Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = long-chain alkyl group

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5006 KB  
Article
Silanization of Cotton Fabric to Obtain Durable Hydrophobic and Oleophobic Materials
by Anna Szymańska, Marcin Przybylak, Agnieszka Przybylska and Hieronim Maciejewski
Int. J. Mol. Sci. 2025, 26(23), 11374; https://doi.org/10.3390/ijms262311374 - 25 Nov 2025
Viewed by 642
Abstract
Developing durable hydrophobic and oleophobic textiles using simple and environmentally responsible techniques remains a challenge. This study aimed to determine how the structure of organosilicon silanes—specifically the type of functional group (fluorinated alkyl, long alkyl, or benzyl group) and the presence of an [...] Read more.
Developing durable hydrophobic and oleophobic textiles using simple and environmentally responsible techniques remains a challenge. This study aimed to determine how the structure of organosilicon silanes—specifically the type of functional group (fluorinated alkyl, long alkyl, or benzyl group) and the presence of an ester linker formed via the thiol–Michael addition—affects the wetting behaviour of cotton fabrics. Five silanes were synthesized and applied using a mild pad–dry–cure silanization process. The modified fabrics were evaluated through water and oil contact angle (WCA, OCA) measurements, water absorption tests, droplet-stability analysis, and washing-durability assessment. All treated samples exhibited hydrophobicity, while the silane containing a C6 perfluoroalkyl chain provided both hydrophobic and oleophobic performance. This fabric showed a WCA of 152° and an OCA of 126° (hexadecane), which remained essentially unchanged after 10 washing cycles (153° and 126°, respectively). Water absorption decreased by 91%, and droplets remained stable for at least 30 min. SEM, and SEM-EDS confirmed the presence and uniform distribution of the silane coating. These results demonstrate that short-chain fluorinated silanes and long-chain alkyl silanes can form durable low-surface-energy layers on cotton using a straightforward and efficient process, offering a promising route for high-performance functional textiles. Full article
(This article belongs to the Special Issue Advances in Agro-Polymers)
Show Figures

Figure 1

13 pages, 1633 KB  
Article
Stimuli-Responsive Luminescence of an Amphiphilic Flavin Derivative via Thermodynamic and Kinetic Aggregation in Water
by Soichiro Kawamorita, Koyo Okamoto, Shufang Huang and Takeshi Naota
Photochem 2025, 5(3), 25; https://doi.org/10.3390/photochem5030025 - 8 Sep 2025
Viewed by 842
Abstract
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like [...] Read more.
In this study, we investigated environmentally responsive photoluminescence color changes in water using an amphiphilic flavin derivative (1a) functionalized with an alkylsulfonate group. At low concentrations and room temperature, 1a exhibited a green emission. Upon increasing the concentration, thermodynamically stable micelle-like aggregates were formed, leading to a yellow emission. In contrast, under rapid freezing conditions, fibrous aggregates were formed under kinetic control, which also exhibited a yellow emission. These distinct aggregation modes are attributed to the cooperative effects of molecular design: the π-stacking ability of the tricyclic isoalloxazine core, flexible long alkyl chains, and the hydrophilic sulfonate moiety. This work demonstrates photoluminescent color switching based on aggregation-state control of a biogenic and potentially sustainable flavin luminophore, offering a new perspective for designing responsive and sustainable photofunctional materials. Full article
(This article belongs to the Special Issue Photochemistry Directed Applications of Organic Fluorescent Materials)
Show Figures

