycorrhizal and saprotrophic macrofungi. We collect samples into isopropanol at ambient temperature and employ a strategy of chromatin isolation followed by the sequential removal of unwanted molecular components to purify DNA. Full article
Show Figures

Figure 1

16 pages, 3047 KiB  
Article
Chromosome-Level Genome and Variation Map of Eri Silkworm Samia cynthia ricini
by Kunpeng Lu, Jianghong Shen, Wengong Huang, Chengyu Zhan, Zhengqing Li, Shubo Liang, Kerui Lai, Qun Luo, Minjin Han, Xiaoling Tong and Fangyin Dai
Biology 2025, 14(6), 698; https://doi.org/10.3390/biology14060698 - 14 Jun 2025
Viewed by 569
Abstract
The eri silkworm Samia cynthia ricini (S. ricini) is an economically and scientifically significant lepidopteran species, though its genomic resources have remained limited. Here, we present a chromosome-level genome assembly for S. ricini generated through integrated long-read, short-read, and Hi-C sequencing [...] Read more.
The eri silkworm Samia cynthia ricini (S. ricini) is an economically and scientifically significant lepidopteran species, though its genomic resources have remained limited. Here, we present a chromosome-level genome assembly for S. ricini generated through integrated long-read, short-read, and Hi-C sequencing data. The final 456.16 Mb assembly spans 14 chromosomes, exhibiting 98.5% BUSCO completeness and a 48.51% repetitive content. Functional annotation of the 15,729 protein-coding genes against five major databases (NR, SwissProt, Pfam, GO, and KEGG) revealed a maximum annotation rate of 92.71%, demonstrating high gene set quality. Comparative genomics with B. mori uncovered conserved syntenic blocks interspersed with chromosomal fusion/fission events and inversions. We further identified 4.27 million SNPs, 1.02 million InDels, and 53,367 SVs, establishing the first comprehensive variation map for this species. These genomic variations provide a foundation for marker-assisted breeding programs and trait association studies. All the genomic resources and interactive visualization tools were integrated into the SilkMeta database. This study establishes S. ricini as a pivotal resource for comparative lepidopteran genomics and accelerates molecular breeding programs for this agriculturally valuable insect. Full article
Show Figures

Figure 1

8 pages, 4134 KiB  
Communication
Genomic and Virulence Characteristics of Brucella intermedia Isolated from Hospital Wastewater in Ghana
by Runa Furuya, Satomi Takei, Yoko Tabe, Anthony Ablordey and Ryoichi Saito
Pathogens 2025, 14(6), 522; https://doi.org/10.3390/pathogens14060522 - 23 May 2025
Viewed by 659
Abstract
Brucella intermedia, a gram-negative, non-lactose-fermenting, aerobic, rod-shaped bacterium, is found in environmental sources (e.g., soil and water). In 2020, Ochrobactrum was reclassified as Brucella. We conducted a genomic analysis of B. intermedia from hospital wastewater samples in western Ghana. A hybrid [...] Read more.
Brucella intermedia, a gram-negative, non-lactose-fermenting, aerobic, rod-shaped bacterium, is found in environmental sources (e.g., soil and water). In 2020, Ochrobactrum was reclassified as Brucella. We conducted a genomic analysis of B. intermedia from hospital wastewater samples in western Ghana. A hybrid genome assembly was constructed integrating short-read data from DNA Nanoball sequencing with long-read sequences generated by Oxford Nanopore MinION technology. Identification and antimicrobial susceptibility profiles were determined using MicroScan autoSCAN-4 based on Clinical and Laboratory Standard Institute documents. ResFinder and CARD Resistance Gene Identifier (RGI) were used to identify antimicrobial resistance (AMR) genes, and BLAST and VFDB datasets were used to identify virulence factor genes. The complete genome had two chromosomes, no plasmid, and a high average nucleotide identity value (98.05%) with B. intermedia. Resistance to trimethoprim-sulfamethoxazole was revealed, the first report in this species. CARD RGI revealed the presence of AMR genes, including ANT(9)-Ic and adeF. Local BLAST analysis revealed Cgs, a B. melitensis virulence factor. B. intermedia is an opportunistic human pathogen clinically isolated several times, suggesting the importance of accurately identifying multidrug resistance. B. intermedia may possess virulence factors similar to those of B. melitensis. Further study is needed to fully elucidate its pathogenesis. Full article
(This article belongs to the Special Issue Bacterial Pathogenesis and Antibiotic Resistance)
Show Figures

