Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction (C. orientalis)
2.3. DNA Amplification and Size Selection (C. orientalis)
2.4. Library Preparation and Sequencing
2.5. Assembly and Annotation of Mitochondrial Genomes
2.6. Control Region Length
2.7. Nucleotide Diversity
2.8. Phylogenetics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Orélis-Ribeiro, R.; Arias, C.R.; Halanych, K.M.; Cribb, T.H.; Bullard, S.A. Diversity and ancestry of flatworms infecting blood of Nontetrapod Craniates “Fishes”. Adv. Parasit. 2014, 85, 1–64. [Google Scholar] [CrossRef]
- Balli-Garza, J.; Mladineo, I.; Shirakashi, S.; Nowak, B. Diseases in Tuna Aquaculture. In Advances in Tuna Aquaculture: From Hatchery to Market; Benetti, D., Partridge, G., Buentello, A., Eds.; Academic Press: Cambridge, CA, USA, 2016; pp. 253–272. [Google Scholar]
- Ogawa, K. Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). Parasitology 2015, 142, 178–195. [Google Scholar] [CrossRef] [PubMed]
- Cribb, T.H.; Daintith, M.; Munday, B. A new blood-fluke, Cardicola forsteri, (Digenea: Sanguinicolidae) of Southern blue-fin tuna (Thunnus Maccoyii) in aquaculture. Trans. R. Soc. S. Aust. 2000, 124, 117–120. [Google Scholar]
- Shirakashi, S.; Tsunemoto, K.; Webber, C.; Rough, K.; Ellis, D.; Ogawa, K. Two Species of Cardicola (Trematoda: Aporocotylidae) found in Southern bluefin Tuna Thunnus maccoyii ranched in South Australia. Fish. Pathol. 2013, 48, 1–4. [Google Scholar] [CrossRef]
- Polinski, M.; Hamilton, D.B.; Nowak, B.F.; Bridle, A. SYBR, TaqMan, or both: Highly sensitive, non-invasive detection of Cardicola blood fluke species in Southern Bluefin Tuna (Thunnus maccoyii). Mol. Biochem. Parasit. 2013, 191, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Ishimaru, K.; Shirakashi, S.; Takami, I.; Grabner, D. Cardicola opisthorchis n. sp. (Trematoda: Aporocotylidae) from the Pacific bluefin tuna, Thunnus orientalis (Temminck & Schlegel, 1844), cultured in Japan. Parasitol. Int. 2011, 60, 307–312. [Google Scholar] [CrossRef]
- Ogawa, K.; Tanaka, S.; Sugihara, Y.; Takami, I. A new blood fluke of the genus Cardicola (Trematoda: Sanguinicolidae) from Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel, 1844) cultured in Japan. Parasitol. Int. 2010, 59, 44–48. [Google Scholar] [CrossRef]
- Aiken, H.M.; Bott, N.J.; Mladineo, I.; Montero, F.E.; Nowak, B.F.; Hayward, C.J. Molecular evidence for cosmopolitan distribution of platyhelminth parasites of tunas (Thunnus spp.). Fish Fish. 2007, 8, 167–180. [Google Scholar] [CrossRef]
- Dennis, M.M.; Landos, M.; D’Antignana, T. Case-control study of epidemic mortality and Cardicola forsteri: Associated disease in farmed southern bluefin tuna (Thunnus maccoyii) of South Australia. Vet. Pathol. 2011, 48, 846–855. [Google Scholar] [CrossRef]
- Shirakashi, S.; Kishimoto, Y.; Kinami, R.; Katano, H.; Ishimaru, K.; Murata, O.; Itoh, N.; Ogawa, K. Morphology and distribution of blood fluke eggs and associated pathology in the gills of cultured Pacific bluefin tuna, Thunnus orientalis. Parasitol. Int. 2012, 61, 242–249. [Google Scholar] [CrossRef]
- Yong, R.Q.Y.; Cribb, T.H.; Cutmore, S.C. Molecular phylogenetic analysis of the problematic genus Cardicola (Digenea: Aporocotylidae) indicates massive polyphyly, dramatic morphological radiation and host-switching. Mol. Phylogenet Evol. 2021, 164, 107290. [Google Scholar] [CrossRef] [PubMed]
- Coff, L.; Guy, A.J.; Campbell, B.E.; Nowak, B.F.; Ramsland, P.A.; Bott, N.J. Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS ONE 2022, 17, e0276287. [Google Scholar] [CrossRef]