Figure 1

14 pages, 4714 KB  
Article
High Efficiency and Long-Term Antibacterial Carbon Dots for Combating Antibiotic Resistance
by Beibei Wang, Dandan Zhang, Gang Zhou, Xiaodong Li, Tingli Sun, Qingshan Shi and Xiaobao Xie
Nanomaterials 2025, 15(17), 1296; https://doi.org/10.3390/nano15171296 - 22 Aug 2025
Viewed by 1448
Abstract
Combating antibiotic resistance is critically significant for global public health. The development of new antibacterial nanomaterial is a promising way to do this. In this study, a bottom-up approach was employed to fabricate antibacterial carbon dots (ACDs). During the synthesis, quaternary ammonium function [...] Read more.
Combating antibiotic resistance is critically significant for global public health. The development of new antibacterial nanomaterial is a promising way to do this. In this study, a bottom-up approach was employed to fabricate antibacterial carbon dots (ACDs). During the synthesis, quaternary ammonium function groups with long alkyl chains were successfully grafted on ACDs’ surfaces. The obtained ACDs exhibited potent inhibitory against methicillin-resistant Staphylococcus aureus (MRSA) bacteria with minimum inhibitory concentrations of 2.5 µg/mL. Crucially, 2.5 µg/mL of ACDs could inhibit the growth of MRSA for as long as 72 h, which highlighted their long-term activity. Mechanistic investigations revealed that ACDs exerted bactericidal effects for MRSA bacteria primarily through disrupting the cell wall/membrane, destroying cell membrane potential, inducing the generation of excessive ROS, and triggering the leakage of nucleic acids and intracellular components. In sum, this work provided a kind of ACD with high efficiency and long-term antibacterial activity, offering promising potential for combating drug-resistant bacterial infections. Full article
Show Figures

Figure 1

11 pages, 1758 KB  
Article
Nonlinear Absorption Properties of Phthalocyanine-like Squaraine Dyes
by Fan Zhang, Wuyang Shi, Xixiao Li, Yigang Wang, Leilei Si, Wentao Gao, Meng Qi, Minjie Zhou, Jiajun Ma, Ao Li, Zhiqiang Li, Hongming Wang and Bing Jin
Photonics 2025, 12(8), 779; https://doi.org/10.3390/photonics12080779 - 1 Aug 2025
Viewed by 1641
Abstract
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan [...] Read more.
This study synthesizes and comparatively investigates two squaric acid-based phthalocyanine-like dyes, SNF and its long-chain alkylated derivative LNF, to systematically elucidate the influence of peripheral hydrophobic groups on their third-order nonlinear optical (NLO) properties. The NLO characteristics were comprehensively characterized using femtosecond Z-scan and I-scan techniques at both 800 nm and 900 nm. Both dyes exhibited strong saturable absorption (SA), confirming their potential as saturable absorbers. Critically, the comparative analysis revealed that SNF exhibits a significantly greater nonlinear absorption coefficient (β) compared to LNF under identical conditions. For instance, at 800 nm, the β of SNF was approximately 3–5 times larger than that of LNF. This result conclusively demonstrates that the introduction of long hydrophobic alkyl chains attenuates the NLO response. Furthermore, I-scan measurements revealed excellent SA performance, with high modulation depths (e.g., LNF: 43.0% at 900 nm) and low saturation intensities. This work not only clarifies the structure–property relationship in these D-A-D dyes but also presents a clear strategy for modulating the NLO properties of organic chromophores for applications in near-infrared pulsed lasers. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 1279 KB  
Review
Urushiol-Based Antimicrobial Coatings: Molecular Mechanisms, Structural Innovations, and Multifunctional Applications
by Tianyi Wang, Jiangyan Hou, Yao Wang, Xinhao Feng and Xinyou Liu
Polymers 2025, 17(11), 1500; https://doi.org/10.3390/polym17111500 - 28 May 2025
Cited by 6 | Viewed by 1503
Abstract
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane [...] Read more.
Urushiol, the principal bioactive component of natural lacquer, has emerged as a promising candidate for developing eco-friendly antimicrobial coatings due to its unique catechol structure and long alkyl chains. This review systematically elucidates the molecular mechanisms underpinning urushiol’s broad-spectrum antimicrobial activity, including membrane disruption via hydrophobic interactions, oxidative stress induction through redox-active phenolic groups, and enzyme inhibition via hydrogen bonding. Recent advances in urushiol-based composite systems—such as metal coordination networks, organic–inorganic hybrids, and stimuli-responsive platforms—are critically analyzed, highlighting their enhanced antibacterial performance, environmental durability, and self-healing capabilities. Case studies demonstrate that urushiol derivatives achieve >99% inhibition against both Gram-positive and Gram-negative pathogens, outperforming conventional agents like silver ions and quaternary ammonium salts. Despite progress, challenges persist in balancing antimicrobial efficacy, mechanical stability, and biosafety for real-world applications. Future research directions emphasize precision molecular engineering, synergistic multi-target strategies, and lifecycle toxicity assessments to advance urushiol coatings in medical devices, marine antifouling, and antiviral surfaces. This work provides a comprehensive framework for harnessing natural phenolic compounds in next-generation sustainable antimicrobial materials. Full article
Show Figures

