Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,638)

Search Parameters:
Keywords = long cycling life

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1402 KB  
Article
Solid-State Transformers in the Global Clean Energy Transition: Decarbonization Impact and Lifecycle Performance
by Nikolay Hinov
Energies 2026, 19(2), 558; https://doi.org/10.3390/en19020558 - 22 Jan 2026
Viewed by 22
Abstract
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, [...] Read more.
The global clean energy transition requires power conversion technologies that combine high efficiency, operational flexibility, and reduced environmental impact over their entire service life. Solid-state transformers (SSTs) have emerged as a promising alternative to conventional line-frequency transformers, offering bidirectional power flow, high-frequency isolation, and advanced control capabilities that support renewable integration and electrified infrastructures. This paper presents a comparative life cycle assessment (LCA) of conventional transformers and SSTs across representative power-system applications, including residential and industrial distribution networks, electric vehicle fast-charging infrastructure, and transmission–distribution interface substations. The analysis follows a cradle-to-grave approach and is based on literature-derived LCA data, manufacturer specifications, and harmonized engineering assumptions applied consistently across all case studies. The results show that, under identical assumptions, SST-based solutions are associated with indicative lifecycle CO2 emission reductions of approximately 10–30% compared to conventional transformers, depending on power rating and operating profile (≈90–1000 t CO2 over 25 years across the four cases). These reductions are primarily driven by lower operational losses and reduced material intensity, while additional system-level benefits arise from enhanced controllability and compatibility with renewable-rich and hybrid AC/DC grids. The study also identifies key challenges that influence the sustainability performance of SSTs, including higher capital cost, thermal management requirements, and the long-term reliability of power-electronic components. Overall, the results indicate that SSTs represent a relevant enabling technology for future low-carbon power systems, while highlighting the importance of transparent assumptions and lifecycle-oriented evaluation when comparing emerging grid technologies. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

23 pages, 1500 KB  
Systematic Review
Life Cycle Assessment of Hydrogen Fuel Cell Buses: A Systematic Review of Methodological Approaches
by Camila Padovan, Ana Carolina Maia Angelo, Márcio de Almeida D’Agosto and Pedro Carneiro
Future Transp. 2026, 6(1), 23; https://doi.org/10.3390/futuretransp6010023 - 22 Jan 2026
Viewed by 14
Abstract
Growing concerns over greenhouse gas (GHG) emissions have positioned hydrogen fuel cell buses (HFCBs) as a promising alternative for sustainable urban mobility. By eliminating tailpipe emissions and enabling significant reductions in well-to-wheel GHG intensities when hydrogen is sourced from renewables, HFCBs can contribute [...] Read more.
Growing concerns over greenhouse gas (GHG) emissions have positioned hydrogen fuel cell buses (HFCBs) as a promising alternative for sustainable urban mobility. By eliminating tailpipe emissions and enabling significant reductions in well-to-wheel GHG intensities when hydrogen is sourced from renewables, HFCBs can contribute to improved urban air quality, energy diversification, and alignment with climate goals. Despite these benefits, large-scale adoption faces challenges related to production costs, hydrogen infrastructure, and efficiency improvements across the supply chain. Life cycle assessment (LCA) provides a valuable framework to assess these trade-offs holistically, capturing environmental, economic, and social dimensions of HFCB deployment. However, inconsistencies in system boundaries, functional units, and impact categories highlight the need for more standardized and comprehensive methodologies. This paper examines the potential of hydrogen buses by synthesizing evidence from peer-reviewed studies and identifying opportunities for integration into urban fleets. Findings suggest that when combined with robust LCA approaches, hydrogen buses offer a pathway toward decarbonized, cleaner, and more resilient public transport systems. Strategic adoption could not only enhance environmental performance but also foster innovation, infrastructure development, and long-term economic viability, positioning HFCBs as a cornerstone of sustainable urban transportation transitions. Full article
Show Figures