- Chan, A.H.E.; Saralamba, N.; Saralamba, S.; Ruangsittichai, J.; Thaenkham, U. The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BMC Genom. 2022, 23, 104. [Google Scholar] [CrossRef]
- Olson, P.D.; Cribb, T.H.; Tkach, V.V.; Bray, R.A.; Littlewood, D.T.J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 2003, 33, 733–755. [Google Scholar] [CrossRef]
- de León, G.P.-P.; Hernandez-Mena, D.I. Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ Tree of Life. J. Helminthol. 2019, 93, 260–276. [Google Scholar] [CrossRef] [PubMed]
- Forte-Gil, D.; Holzer, A.S.; Peckova, H.; Bartosova-Sojkova, P.; Penalver, J.; Dolores, E.M.; Muñoz, P. Molecular and morphological identification of Cardicola (Trematoda: Aporocotylidae) eggs in hatchery-reared and migratory Atlantic bluefin tuna (Thunnus thynnus L.). Aquaculture 2016, 450, 58–66. [Google Scholar] [CrossRef]
- Shirakashi, S.; Tani, K.; Ishimaru, K.; Shin, S.P.; Honryo, T.; Uchida, H.; Ogawa, K. Discovery of intermediate hosts for two species of blood flukes Cardicola orientalis and Cardicola forsteri (Trematoda: Aporocotylidae) infecting Pacific bluefin tuna in Japan. Parasitol. Int. 2016, 65, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.G. Animal Mitochondrial-DNA as a Genetic-Marker in Population and Evolutionary Biology. Trends Ecol. Evol. 1989, 4, 6–11. [Google Scholar] [CrossRef]
- Formenti, G.; Rhie, A.; Balacco, J.; Haase, B.; Mountcastle, J.; Fedrigo, O.; Brown, S.; Capodiferro, M.R.; Al-Ajli, F.O.; Ambrosini, R.; et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 2021, 22, 120. [Google Scholar] [CrossRef]
- Kinkar, L.; Gasser, R.B.; Webster, B.L.; Rollinson, D.; Littlewood, D.T.J.; Chang, B.C.H.; Stroehlein, A.J.; Korhonen, P.K.; Young, N.D. Nanopore Sequencing Resolves Elusive Long Tandem-Repeat Regions in Mitochondrial Genomes. Int. J. Mol. Sci. 2021, 22, 1811. [Google Scholar] [CrossRef]
- Kinkar, L.; Korhonen, P.K.; Cai, H.; Gauci, C.G.; Lightowlers, M.W.; Saarma, U.; Jenkins, D.J.; Li, J.; Li, J.; Young, N.D.; et al. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasit. Vectors 2019, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Kinkar, L.; Young, N.D.; Sohn, W.M.; Stroehlein, A.J.; Korhonen, P.K.; Gasser, R.B. First record of a tandem-repeat region within the mitochondrial genome of Chlonirchis sinensis using a long-read sequencing approach. PLoS Neglected Trop. Dis. 2020, 14, e0008552. [Google Scholar] [CrossRef] [PubMed]
- Brindley, P.J.; Lewis, F.A.; Mccutchan, T.F.; Bueding, E.; Sher, A. A Genomic Change Associated with the Development of Resistance to Hycanthone in Schistosoma mansoni. Mol. Biochem. Parasit. 1989, 36, 243–252. [Google Scholar] [CrossRef]
- Neumann, L.; Bridle, A.; Leef, M.; Nowak, B.F. Annual variability of infection with Cardicola forsteri and Cardicola orientalis in ranched and wild southern bluefin tuna (Thunnus maccoyii). Aquaculture 2018, 487, 1–6. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540. [Google Scholar] [CrossRef]
- Chen, S.F. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. Imeta 2023, 2, e107. [Google Scholar] [CrossRef]
- Kundu, R.; Casey, J.; Sung, W. HyPo: Super Fast & Accurate Polisher for Long Read Genome Assemblies. BioRxiv 2019. [Google Scholar] [CrossRef]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio, PBC: Boston, MA, USA, 2024; Available online: http://www.rstudio.com/ (accessed on 17 June 2024).