Figure 1

23 pages, 5161 KB  
Article
Correlating the Effects of UV Aging on the Macro-Micro Behaviors of Asphalt with Its Molecular Mechanisms
by Han Xi, Lingyun Kong, Shixiong Hu and Songxiang Zhu
Materials 2025, 18(10), 2165; https://doi.org/10.3390/ma18102165 - 8 May 2025
Cited by 2 | Viewed by 891
Abstract
UV radiation can change the internal molecular composition, macroscopic rheological properties, and microscopic chemical composition of asphalt. To study the effect of ultraviolet aging on asphalt and its structure–activity relationship, its rheological properties were measured by dynamic shear rheology and multiple stress recovery [...] Read more.
UV radiation can change the internal molecular composition, macroscopic rheological properties, and microscopic chemical composition of asphalt. To study the effect of ultraviolet aging on asphalt and its structure–activity relationship, its rheological properties were measured by dynamic shear rheology and multiple stress recovery creep tests, its chemical compositions were measured by component composition, elemental composition, and infrared spectrum tests, and its molecular weight, distribution, and molecular structure were determined by gel permeation chromatography and nuclear magnetic resonance tests. Then, the molecular weight and molecular structure, rheological properties, and microchemical aging behavior of asphalt after UV aging were characterized by correlation analysis, and the structure–activity relationship was analyzed. The results show that the deformation resistance and elastic recovery ability of asphalt after UV aging are enhanced, and the flow performance is decreased. The ultraviolet radiation caused the aromatic hydrocarbons containing naphthenes and long alkyl chains in the asphalt to break and connect with asphaltenes with a ring structure. The asphaltene content in each bitumen sample exceeded 46%, and that in KL reached 55%, indicating that the bitumen changed into a gel structure. UV aging causes the aggregation of asphalt molecules, and the aggregation of molecules narrows the molecular distribution boundary and moves in the direction of macromolecules, resulting in the reduction of the dispersion coefficient by 2–10%. Hydrogen atoms will undergo condensation and substitution reactions due to long-chain breaking, cyclization, or aromatization under UV action, and the breaking of C=C bonds in carbon atoms will increase the stable aromatic ring, strengthen the stiffness of the molecular backbone, and make it difficult for the backbone to spin. Through correlation analysis, it was found that the molecular composition index could characterize the aging behavior index of asphalt, and that the aromatic structure was the most critical molecular change. Further, it was found that the sulfoxide group and carbonyl group could be used as evaluation criteria for the UV aging of asphalt because the correlation between them was above 0.7. This study provides an essential index reference for evaluating the performance change of asphalt under ultraviolet aging to save testing time. Moreover, the molecular structure characterization revealed the changes in internal molecular composition that were behind the observed aging properties, providing a theoretical basis for research on asphalt anti-aging technology. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

13 pages, 13660 KB  
Article
In Situ Polymerization of Long Alkyl Chain Functional Groups Enhances the Oil–Water Separation Performance of Porous Organic Polymers
by Hongbo Zhao, Shijie Cai, Ruoting Hua, Cong Li, Chunlong Xia, Bo Cui, Huimin Shao, Naishun Bu and Ye Yuan
Molecules 2025, 30(9), 1925; https://doi.org/10.3390/molecules30091925 - 26 Apr 2025
Cited by 2 | Viewed by 1192
Abstract
The preparation of superhydrophobic functional materials is of great significance for applications in oil pollution control. However, the materials synthesized by traditional post-modification methods usually suffer from problems of limited active sites, uneven distribution, and susceptibility of the surface structure to external factors, [...] Read more.
The preparation of superhydrophobic functional materials is of great significance for applications in oil pollution control. However, the materials synthesized by traditional post-modification methods usually suffer from problems of limited active sites, uneven distribution, and susceptibility of the surface structure to external factors, which may significantly affect their superhydrophobic properties. In this study, the superhydrophobic porous organic polymer LNU-32 was successfully prepared via in situ polymerization with the introduction of green, low-surface-energy, long-alkyl-chain functional groups into the pores, which formed a “brush-like” structure on the pore surface of the polymer and effectively enhanced its hydrophobicity. The LNU-32 material exhibits excellent superhydrophobicity, with a water contact angle of more than 151°. In addition, the superhydrophobic polyester fabric prepared from LNU-32 has an oil–water separation efficiency of more than 90%. The adsorption capacity of the superhydrophobic fabric for dimethicone also reached 7.37 times its own weight. The study shows that the LNU-32 material exhibits good application potential in the field of oil–water separation, especially in the treatment of oily wastewater and oil spills. Full article
Show Figures