Graphical abstract

34 pages, 7481 KB  
Review
Recent Advances in Thermoplastic Starch (TPS) and Biodegradable Polyester Blends: A Review of Compatibilization Strategies and Bioactive Functionalities
by Elizabeth Moreno-Bohorquez, Mary Judith Arias-Tapia and Andrés F. Jaramillo
Polymers 2026, 18(2), 289; https://doi.org/10.3390/polym18020289 - 21 Jan 2026
Viewed by 118
Abstract
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide [...] Read more.
Thermoplastic starch (TPS) blended with biodegradable polyesters such as polyhydroxybutyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL) represents a promising route toward sustainable alternatives to petroleum-based plastics. TPS offers advantages related to abundance, low cost, and biodegradability, while polyesters provide improved mechanical strength, thermal stability, and barrier performance. However, the intrinsic incompatibility between hydrophilic TPS and hydrophobic polyesters typically leads to immiscible systems with poor interfacial adhesion and limited performance. This review critically examines recent advances in the development of TPS/polyester blends, with emphasis on compatibilization strategies based on chemical modification, natural and synthetic compatibilizers, bio-based additives, and reinforcing agents. Particular attention is given to the role of organic acids, essential oils, phenolic compounds, nanofillers, and natural reinforcements in controlling morphology, crystallinity, interfacial interactions, and thermal–mechanical behavior. In addition, the contribution of bioactive additives to antimicrobial and antioxidant functionality is discussed as an emerging multifunctional feature of some TPS/polyester systems. Finally, current limitations related to long-term stability, scalability, and life cycle assessment are highlighted, identifying key challenges and future research directions for the development of advanced biodegradable materials with tailored properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

10 pages, 946 KB  
Article
Applying a Method to Estimate the Breeding and Non-Breeding Population Fractions of the Globally Threatened Red-Spectacled Amazon
by José L. Tella, Jaime Martínez, Francisco V. Dénes, Viviane Zulian, Fernando Hiraldo and Nêmora P. Prestes
Biology 2026, 15(2), 190; https://doi.org/10.3390/biology15020190 - 20 Jan 2026
Viewed by 157
Abstract
Population size estimates are essential for investigating numerous aspects of the ecology, evolution, and conservation of wildlife. However, the life cycles of many species include cryptic life stages that are difficult to detect or sample, such as the non-breeding fractions typical of many [...] Read more.
Population size estimates are essential for investigating numerous aspects of the ecology, evolution, and conservation of wildlife. However, the life cycles of many species include cryptic life stages that are difficult to detect or sample, such as the non-breeding fractions typical of many bird populations. Quantifying the proportions of breeders and non-breeders is crucial to better assess their conservation status and population trends. We propose a simple method applicable to species that show phenotypic differences between adults and juveniles. By quantifying the proportion of ages, the size of the whole population, and its productivity, the size of the non-breeding and breeding fractions can be inferred. We applied this approach to the red-spectacled amazon, Amazona pretrei, a threatened parrot endemic to the Brazilian Atlantic Forest. The entire global population aggregates in winter in a few localities to feed on the seeds of the Parana pine Araucaria angustifolia, a critically endangered tree whose range has declined >97% due to massive exploitation. From a global population of ~16,000 individuals in 2015 and ~20,000 individuals in 2017, our methodology allowed us to estimate a low proportion of juveniles (14%) and a large proportion of non-breeders (80%) within the adult population, with narrow confidence intervals. These proportions did not change between years, but the estimated number of breeding pairs increased, from ca. 1300 to 1700 pairs, in parallel with the global population increase. Our methodology, with its possible improvements to reduce uncertainty in estimates, can be applied to the long-term monitoring of this and many other species, to better understand their conservation challenges and inform effective management strategies. Full article
Show Figures