Figure 1

20 pages, 9041 KiB  
Article
De Novo Assembly and Comparative Analysis of the Mitochondrial Genomes for Six Rubus Species
by Yujie Shi, Zhen Chen, Jingyong Jiang, Qianfan Li and Wei Zeng
Horticulturae 2025, 11(5), 559; https://doi.org/10.3390/horticulturae11050559 - 21 May 2025
Viewed by 472
Abstract
Rubus is a genus of small berry-producing shrubs, valued for their medicinal properties and as a food source. This genus is a large, globally distributed group that includes over 700 species. Despite numerous plastid and nuclear genomes having been reported for Rubus, [...] Read more.
Rubus is a genus of small berry-producing shrubs, valued for their medicinal properties and as a food source. This genus is a large, globally distributed group that includes over 700 species. Despite numerous plastid and nuclear genomes having been reported for Rubus, there is a notable lack of research on its mitogenomes. We utilized PMAT to assemble the mitogenomes of six Rubus species according to long-read HiFi reads and annotated them through homologous alignment. Subsequently, we compared their characteristic differences within Rubus mitogenomes. The complete mitogenomes of R. parviflorus, R. spectabilis, R. idaeus, R. armeniacus, and R. caesius all exhibit master circle structures, with lengths ranging from 360,869 bp to 447,754 bp. However, R. chamaemorus displays a double-circle structure composed of two small circular molecules, spanning 392,134 bp. These mitogenomes encode a total of 54–61 genes, including 33–34 PCGs, 17–24 tRNAs, and 3 rRNA genes. Compared to the other five Rubus species, R. chamaemorus has fewer sequence repeats. These six species exhibit similar codon usage patterns. A large number of gene transfers were detected between organellar genomes of six Rubus species. Additionally, two phylogenetic trees were constructed using 31 mitogenomes and 94 chloroplast genomes, revealing a minor conflict within Rubus. Overall, this study clarifies the mitogenome characteristics of Rubus and provides valuable insights into the evolution of the genus. Full article
(This article belongs to the Special Issue Fruit Tree Physiology and Molecular Biology)
Show Figures

Figure 1

14 pages, 1752 KiB  
Article
Deciphering the First Mitochondrial Genome of the Liolophura Pilsbry, 1893 Genus: An Extensive Phylogenetic Study Within the Chitonidae Family
by Qianqian Zhou, Zhiyong Liu, Weifeng Dong, Bingpeng Xing, Site Luo and Peng Xiang
Genes 2025, 16(5), 606; https://doi.org/10.3390/genes16050606 - 20 May 2025
Viewed by 497
Abstract
Background: The Polyplacophora class, which includes all chitons, is distinguished by its unique eight-piece interlocking armor, showcasing a vast diversity in marine environments. However, the detailed evolutionary relationships within the Chitonidae family remain largely unknown. The mitochondrial genome is essential for understanding [...] Read more.
Background: The Polyplacophora class, which includes all chitons, is distinguished by its unique eight-piece interlocking armor, showcasing a vast diversity in marine environments. However, the detailed evolutionary relationships within the Chitonidae family remain largely unknown. The mitochondrial genome is essential for understanding these relationships, but there has been a significant lack of such genomic information, especially for the Liolophura genus. Methods: We generated the first mitogenome of Liolophura japonica by assembling Illumina reads with GetOrganelle, polishing with Pilon, annotating genes with MitoZ and MITOS2, and inferring phylogeny from 13 concatenated protein-coding genes (PCGs) using MAFFT and IQ-TREE. Results: The mitogenome is 15,209 base pairs long and includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs. The mitogenome exhibited a slight AT bias common in Chitonidae and showcased structural uniqueness with no control region found. Notably, all protein-coding genes demonstrated evidence of purifying selection, with Ka/Ks ratios below 1, highlighting evolutionary conservation. Phylogenetic analysis reveals a close relationship between L. japonica, Acanthopleura loochooana Broderip & Sowerby 1829, and Acanthopleura vaillantii Rochebrune, 1882, potentially warranting future taxonomic re-evaluation. This research emphasizes the crucial role of mitochondrial genomes in mollusk phylogeny and sets the stage for advanced genetic studies within this group. Conclusions: The significance of this study lies in its contribution to understanding the mitochondrial genome of L. japonica, a key species within the Polyplacophora class. By analyzing its mitogenome, we aim to enhance our understanding of evolutionary processes in chitons and other mollusks. Full article
Show Figures

Figure 1

Back to TopTop