Graphical abstract

14 pages, 4050 KB  
Article
Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions
by Thi Ngan Vu, Tomoya Nishimura, Yu Osaki, Toyohiro Otani and Shin-ichi Yusa
Polymers 2025, 17(3), 297; https://doi.org/10.3390/polym17030297 - 23 Jan 2025
Cited by 2 | Viewed by 2638
Abstract
This study investigates the stability and application of trithiocarbonate-based chain transfer agents (CTAs) in reversible addition–fragmentation chain transfer (RAFT) radical polymerization under harsh conditions. We evaluated the stability of 4-cyano-4-(2-carboxyethylthiothioxomethylthio) pentanoic acid (Rtt-17) and 4-cyano-4-(dodecylsulfanylthiocarbonyl) sulfanylpentanoic acid (Rtt-05) at 60 °C under basic [...] Read more.
This study investigates the stability and application of trithiocarbonate-based chain transfer agents (CTAs) in reversible addition–fragmentation chain transfer (RAFT) radical polymerization under harsh conditions. We evaluated the stability of 4-cyano-4-(2-carboxyethylthiothioxomethylthio) pentanoic acid (Rtt-17) and 4-cyano-4-(dodecylsulfanylthiocarbonyl) sulfanylpentanoic acid (Rtt-05) at 60 °C under basic conditions using 1H NMR and UV–vis absorption spectra, showing that Rtt-05 is more stable than Rtt-17. The greater stability of Rtt-05 is attributed to the hydrophobic dodecyl group, which allows it to form micelles in water, thereby protecting the trithiocarbonate group from the surrounding aqueous phase. In contrast, hydrophilic Rtt-17, without long alkyl chains, cannot form micelles in water. Following the stability assessment, Rtt-17 and Rtt-05 were employed for RAFT polymerization of hydrophilic monomers, such as N,N-dimethylacrylamide (DMA) and 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). DMA can dissolve in both water and organic solvents, and MPC can dissolve in water and polar solvents. Both CTAs successfully controlled the polymerization of DMA, producing polymers with narrow molecular weight distributions (Mw/Mn) less than 1.2. Also, Rtt-17 demonstrated effective control of MPC polymerization, yielding Mw/Mn values of around 1.2. However, during the polymerization of MPC, Rtt-05 failed to maintain control, resulting in a broad Mw/Mn (≥1.9). The inability of Rtt-05 to control MPC polymerization is due to the formation of micelles, which disrupts the interaction between the hydrophilic MPC propagating radicals and the trithiocarbonate group in the hydrophobic core of Rtt-05 micelles. The findings provide critical insights into designing CTAs for specific applications, particularly for biomedical and industrial uses of hydrophilic polymers, highlighting the potential for precise molecular weight control and tailored polymer properties. Full article
(This article belongs to the Collection Polymerization and Kinetic Studies)
Show Figures

Figure 1

12 pages, 2908 KB  
Article
The Interfacial Dilational Rheology of Surfactant Solutions with Low Interfacial Tension
by Guoxuan Ma, Qingtao Gong, Zhicheng Xu, Zhiqiang Jin, Lei Zhang, Guiyang Ma and Lu Zhang
Molecules 2025, 30(3), 447; https://doi.org/10.3390/molecules30030447 - 21 Jan 2025
Cited by 7 | Viewed by 2423
Abstract
In this paper, the spinning drop method was used to measure the oil–water interfacial dilational modulus of four different types of surfactants with low interfacial tension (IFT), including the anionic surfactant sodium dodecyl sulfate (SDS), the nonionic surfactant Triton X-100 (TX100), the zwitterionic [...] Read more.
In this paper, the spinning drop method was used to measure the oil–water interfacial dilational modulus of four different types of surfactants with low interfacial tension (IFT), including the anionic surfactant sodium dodecyl sulfate (SDS), the nonionic surfactant Triton X-100 (TX100), the zwitterionic surfactant alkyl sulfobetaine (ASB), and the extended surfactant alkyl polyoxypropyl ether sodium sulfate (S-C13PO13S). Based on the experimental results, we found that the spinning drop method is an effective means of measuring the interfacial dilational modulus of the oil–water interface with an IFT value of lower than 10 mN/m. For common surfactants SDS and TX100, the interfacial dilational modulus decreases rapidly to near zero with an increase in concentration when the IFT is lower than 1 mN/m. On the other hand, ASB has the highest interfacial dilatation modulus of 50 mN/m, which comes from the flatness of its unique hydrophilic group structure. The interfacial dilational modulus of S-C13PO13S showed a moderate plateau value of 30 mN/m with a broader concentration change. This is due to the fact that the main relaxation process dominating the interfacial film properties comes from the long helical polyoxypropyl chain. Through the large-size hydrophilic groups in betaine molecules and the long PO chains in the extended surfactant molecules, an interfacial film with controllable strength can be formed in a low IFT system to obtain a higher interfacial dilational modulus. This is of great significance in improving the emulsification and oil displacement of chemical flooding in reservoir pores. Full article
Show Figures