Figure 1

10 pages, 632 KB  
Proceeding Paper
Simulation of Green Diesel by Hydrotreatment of Waste Vegetable Oil
by Pascal Mwenge, Thubelihle Mahlangu and Andani Munonde
Eng. Proc. 2025, 117(1), 27; https://doi.org/10.3390/engproc2025117027 - 20 Jan 2026
Viewed by 119
Abstract
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined [...] Read more.
Due to the world’s rising energy demand and reliance on fossil fuels, exploring cleaner energy sources is urgent. Green diesel from renewable resources, such as waste vegetable oil, is promising because it is compatible with petroleum diesel from fossil fuels. This study examined the simulation of the hydrotreatment process of waste cooking oil (WCO) to produce green diesel. ChemCAD version 8.1 was used to develop the simulation, along with a kinetic model based on the Langmuir–Hinshelwood mechanism (an LH-C-ND model), where fatty acids, such as oleic, stearic, and palmitic acid, in WCO are converted into long-chain hydrocarbons (C15, C16, C17, and C18). The influence of process parameters on green diesel yield was assessed at various temperatures, pressures, and H2/oil ratios. The best process conditions for green diesel production were identified as a temperature of 275 °C, a pressure of 30 bars, and an H2/oil ratio of 0.3. Minimising the formation of CO2, CO, and water. Under these conditions, a high green diesel yield was achieved, with WCO conversion exceeding 90%, and over 80% of the products were suitable for green diesel. This research supports SDG 7, which aims for universal access to affordable, reliable, sustainable, and modern energy, by exploring cleaner energy options, such as green diesel from waste vegetable oil. It is recommended to perform a life cycle assessment to evaluate the overall environmental impact. Full article
Show Figures

Figure 1

19 pages, 831 KB  
Systematic Review
Assessing Water Reuse Through Life Cycle Assessment: A Systematic Review of Recent Trends, Impacts, and Sustainability Challenges
by Lenise Santos, Isabel Brás, Anna Barreto, Miguel Ferreira, António Ferreira and José Ferreira
Processes 2026, 14(2), 330; https://doi.org/10.3390/pr14020330 - 17 Jan 2026
Viewed by 210
Abstract
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse [...] Read more.
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse projects, focusing on research trends, methodological approaches, and opportunities for improvement. A systematic search was conducted in Web of Science, ScienceDirect, and Google Scholar for studies published from 2020 onwards using combinations of the keywords “life cycle assessment”, “LCA”, “water reuse”, “water recycling”, and “wastewater recycling”. Twelve studies were selected from 57 records identified, based on predefined eligibility criteria requiring quantitative LCA of water reuse systems. The results reveal a predominance of European research, reflecting regulatory advances and strong academic engagement in this field. The most frequently assessed impact categories were global warming, eutrophication, human toxicity and ecotoxicity, highlighting the environmental relevance of reuse systems. Energy consumption and water transport were identified as critical hotspots, especially in scenarios involving long distances and fossil-based energy sources. Nevertheless, most studies demonstrate that water reuse is environmentally viable, particularly when renewable energy and optimized logistics are applied. The review also emphasizes the need to better integrate economic and social dimensions and to adapt LCA methodologies to local conditions. Overall, the findings confirm LCA as a robust decision-support tool for sustainable planning and management of water reuse systems. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

