Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Stability of CTAs and Determination of Critical Micelle Concentration (CMC)
2.4. RAFT Polymerization of N,N-Dimethylacrylamide (DMA)
2.5. RAFT Polymerization of 2-(Methacryloyloxy)ethyl Phosphorylcholine (MPC)
3. Results and Discussion
3.1. Stability of CTAs Under Basic Conditions at 60 °C
3.2. Micelle Formation
3.3. Polymerization Kinetics for CTAs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Destarac, M. Industrial development of reversible-deactivation radical polymerization: Is the induction period over? Polym. Chem. 2018, 9, 4947–4967. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary perspective: RAFT polymerization a user guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Hill, M.R.; Carmean, R.N.; Sumerlin, B.S. Expanding the scope of RAFT polymerization: Recent advances and new horizons. Macromolecules 2015, 48, 5459–5469. [Google Scholar] [CrossRef]
- Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Surfactant-free RAFT emulsion polymerization using poly(N,N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 2010, 43, 6302–6310. [Google Scholar] [CrossRef]
- Simms, R.W.; Cunningham, M.F. Compartmentalization of reverse atom transfer radical polymerization in miniemulsion. Macromolecules 2008, 41, 5148–5155. [Google Scholar] [CrossRef]
- Fuchs, A.V.; Thurecht, K.J. Stability of trithiocarbonate RAFT agents containing both a cyano and a carboxylic acid functional group. ACS Macro Lett. 2017, 6, 287–291. [Google Scholar] [CrossRef]
- Ivanchenko, O.; Odnoroh, M.; Mallet-Ladeira, S.; Guerre, M.; Mazières, S.; Destarac, M. Azo-derived symmetrical trithiocarbonate for unprecedented RAFT control. J. Am. Chem. Soc. 2021, 143, 20585–20590. [Google Scholar] [CrossRef]
- Thum, M.D.; Wolf, S.; Falvey, D.E. State-dependent photochemical and photophysical behavior of dithiolate ester and trithiocarbonate reversible addition–fragmentation chain transfer polymerization agents. J. Phys. Chem. A 2020, 124, 4211–4222. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Li, B.; Zhu, S. Ab initio batch emulsion RAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene) trithiocarbonate. Macromolecules 2009, 42, 6414–6421. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, K.; Zeng, R.; Chen, Y.; Zhang, L.; Tan, J. Segmented copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using an asymmetric difunctional RAFT agent and the utilization in RAFT-mediated dispersion polymerization. Macromolecules 2021, 55, 65–77. [Google Scholar] [CrossRef]
- Vasilieva, Y.A.; Thomas, D.B.; Scales, C.W.; McCormick, C.L. Direct controlled polymerization of a cationic methacrylamido monomer in aqueous media via the RAFT process. Macromolecules 2004, 37, 2728–2737. [Google Scholar] [CrossRef]
- Sogabe, A.; Flores, J.D.; McCormick, C.L. Reversible addition—Fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion: Partitioning of chain transfer agent (CTA) and its effects on polymer molecular weight. Macromolecules 2010, 43, 6599–6607. [Google Scholar] [CrossRef]
- Mertoglu, M.; Laschewsky, A.; Skrabania, K.; Wieland, C. New water soluble agents for reversible Addition—Fragmentation chain transfer polymerization and their application in aqueous solutions. Macromolecules 2005, 38, 3601–3614. [Google Scholar] [CrossRef]
- Thomas, D.B.; Convertine, A.J.; Hester, R.D.; Lowe, A.B.; McCormick, C.L. Hydrolytic susceptibility of dithioester chain transfer agents and implications in aqueous RAFT polymerizations. Macromolecules 2004, 37, 1735–1741. [Google Scholar] [CrossRef]
- He, W.; Tao, W.; Wei, Z.; Tong, G.; Liu, X.; Tan, J.; Yang, S.; Hu, J.; Liu, G.; Yang, R. Controlled switching thiocarbonylthio end-groups enables interconvertible radical and cationic single-unit monomer insertions and RAFT polymerizations. Nat. Commun. 2024, 15, 5071. [Google Scholar] [CrossRef]
- Bingham, N.M.; Abousalman-Rezvani, Z.; Collins, K.; Roth, P.J. Thiocarbonyl chemistry in polymer science. Polym. Chem. 2022, 13, 2880–2901. [Google Scholar] [CrossRef]
- Kaith, B.S.; Singh, A.; Sharma, A.K.; Sud, D. Hydrogels: Synthesis, classification, properties and potential applications—A brief review. J. Polym. Environ. 2021, 29, 3827–3841. [Google Scholar] [CrossRef]
- El Sayed, M.M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023, 31, 2855–2879. [Google Scholar] [CrossRef]
- Damiri, F.; Salave, S.; Vitore, J.; Bachra, Y.; Jadhav, R.; Kommineni, N.; Karouach, F.; Paiva-Santos, A.C.; Varma, R.S.; Berrada, M. Properties and valuable applications of superabsorbent polymers: A comprehensive review. Polym. Bull. 2024, 81, 6671–6701. [Google Scholar] [CrossRef]