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.D.J.; Collins, R.A.; Boyer, S.; Lefort, M.C.; Malumbres-Olarte, J.; Vink, C.J.; Cruickshank, R.H. Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 2012, 12, 562–565. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.Z.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587. [Google Scholar] [CrossRef]
- Kimura, M. Estimation of Evolutionary Distances between Homologous Nucleotide-Sequences. Proc. Natl. Acad. Sci. USA 1981, 78, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Garey, J.R.; Wolstenholme, D.R. Platyhelminth Mitochondrial DNA: Evidence for early evolutionary origin of a transfer RNAserAGN that contains a dihydrouridine arm replacement loop, and of Serine-specifying AGA and AGG codons. J. Mol. Evol. 1989, 28, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Osawa, S.; Muto, A.; Ohama, T.; Andachi, Y.; Tanaka, R.; Yamao, F. Prokaryotic genetic code. Experientia 1990, 46, 1097–1106. [Google Scholar] [CrossRef]
- Le, T.H.; Blair, D.; Agatsuma, T.; Humair, P.F.; Campbell, N.J.H.; Iwagami, M.; Littlewood, D.T.J.; Peacock, B.; Johnston, D.A.; Bartley, J.; et al. Phylogenies inferred from mitochondrial gene orders—A cautionary tale from the parasitic flatworms. Mol. Biol. Evol. 2000, 17, 1123–1125. [Google Scholar] [CrossRef]
- Littlewood, D.T.J.; Lockyer, A.E.; Webster, B.L.; Johnston, D.A.; Le, T.H. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol. Phylogenet Evol. 2006, 39, 452–467. [Google Scholar] [CrossRef]
- Le, T.H.; Blair, D.; McManus, D.P. Mitochondrial genomes of parasitic flatworms. Trends Parasitol. 2002, 18, 206–213. [Google Scholar] [CrossRef]
- Guo, X.R.; Li, Y.; Gao, Y.; Qiu, Y.Y.; Jin, Z.H.; Gao, Z.Y.; Zhang, X.G.; An, Q.; Chang, Q.C.; Gao, J.F.; et al. The complete mitochondrial genome of Prosthogonimus cuneatus and Prosthogonimus pellucidus (Trematoda: Prosthogonimidae), their features and phylogenetic relationships in the superfamily Microphalloidea. Acta Trop. 2022, 232, 106469. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qiu, Y.Y.; Zeng, M.H.; Diao, P.W.; Chang, Q.C.; Gao, Y.; Zhang, Y.; Wang, C.R. The complete mitochondrial genome of Echinostoma miyagawai: Comparisons with closely related species and phylogenetic implications. Infect. Genet. Evol. 2019, 75, 103961. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.R.; Zhao, G.H.; Gao, J.F.; Li, M.W.; Zhu, X.Q. The complete mitochondrial genome of Orientobilharzia turkestanicum supports its affinity with African Schistosoma spp. Infect. Genet. Evol. 2011, 11, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Gasser, R.B.; Koehler, A.V.; Wang, L.X.; Zhu, K.X.; Chen, L.; Feng, H.L.; Hu, M.; Fang, R. Mitochondrial genome of Hypoderaeum conoideum—Comparison with selected trematodes. Parasite Vector 2015, 8, 97. [Google Scholar] [CrossRef]
- Clary, D.O.; Wolstenholme, D.R. The Mitochondrial DNA Molecule of Drosophila yakuba: Nucleotide Sequence, Gene Organization, and Genetic Code. J. Mol. Evol. 1985, 22, 252–271. [Google Scholar] [CrossRef]