17 pages, 3335 KB  
Article
Heavy Metal Bioaccumulation in European Eels (Anguilla anguilla) from the Odra and Vistula River Basins (Poland): Implications for Environmental and Food Safety
by Joanna Nowosad, Tomasz K. Czarkowski, Andrzej Kapusta, Natalia Mariańska, Piotr Chmieliński, Bartosz Czarnecki, Jakub Pyka, Michał K. Łuczyński, Gulmira Ablaisanova and Dariusz Kucharczyk
Animals 2026, 16(2), 287; https://doi.org/10.3390/ani16020287 - 16 Jan 2026
Viewed by 218
Abstract
The accumulation of heavy metals in fish tissues is widely recognized as an indicator of aquatic environmental pollution, and the analysis of their content provides a basis for assessing ecological risk and the safety of aquatic food. The European eel (Anguilla anguilla [...] Read more.
The accumulation of heavy metals in fish tissues is widely recognized as an indicator of aquatic environmental pollution, and the analysis of their content provides a basis for assessing ecological risk and the safety of aquatic food. The European eel (Anguilla anguilla) is a species frequently used as a bioindicator in environmental studies due to its wide geographic distribution, long life cycle, and high capacity for bioaccumulation of heavy metals in various tissues. The aim of this study was to assess the variation in the accumulation of heavy metals, i.e., mercury (Hg), lead (Pb), arsenic (As), and cadmium (Cd), in the tissues (muscle, liver, gonads, and gills) of European eels caught in two locations in Polish inland waters. The obtained results showed significant differences both in the concentration levels of individual elements and in their co-occurrence in the examined tissues. The statistical methods used, including correlation analysis, heat maps, and principal component analysis (PCA), allowed for a comprehensive assessment of the relationships between metals and the identification of factors differentiating the studied populations. The obtained results clearly indicate that fish residing in similar environments for long periods exhibit significant differences in heavy metal content in various fish tissues. Fish obtained from environments with potentially higher levels of heavy metal inputs, such as the Oder River EMU compared with the Vistula River EMU, showed higher levels of heavy metal accumulation in tissues. This study also found that the concentration of heavy metals tested did not exceed the safe standards for human fish consumption. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 1826 KB  
Review
Macrophages in Chronic Rejection: The Shapeshifters Behind Transplant Survival
by Ahmed Uosef, Jacek Z. Kubiak and Rafik M. Ghobrial
Biology 2026, 15(2), 162; https://doi.org/10.3390/biology15020162 - 16 Jan 2026
Viewed by 176
Abstract
Background: Organ transplant offers patients a second chance at life, yet chronic rejection remains a formidable barrier to long-term success. Unlike the instantaneous storm of acute rejection, chronic rejection is a slow, unremitting process that silently remodels vessels, scars tissues, and diminishes graft [...] Read more.
Background: Organ transplant offers patients a second chance at life, yet chronic rejection remains a formidable barrier to long-term success. Unlike the instantaneous storm of acute rejection, chronic rejection is a slow, unremitting process that silently remodels vessels, scars tissues, and diminishes graft function. At the center of this process are macrophages, immune “shapeshifters” that can heal or harm depending on their cues. Methods: This manuscript systematically reviews and synthesizes the current evidence from experimental studies and clinical observations, as well as molecular insights, to unravel how macrophages orchestrate chronic rejection. It travels over macrophage origins alongside their dynamic polarization into pro-inflammatory (M1) or pro-repair yet fibrotic (M2) states. The discussion integrates mechanisms of recruitment, antigen presentation, vascular injury, and fibrosis, while highlighting the molecular pathways (NF-κB, inflammasomes, STAT signaling, metabolic rewiring) that shape macrophage fate. Results: Macrophages play a central role in chronic rejection. Resident macrophages, once tissue peacekeepers, amplify inflammation, while recruited monocyte-derived macrophages fuel acute injury or dysfunctional repair. Together, they initiate transplant vasculopathy through cytokines, growth factors, and matrix metalloproteinases, slowly narrowing vessels and starving grafts. Donor-derived macrophages, often overlooked, act as early sentinels and long-term architects of fibrosis, blurring the line between donor and host immunity. At the molecular level, macrophages lock into destructive programs, perpetuating a cycle of inflammation, vascular remodeling, and scarring. Conclusions: Macrophages are not passive bystanders but pivotal decision makers in chronic rejection. Their plasticity, while a source of pathology, also opens therapeutic opportunities. Emerging strategies like macrophage-targeted drugs, immune tolerance approaches, gene and exosome therapies currently offer ways to reprogram these cells and preserve graft function. By shifting the macrophage narrative from saboteurs to guardians, transplantation medicine may transform chronic rejection from an inevitability into a preventable complication, extending graft survival from fleeting years into enduring decades. Full article
(This article belongs to the Special Issue Feature Papers on Developmental and Reproductive Biology)
Show Figures

Figure 1

26 pages, 490 KB  
Article
Signaling or Substantiating? Green Technology Standard-Setting, Knowledge Integration, and Dual Green Innovation Across the Firm Life Cycle
by Xun Zhang, Wenjing Zhao, Biao Xu and Jun Wu
Sustainability 2026, 18(2), 929; https://doi.org/10.3390/su18020929 - 16 Jan 2026
Viewed by 152
Abstract
This study examines how corporate participation in green technology standard-setting affects two dimensions of green innovation–substantive and symbolic green innovation–through the mediating role of knowledge integration and across different stages of the firm life cycle. Analyzing panel data from Chinese A-share listed firms [...] Read more.
This study examines how corporate participation in green technology standard-setting affects two dimensions of green innovation–substantive and symbolic green innovation–through the mediating role of knowledge integration and across different stages of the firm life cycle. Analyzing panel data from Chinese A-share listed firms (2010–2023), we find that standard-setting participation significantly enhances both types of innovation, with a stronger and more enduring effect on substantive innovation. The effects exhibit clear life cycle heterogeneity: substantive green innovation is consistently enhanced across all stages of the firm life cycle, whereas symbolic green innovation is predominantly reinforced during the maturity stage. Grounded in the knowledge-based view and institutional theory, our findings highlight how institutional engagement fosters sustainable innovation by strengthening firms’ capacity for knowledge acquisition and integration. This research advances understanding of the strategic value of standard-setting in sustainability efforts and provides actionable insights for aligning standardization practices with long-term innovation goals. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