- Campanile, A.; Liguori, B.; Lama, G.C.; Recupido, F.; Donatiello, S.; Gagliardi, M.; Morone, A.; Verdolotti, L. The role of superabsorbent polymers and polymer composites in water resource treatment and management. Polymers 2024, 16, 2337. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Das, S.; Nandi, A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Amin, K.; An, Z.; Cai, Z.; Chen, H.; Chen, H.; Dong, Y.; Feng, X.; Fu, W.; Gu, J. Advanced functional polymer materials. Mater. Chem. Front. 2020, 4, 1803–1915. [Google Scholar] [CrossRef]
- Hussain, A.; Jabeen, N.; Tabassum, A.; Ali, J. 3D-printed conducting polymers for solid oxide fuel cells. In 3D Printed Conducting Polymers; CRC Press: Boca Raton, FL, USA, 2024; pp. 179–195. [Google Scholar]
- Nowak, T.; Nishida, K.; Shimoda, S.; Konno, Y.; Ichinose, K.; Sakakida, M.; Shichiri, M.; Nakabayashi, N.; Ishihara, K. Biocompatibility of MPC: In vivo evaluation for clinical application. J. Artif. Organs 2000, 3, 39–46. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, P.; Xie, J.; Li, J. Recent advances of zwitterionic-based topological polymers for biomedical applications. J. Mater. Chem. B 2022, 10, 2338–2356. [Google Scholar] [CrossRef]
- Sikdar, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent advances in the synthesis of smart hydrogels. Mater. Adv. 2021, 2, 4532–4573. [Google Scholar] [CrossRef]
- Ceylan Tuncaboylu, D.; Yıldırım, T.S. Dimethylacrylamide gels linked by dimethacrylate cross-linkers. Polym. Bull. 2019, 76, 5333–5344. [Google Scholar] [CrossRef]
- Baussard, J.-F.; Habib-Jiwan, J.-L.; Laschewsky, A.; Mertoglu, M.; Storsberg, J. New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous solution. Polymer 2004, 45, 3615–3626. [Google Scholar] [CrossRef]
- Convertine, A.J.; Lokitz, B.S.; Lowe, A.B.; Scales, C.W.; Myrick, L.J.; McCormick, C.L. Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature. Macromol. Rapid Commun. 2005, 26, 791–795. [Google Scholar] [CrossRef]
- Peng, Z. Synthesis and the effect of hydrophobic dodecyl end groups on pH-responsive micellization of poly(acrylic acid) and poly(ethylene glycol) triblock copolymer in aqueous solution. Iran. Polym. J. 2012, 21, 253–261. [Google Scholar] [CrossRef]
- Minò, A.; Cinelli, G.; Lopez, F.; Ambrosone, L. Optical behavior of nile red in organic and aqueous media environments. Appl. Sci. 2023, 13, 638. [Google Scholar] [CrossRef]
- Lauritsen, L.; Szomek, M.; Hornum, M.; Reinholdt, P.; Kongsted, J.; Nielsen, P.; Brewer, J.R.; Wüstner, D. Ratiometric fluorescence nanoscopy and lifetime imaging of novel Nile Red analogs for analysis of membrane packing in living cells. Sci. Rep. 2024, 14, 13748. [Google Scholar] [CrossRef] [PubMed]
- Kolthoff, I.; Stricks, W. Solubilization of dimethiylaminoazobenzene in solutions of detergents. I. The effect of temperature on the solubilization and upon the critical concentration. J. Phys. Chem. 1948, 52, 915–941. [Google Scholar] [CrossRef] [PubMed]
- Stauff, J. Gleichgewichte zwischen molekularzerteilter und kolloider Substanz in wässerigen Seifenzerteilungen: 1. Teil: Hydrolyse fettsaurer Salze. Z. Physik. Chem. 1939, 183, 55–85. [Google Scholar] [CrossRef]
- Bhuchar, N.; Deng, Z.; Ishihara, K.; Narain, R. Detailed study of the reversible addition–fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polym. Chem. 2011, 2, 632–639. [Google Scholar] [CrossRef]
Study | Conditions | Stability of Trithiocarbonate-Based CTAs | Polymerization Control of DMA | Polymerization Control of MPC |
---|---|---|---|---|
Vasilieva et al. [11] | Neutral, acidic | Stable | Not studied | Not studied |
Sogabe et al. [12] | pH~6, 40 °C | Stable | Not studied | Not studied |
Mertoglu et al. [13] | pH~6, 50 °C | Stable | Not studied | Not studied |
This study | Basic, 60 °C | Less stable, hydrolyzes at pH > 11 | Effective control, narrow Mw/Mn | Rtt-05 with micelle structure ineffective control, broad Mw/Mn, Rtt-07 with single state well-controlled, narrow Mw/Mn |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.N.; Nishimura, T.; Osaki, Y.; Otani, T.; Yusa, S.-i. Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions. Polymers 2025, 17, 297. https://doi.org/10.3390/polym17030297
Vu TN, Nishimura T, Osaki Y, Otani T, Yusa S-i. Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions. Polymers. 2025; 17(3):297. https://doi.org/10.3390/polym17030297
Chicago/Turabian StyleVu, Thi Ngan, Tomoya Nishimura, Yu Osaki, Toyohiro Otani, and Shin-ichi Yusa. 2025. "Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions" Polymers 17, no. 3: 297. https://doi.org/10.3390/polym17030297
APA StyleVu, T. N., Nishimura, T., Osaki, Y., Otani, T., & Yusa, S.-i. (2025). Stability and Controlled Polymerization of Trithiocarbonate Chain Transfer Agents Under Harsh Conditions. Polymers, 17(3), 297. https://doi.org/10.3390/polym17030297