- Hu, W.; Yan, Q.; Shen, D.K.; Liu, F.; Zhu, Z.D.; Song, H.D.; Xu, X.R.; Wang, Z.J.; Rong, Y.P.; Zeng, L.C.; et al. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat. Genet. 2003, 35, 139–147. [Google Scholar] [CrossRef]
- Le, T.H.; Pearson, M.S.; Blair, D.; Dai, N.; Zhang, L.H.; McManus, D.P. Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 2002, 124, 97–112. [Google Scholar] [CrossRef]
- Nagaike, T.; Suzuki, T.; Ueda, T. Polyadenylation in mammalian mitochondria: Insights from recent studies. BBA-Gene Regul. Mech. 2008, 1779, 266–269. [Google Scholar] [CrossRef]
- Atopkin, D.M.; Semenchenko, A.A.; Solodovnik, D.A.; Ivashko, Y.I. A report on the complete mitochondrial genome of the trematode Azygia robusta Odhner, 1911, its new definitive host from the Russian Far East, and unexpected phylogeny of Azygiidae within Digenea, as inferred from mitogenome sequences. J. Helminthol. 2023, 97, e69. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.Q.; Li, X.; Ye, B.J.; Zhou, Y.L.; Dang, Z.S.; Tang, W.Q.; Wang, L.; Zhang, H.J.; Chui, W.T.; Kui, J. Characterization of the Complete Mitochondrial Genome and Phylogenetic Analyses of Eurytrema coelomaticum (Trematoda: Dicrocoeliidae). Genes 2023, 14, 2199. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Nguyen, K.T.; Nguyen, N.T.B.; Doan, H.T.T.; Agatsuma, T.; Blair, D. The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 2019, 7, e7031. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.F.; Chen, B.; Lu, X.Y.; Jiang, D.D.; Geng, L.; Wang, X.; Peng, K.X.; Du, C.H.; Ren, T.G.; et al. The complete mitochondrial genome of Morishitium polonicum (Trematoda, Cyclocoelidae) and its phylogenetic implications. Parasitol. Res. 2023, 122, 2609–2620. [Google Scholar] [CrossRef]
- Yang, C.P.; Shan, B.B.; Liu, Y.; Wang, L.M.; Wu, Q.; Luo, Z.L.; Sun, D.R. Complete Mitochondrial Genome of Two Ectoparasitic Capsalids Capsala katsuwoni and Capsala martinieri (Platyhelminthes: Monogenea: Monopisthocotylea): Gene Content, Composition, and Rearrangement. Genes 2022, 13, 1376. [Google Scholar] [CrossRef] [PubMed]
- Oey, H.; Zakrzewski, M.; Gravermann, K.; Young, N.D.; Korhonen, P.K.; Gobert, G.N.; Nawaratna, S.; Hasan, S.; Martínez, D.M.; You, H.; et al. Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium. PLoS Pathog. 2019, 15, e1007513. [Google Scholar] [CrossRef]
- Wey-Fabrizius, A.R.; Podsiadlowski, L.; Herlyn, H.; Hankeln, T. Platyzoan mitochondrial genomes. Mol. Phylogenet Evol. 2013, 69, 365–375. [Google Scholar] [CrossRef]
- Le, T.H.; Nguyen, N.T.B.; Nguyen, K.T.; Doan, H.T.T.; Dung, D.T.; Blair, D. A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infect. Genet. Evol. 2016, 45, 369–377. [Google Scholar] [CrossRef]
- Oey, H.; Zakrzewski, M.; Narain, K.; Devi, K.R.; Agatsuma, T.; Nawaratna, S.; Gobert, G.N.; Jones, M.K.; Ragan, M.A.; McManus, D.P.; et al. Whole-genome sequence of the oriental lung fluke Paragonimus westermani. Gigascience 2019, 8, giy146. [Google Scholar] [CrossRef]
- Cribb, T.H.; Adlard, R.D.; Hayward, C.J.; Bott, N.J.; Ellis, D.; Evans, D.; Nowak, B.F. The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyii. Int. J. Parasitol. 2011, 41, 861–870. [Google Scholar] [CrossRef]