11 pages, 479 KB  
Review
Chronic Kidney Disease-Associated Pruritus in Hemodialysis: Unraveling Mechanisms and Emerging Therapeutic Targets—A Systematic Review
by Fasie Dragos, Suliman Ioana Livia, Panculescu Florin Gabriel, Cimpineanu Bogdan, Alexandru Andreea, Alexandrescu Luana, Alexandrescu Maria Daria, Popescu Stere, Enache Florin-Daniel, Manac Iulian, Mihai Lavinia Mihaela, Popa Marius Florentin, Tudor Iuliana-Cezara, Nitu Radu Adrian, Chisnoiu Tatiana, Cozaru Georgeta Camelia, Hangan Tony and Tuta Liliana-Ana
Int. J. Mol. Sci. 2026, 27(2), 851; https://doi.org/10.3390/ijms27020851 - 15 Jan 2026
Viewed by 172
Abstract
This systematic review examines chronic kidney disease-associated pruritus (CKD-aP) as a complex clinical manifestation in patients undergoing hemodialysis. Traditionally considered a secondary symptom of end-stage renal disease, emerging evidence now positions CKD-aP as a multidimensional disorder with substantial pathogenic influence on patient outcomes. [...] Read more.
This systematic review examines chronic kidney disease-associated pruritus (CKD-aP) as a complex clinical manifestation in patients undergoing hemodialysis. Traditionally considered a secondary symptom of end-stage renal disease, emerging evidence now positions CKD-aP as a multidimensional disorder with substantial pathogenic influence on patient outcomes. Using the PRISMA 2020 methodology, we critically evaluated 54 peer-reviewed studies published between 2020 and 2025. Our synthesis highlights a convergence of five mechanistic frameworks underpinning CKD-aP: elevated levels of uremic toxins originating from gut microbial dysbiosis, immune activation driven by IL-31 and other pro-inflammatory cytokines, heightened peripheral and central neural sensitization, dysregulation of endogenous opioid receptor pathways favoring μ-receptor activation, and xerosis-related epidermal barrier dysfunction. These mechanisms contribute to a systemic cycle of microinflammation, pruritogenic signaling, and neural hyperexcitability. We also identified and compared validated assessment tools—including the NRS, VAS, Skindex-10, and the UP-Dial scale—that facilitate standardized quantification of disease burden. While available treatments such as gabapentinoids and phototherapy offer partial relief, targeted therapies—including κ-opioid receptor agonists—represent a major advancement, although long-term effectiveness and accessibility remain under investigation. Growing scientific consensus establishes CKD-aP as a priority therapeutic target in hemodialysis care, underscoring the need for integrated, mechanism-based management strategies to improve quality of life and clinical outcomes. This work represents a narrative systematic review, integrating evidence from mechanistic, translational, and clinical studies to critically examine the biological pathways underlying CKD-associated pruritus. Full article
Show Figures