Figure 1

13 pages, 2325 KB  
Article
Structural Investigation of Chloride Ion-Containing Acrylate-Based Imidazolium Poly(Ionic Liquid) Homopolymers and Crosslinked Networks: Effect of Alkyl Spacer and N-Alkyl Substituents
by Mahmoud Al-Hussein, Lisa Ehrlich, Doris Pospiech and Petra Uhlmann
Nanomaterials 2025, 15(1), 40; https://doi.org/10.3390/nano15010040 - 29 Dec 2024
Viewed by 1256
Abstract
Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed [...] Read more.
Understanding the interplay between the molecular structure of the ionic liquid (IL) subunit, the resulting nanostructure and ion transport in polymerized ionic liquids (PILs) is necessary for the realization of high-performance solid-state electrolytes required in various advanced applications. Herein, we present a detailed structural characterization of a recently synthesized series of acrylate-based PIL homopolymers and networks with imidazolium cations and chloride anions with varying alkyl spacer and terminal group lengths designed for organic solid-state batteries based on X-ray scattering. The impact of the concentrations of both the crosslinker and added tetrabutylammonium chloride (TBACl) conducting salt on the structural characteristics is also investigated. The results reveal that the length of both the spacer and terminal group influence the chain packing and, in turn, the nanophase segregation of the polar domains. Long spacers and terminal groups seem to induce denser polar aggregates sandwiched between more compact alkyl spacer and terminal group domains. However, the large inter-backbone spacing achieved seems to limit the ionic conductivity of these PILs. More importantly, our findings show that the previously reported general relationships between the ionic conductivity and the structural parameters of the nanostructure of PILs are not always attainable for different molecular structures of the IL side group. Full article
Show Figures

Figure 1

12 pages, 10239 KB  
Article
Development and Application of High-Internal-Phase Water-in-Oil Emulsions Using Amphiphilic Nanoparticle-Based Emulsifiers
by Chunhua Zhao, Xiujun Wang, Jian Zhang, Yigang Liu, Changlong Liu, Bo Huang and Yang Yang
Polymers 2024, 16(22), 3148; https://doi.org/10.3390/polym16223148 - 12 Nov 2024
Cited by 4 | Viewed by 2621
Abstract
High-internal-phase water-in-oil (W/O) emulsions generated in situ have garnered considerable attention as novel profile control systems. However, conventional emulsifiers are unreactive and poorly dispersed in water, necessitating large dosages and resulting in poor injectivity. In this study, we synthesized amphiphilic nanoparticles (SiO2 [...] Read more.
High-internal-phase water-in-oil (W/O) emulsions generated in situ have garnered considerable attention as novel profile control systems. However, conventional emulsifiers are unreactive and poorly dispersed in water, necessitating large dosages and resulting in poor injectivity. In this study, we synthesized amphiphilic nanoparticles (SiO2–NH2–DAC NPs) containing amine and long-chain alkyl groups using a one-pot method and investigated the stabilized emulsion properties. Our results indicated that W/O emulsions with a water-to-oil ratio (WOR) of 7:3 to 8:2 could be prepared with just 0.1 wt% of SiO2–NH2–DAC NPs under neutral and basic conditions, with demulsification occurring under acidic conditions (pH = 2.1), demonstrating the pH-responsiveness of the W/O emulsions. The emulsion viscosity increased from 150 to 2555 mPa·s at different WORs. An additional 18.7% oil recovery was achieved using SiO2–NH2–DAC NPs in a heterogeneous core, highlighting their potential as a promising profile control candidate. Full article
(This article belongs to the Special Issue New Advances in Polymer-Based Surfactants)
Show Figures