Gene | Nucleotide Length | Start Codon | Stop Codon | |||
---|---|---|---|---|---|---|
C. forsteri | C. orientalis | C. forsteri | C. orientalis | C. forsteri | C. orientalis | |
cox1 | 1591 | 1615 | GTG | ATG | T ** | T ** |
cox2 | 660 | 661 | GTG | GTG | TAG | T ** |
nad6 | 438 | 459 | GTG | GTG | TAG | TAG |
nad5 | 1581 | 1579 | ATG | GTG | TAG | T ** |
cox3 | 675 | 675 | ATG | ATG | TAG | TAG |
cob | 1134 | 1125 | GTG | ATG | TAG | TAG |
nad4L | 247 | 244 | ATG | ATG | T ** | T ** |
nad4 | 1293 | 1293 | ATG | ATG | TAA | TAA |
atp6 | 525 | 526 | ATG | ATG | TAA | T ** |
nad2 | 861 | 903 | ATG | ATG | TAG | TAG |
nad1 | 903 | 903 | ATG | ATG | TAA | TAA |
nad3 | 336 | 339 | GTG | ATG | TAG | TAG |
Gene | A | C | G | T | ||||
---|---|---|---|---|---|---|---|---|
C. forsteri | C. orientalis | C. forsteri | C. orientalis | C. forsteri | C. orientalis | C. forsteri | C. orientalis | |
cox1 | 20.7 | 21.6 | 10.2 | 15.1 | 27.0 | 22.3 | 42.1 | 41.0 |
cox2 | 21.5 | 22.7 | 10.2 | 13.3 | 31.2 | 25.3 | 37.1 | 38.7 |
nad6 | 20.3 | 20.0 | 7.5 | 14.2 | 28.5 | 22.7 | 43.6 | 43.1 |
nad5 | 18.8 | 24.1 | 8.6 | 13.4 | 30.6 | 22.3 | 42.1 | 40.2 |
cox3 | 19.0 | 21.8 | 7.3 | 12.1 | 28.4 | 21.9 | 45.3 | 44.1 |
cob | 19.3 | 23.6 | 10.8 | 15.4 | 27.7 | 21.1 | 42.2 | 39.9 |
nad4L | 22.3 | 22.5 | 6.9 | 10.7 | 34.0 | 23.8 | 36.8 | 43.0 |
nad4 | 20.1 | 21.0 | 10.9 | 16.6 | 28.8 | 23.2 | 40.2 | 39.2 |
atp6 | 22.3 | 27.0 | 12.4 | 18.8 | 27.6 | 15.0 | 37.7 | 29.2 |
nad2 | 18.5 | 22.6 | 9.8 | 16.1 | 28.7 | 21.3 | 43.1 | 40.1 |
nad1 | 20.6 | 22.9 | 9.7 | 13.0 | 29.0 | 22.3 | 38.8 | 41.9 |
nad3 | 20.2 | 25.4 | 9.2 | 15.9 | 30.4 | 20.4 | 40.2 | 38.3 |
Full coding region | 21.8 | 24.2 | 10.3 | 14.5 | 28.4 | 22.4 | 39.5 | 38.9 |
C. forsteri | C. orientalis | ||||
---|---|---|---|---|---|
Repeat Name | Length (bp) 1 | Frequency | Repeat Name | Length (bp) 1 | Frequency |
CfR1 | 104 | 24 | CoR1 | 66 | 52 |
CfR2 | 77 | 22 | CoR2 | 666 | 7 |
CfR3 | 665 | 20 | CoR3 | 70 | 15 |
CfR4 | 69 | 22 | CoR4 | 79 | 12 |
CfR5 | 128 | 13 | CoR5 | 371 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudson, J.; Sumanam, S.B.; Campbell, B.E.; Coff, L.; Nowak, B.F.; Ramsland, P.A.; Young, N.D.; Bott, N.J. Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae). Pathogens 2025, 14, 680. https://doi.org/10.3390/pathogens14070680
Hudson J, Sumanam SB, Campbell BE, Coff L, Nowak BF, Ramsland PA, Young ND, Bott NJ. Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae). Pathogens. 2025; 14(7):680. https://doi.org/10.3390/pathogens14070680
Chicago/Turabian StyleHudson, Jemma, Sunita B. Sumanam, Bronwyn E. Campbell, Lachlan Coff, Barbara F. Nowak, Paul A. Ramsland, Neil D. Young, and Nathan J. Bott. 2025. "Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae)" Pathogens 14, no. 7: 680. https://doi.org/10.3390/pathogens14070680
APA StyleHudson, J., Sumanam, S. B., Campbell, B. E., Coff, L., Nowak, B. F., Ramsland, P. A., Young, N. D., & Bott, N. J. (2025). Mitochondrial Genomes of the Blood Flukes Cardicola forsteri and Cardicola orientalis (Trematoda: Aporocotylidae). Pathogens, 14(7), 680. https://doi.org/10.3390/pathogens14070680