Figure 1

34 pages, 10017 KB  
Article
U-H-Mamba: An Uncertainty-Aware Hierarchical State-Space Model for Lithium-Ion Battery Remaining Useful Life Prediction Using Hybrid Laboratory and Real-World Datasets
by Zhihong Wen, Xiangpeng Liu, Wenshu Niu, Hui Zhang and Yuhua Cheng
Energies 2026, 19(2), 414; https://doi.org/10.3390/en19020414 - 14 Jan 2026
Viewed by 219
Abstract
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, [...] Read more.
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, real-world environments. To bridge this gap, this study presents U-H-Mamba, a novel uncertainty-aware hierarchical framework trained on a massive hybrid repository comprising over 146,000 charge–discharge cycles from both laboratory benchmarks and operational electric vehicle datasets. The proposed architecture employs a two-level design to decouple degradation dynamics, where a Multi-scale Temporal Convolutional Network functions as the base encoder to extract fine-grained electrochemical fingerprints, including derived virtual impedance proxies, from high-frequency intra-cycle measurements. Subsequently, an enhanced Pressure-Aware Multi-Head Mamba decoder models the long-range inter-cycle degradation trajectories with linear computational complexity. To guarantee reliability in safety-critical applications, a hybrid uncertainty quantification mechanism integrating Monte Carlo Dropout with Inductive Conformal Prediction is implemented to generate calibrated confidence intervals. Extensive empirical evaluations demonstrate the framework’s superior performance, achieving a RMSE of 3.2 cycles on the NASA dataset and 5.4 cycles on the highly variable NDANEV dataset, thereby outperforming state-of-the-art baselines by 20–40%. Furthermore, SHAP-based interpretability analysis confirms that the model correctly identifies physics-informed pressure dynamics as critical degradation drivers, validating its zero-shot generalization capabilities. With high accuracy and linear scalability, the U-H-Mamba model offers a viable and physically interpretable solution for cloud-based prognostics in large-scale electric vehicle fleets. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

13 pages, 1189 KB  
Communication
A Three-Tier In Vitro Strategy for Accelerated Pine Breeding and Resistance Research Against Pine Wilt Disease
by Zi-Hui Zhu, Yan-Fei Liao, Yang-Chun-Zi Liao, Hui Sun, Jian-Ren Ye and Li-Hua Zhu
Plants 2026, 15(2), 246; https://doi.org/10.3390/plants15020246 - 13 Jan 2026
Viewed by 223
Abstract
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a globally destructive threat to coniferous forests, causing severe ecological and economic losses. Conventional resistance breeding is critically hampered by long life cycles of trees and field evaluation [...] Read more.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is a globally destructive threat to coniferous forests, causing severe ecological and economic losses. Conventional resistance breeding is critically hampered by long life cycles of trees and field evaluation challenges. To address these limitations, we developed a three-tier biotechnology pipeline with a dual-output goal (generating both resistant germplasm and mechanistic insights) designed to bridge the in vitro–field gap. This strategy is founded upon the resolution of a longstanding pathogenesis debate, which established aseptic PWNs as a standardized research tool. The pipeline integrates high-throughput in vitro cellular screening (Tier 1), whole-plant validation via organogenesis (Tier 2), and scaled production coupled with mechanistic investigation through somatic embryogenesis (Tier 3). Tier 1 enables rapid phenotypic screening, Tier 2 validates resistance in whole plants, and Tier 3 facilitates mass production and in-depth study. It operates as a closed-loop, knowledge-driven system, simultaneously accelerating PWN-resistant germplasm development and empowering molecular mechanism discovery. Validated across Pinus massoniana and P. densiflora, this work provides a concrete, community-usable model system that directly addresses a core methodological bottleneck in forest pathology. This strategy effectively bridges the in vitro–field gap, offering a replicable model for perennial crop breeding and contributing to resilient forest management. Full article
Show Figures

Figure 1

25 pages, 1398 KB  
Article
Circular Economy in Rammed Earth Construction: A Life-Cycle Case Study on Demolition and Reuse Strategies of an Experimental Building in Pasłęk, Poland
by Anna Patrycja Nowak, Michał Pierzchalski and Joanna Klimowicz
Sustainability 2026, 18(2), 790; https://doi.org/10.3390/su18020790 - 13 Jan 2026
Viewed by 197
Abstract
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, [...] Read more.
This study aims to evaluate the potential of circular economy principles in earth-based construction using an experimental rammed earth building located in Pasłęk, Poland as a case study. The research focuses on end-of-life scenarios for earth materials, with particular emphasis on rammed earth, adobe, and compressed earth blocks stabilized with Portland cement. A scenario-based life-cycle assessment (LCA) was conducted to compare alternative demolition and reuse strategies, including manual and mechanical deconstruction, as well as on-site and off-site material reuse. Greenhouse gas emissions associated with demolition (Module C1) and transport (Module C2) were estimated for each scenario. The results indicate that manual deconstruction combined with local, on-site reuse leads to the lowest carbon footprint, whereas off-site reuse involving long-distance transport significantly increases greenhouse gas emissions. In addition, qualitative reuse pathways were identified for wood, glass, ceramics, and insulation materials. The study reveals a lack of standardized technical procedures for the recovery and reuse of stabilized earthen materials after demolition and highlights the importance of integrating end-of-life planning into the early design phase using digital tools such as material passports and BIM. The findings demonstrate that properly designed rammed earth systems can provide a viable low-tech solution for reducing construction waste and supporting circular material flows in the built environment. Full article
Show Figures