Graphical abstract

17 pages, 5701 KB  
Article
Synthesis of Modified Nano-Hydrotalcite Clay by Micellar Method and Its Application as Gel-like Crude Oil Flow Improver
by Yingna Du, Michal Slaný, Tianbao Hu, Yubo Lian, Yingxue Bai, Congyu Ke and Gang Chen
Gels 2024, 10(7), 443; https://doi.org/10.3390/gels10070443 - 4 Jul 2024
Cited by 4 | Viewed by 2016
Abstract
The network formed by wax precipitation at low temperature and colloid asphaltene at high temperature leads to poor fluidity of heavy oil, and the gelling characteristics of crude oil lead to pipeline blockage, which affects the exploitation, transportation and refining of crude oil. [...] Read more.
The network formed by wax precipitation at low temperature and colloid asphaltene at high temperature leads to poor fluidity of heavy oil, and the gelling characteristics of crude oil lead to pipeline blockage, which affects the exploitation, transportation and refining of crude oil. This work prepares a series of cationic surfactant-modified nano hydrotalcite (CSNH) to weaken the network structure and enhance the fluidity of the crude oil by the interaction of organic and inorganic functional groups on the CSNH surface and the components of the crude oil. The results show that CSNHs can all reduce the viscosity of crude oil from different oilfields, among which BTNH can reduce the viscosity of Yanglou (YL) crude oil by 98.8% (31 °C) and depress the pour point by 16.0 °C at most. In the investigation of the universality of crude oil, the modified hydrotalcite was applied to the mixed crude oil (CQH) of Changqing Oilfield, the crude oil (J76) of Jidong Oilfield, the high pour point oil (GN) of Huabei Oilfield, and the crude oil (HQ) of Tuha Oilfield. The viscosity reduction rates were 53.2%, 86.2%, 42.7%, and 63.8%, respectively. The characterization of this nano material confirms the modification of quaternary ammonium cationic surfactant on the surface, resulting in a smaller particle size, and the nano particles are stable under conventional conditions. The mechanism of viscosity and pour point reduction in crude oil by BTNH was discussed by DSC and optical microscopy analysis. The OH- and long-chain alkyl groups on the BTNH surface may interact with the resins, asphaltene and wax through hydrogen bonding and co-crystal, weakening or dispersing their aggregates, thereby improving the fluidity of crude oil. Finally, a cost evaluation was conducted on BTNH, providing useful support for subsequent promotion and application. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Figure 1

20 pages, 7955 KB  
Article
A Computational and Spectroscopic Analysis of Solvate Ionic Liquids Containing Anions with Long and Short Perfluorinated Alkyl Chains
by Karina Shimizu, Adilson Alves de Freitas, Jacob T. Allred and Christopher M. Burba
Molecules 2024, 29(9), 2071; https://doi.org/10.3390/molecules29092071 - 30 Apr 2024
Cited by 3 | Viewed by 2242
Abstract
Anion-driven, nanoscale polar–apolar structural organization is investigated in a solvate ionic liquid (SIL) setting by comparing sulfonate-based anions with long and short perfluorinated alkyl chains. Representative SILs are created from 1,2-bis(2-methoxyethoxy)ethane (“triglyme” or “G3”), lithium nonafluoro-1-butanesulfonate, and lithium trifluoromethanesulfonate. Molecular dynamics simulations, density [...] Read more.
Anion-driven, nanoscale polar–apolar structural organization is investigated in a solvate ionic liquid (SIL) setting by comparing sulfonate-based anions with long and short perfluorinated alkyl chains. Representative SILs are created from 1,2-bis(2-methoxyethoxy)ethane (“triglyme” or “G3”), lithium nonafluoro-1-butanesulfonate, and lithium trifluoromethanesulfonate. Molecular dynamics simulations, density functional theory computations, and vibrational spectroscopy provide insight into the overall liquid structure, cation–solvent interactions, and cation–anion association. Significant competition between G3 and anions for cation-binding sites characterizes the G3–LiC4F9SO3 mixtures. Only 50% of coordinating G3 molecules form tetradentate complexes with Li+ in [(G3)1Li][C4F9SO3]. Moreover, the SIL is characterized by extensive amounts of ion pairing. Based on these observations, [(G3)1Li][C4F9SO3] is classified as a “poor” SIL, similar to the analogous [(G3)1Li][CF3SO3] system. Even though the comparable basicity of the CF3SO3 and C4F9SO3 anions leads to similar SIL classifications, the hydrophobic fluorobutyl groups support extensive apolar domain formation. These apolar moieties permeate throughout [(G3)1Li][C4F9SO3] and persist even at relatively low dilution ratios of [(G3)10Li][C4F9SO3]. By way of comparison, the CF3 group is far too short to sustain polar–apolar segregation. This demonstrates how chemically modifying the anions to include hydrophobic groups can impart unique nanoscale organization to a SIL. Moreover, tuning these nano-segregated fluorinated domains could, in principle, control the presence of dimensionally ordered states in these mixtures without changing the coordination of the lithium ions. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

14 pages, 3673 KB  
Article
Design and Properties of Novel Hydrophobic Natural Tea Saponin and Its Organogels
by Maogong Wang, Liuxin Yan, Xuying Guo, Xinwei Xing, Fengqian Liang, Chunrui Han and Liujun Liu
Gels 2024, 10(4), 225; https://doi.org/10.3390/gels10040225 - 26 Mar 2024
Cited by 3 | Viewed by 2249
Abstract
It was first discovered that the excellent gelation ability of tea saponin can be obtained by introducing long-chain alkyl groups of dodecanoyl chloride into the glycosyl portion with direct esterification. The modified dodecanoyl chloride–tea saponin (DC-TS) was successfully synthesized and characterized with NMR, [...] Read more.
It was first discovered that the excellent gelation ability of tea saponin can be obtained by introducing long-chain alkyl groups of dodecanoyl chloride into the glycosyl portion with direct esterification. The modified dodecanoyl chloride–tea saponin (DC-TS) was successfully synthesized and characterized with NMR, MS, and FT-IR. The tests showed that the long-chain alkyl group was successfully introduced. Combined with SEM and X-ray diffraction patterns, we found that the stable lamellar shape gels of DC-TS were formed in a variety of solvents. More interestingly, organogel was also obtained by adjusting good solvent and poor solvent as mixed solvent. It is worth noting that the driving force of organogels is the combination of hydrogen bonding and the hydrophobic interaction of the introduced alkyl chains with the rigid backbone of pentacyclic triterpenes. The modified tea saponin, a natural green surfactant, was discovered to have gelation properties, which has broadened tea saponin’s scope of application and made it more promising. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

12 pages, 4626 KB  
Article
Organic Transistors Based on Highly Crystalline Donor–Acceptor π-Conjugated Polymer of Pentathiophene and Diketopyrrolopyrrole
by Shiwei Ren, Zhuoer Wang, Jinyang Chen, Sichun Wang and Zhengran Yi
Molecules 2024, 29(2), 457; https://doi.org/10.3390/molecules29020457 - 17 Jan 2024
Cited by 6 | Viewed by 2579
Abstract
Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A [...] Read more.
Oligomers and polymers consisting of multiple thiophenes are widely used in organic electronics such as organic transistors and sensors because of their strong electron-donating ability. In this study, a solution to the problem of the poor solubility of polythiophene systems was developed. A novel π-conjugated polymer material, PDPP-5Th, was synthesized by adding the electron acceptor unit, DPP, to the polythiophene system with a long alkyl side chain, which facilitated the solution processing of the material for the preparation of devices. Meanwhile, the presence of the multicarbonyl groups within the DPP molecule facilitated donor–acceptor interactions in the internal chain, which further improved the hole-transport properties of the polythiophene-based material. The weak forces present within the molecules that promoted structural coplanarity were analyzed using theoretical simulations. Furthermore, the grazing incidence wide-angle X-ray scanning (GIWAXS) results indicated that PDPP-5Th features high crystallinity, which is favorable for efficient carrier migration within and between polymer chains. The material showed hole transport properties as high as 0.44 cm2 V−1 s−1 in conductivity testing. Our investigations demonstrate the great potential of this polymer material in the field of optoelectronics. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

Back to TopTop