Figure 1

19 pages, 3137 KB  
Article
Optimization Dispatch Method for Integrated Energy Systems in Agricultural Parks Considering the Operational Reliability of Energy Storage Batteries
by Yunjia Wang, Shiyao Hu, Zeya Zhang, Yan Zhang, Hongguang Yu, Ning Pang, Zihao Liu and Chen Shao
Processes 2026, 14(2), 269; https://doi.org/10.3390/pr14020269 - 12 Jan 2026
Viewed by 181
Abstract
Current scheduling strategies for energy storage batteries in agricultural parks generally overlook the issue of battery lifespan degradation, which significantly undermines the system’s economic efficiency and long-term reliability. To address this problem, this paper proposes an optimal scheduling method for integrated energy systems [...] Read more.
Current scheduling strategies for energy storage batteries in agricultural parks generally overlook the issue of battery lifespan degradation, which significantly undermines the system’s economic efficiency and long-term reliability. To address this problem, this paper proposes an optimal scheduling method for integrated energy systems in agricultural parks that takes into account the operational reliability of energy storage batteries. First, a battery capacity degradation model integrating both cycle aging and calendar aging is established, and the reliability of multiple components within the energy storage system is evaluated using Monte Carlo simulation. On this basis, an optimization scheduling model aimed at minimizing the total system operating cost is developed, dynamically balancing economic performance and battery service life. Finally, the proposed method is validated through a practical case study of a facility-based agricultural industrial park. The results demonstrate that, while ensuring stable system operation, the approach effectively extends the service life of energy storage equipment by 8–9 years, reduces the average daily operating cost by 61.94 yuan, and increases the power supply reliability rate to 99.921%. Full article
(This article belongs to the Special Issue Energy Storage and Conversion: Next-Generation Battery Technology)
Show Figures

Figure 1

16 pages, 2607 KB  
Review
Pleurotus ostreatus for Environmental Remediation and Sustainable Bioprocesses: An Evidence-Mapped Review of Research Gaps and Opportunities
by Luz Miryam Lozada-Martinez, Juan David Reyes-Duque, Yadira Marin-Hamburger and Ivan David Lozada-Martinez
J. Fungi 2026, 12(1), 54; https://doi.org/10.3390/jof12010054 - 12 Jan 2026
Viewed by 308
Abstract
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We [...] Read more.
Fungi have emerged as versatile biotechnological platforms for addressing environmental challenges with potential co-benefits for human health. Among them, Pleurotus ostreatus stands out for its ligninolytic enzyme systems (notably laccases), capacity to valorize lignocellulosic residues, and ability to form functional mycelial materials. We conducted an evidence-mapped review, based on a bibliometric analysis of the Scopus corpus (2001–2025; 2085 records), to characterize research fronts and practical opportunities in environmental remediation and sustainable bioprocesses involving P. ostreatus. The mapped literature shows sustained growth and global engagement, with prominent themes in: (a) oxidative transformation of phenolic compounds, dyes and polycyclic aromatic hydrocarbons; (b) biodegradation/bioconversion of agro-industrial residues into value-added products; and (c) development of bio-based materials and processes aligned with the circular bioeconomy. We synthesize how these strands translate to real-world contexts, reducing contaminant loads, closing nutrient loops, and enabling low-cost processes that may indirectly reduce exposure-related risks. Key translational gaps persist: standardization of environmental endpoints, scale-up from laboratory to field, performance in complex matrices, life-cycle impacts and cost, ecotoxicological safety, and long-term monitoring. A practical agenda was proposed that prioritizes field-scale demonstrations with harmonized protocols, integration of life-cycle assessment and cost metrics, data sharing, and One Health frameworks linking environmental gains with plausible health co-benefits. In conclusion, P. ostreatus is a tractable platform organism for sustainable remediation and bio-manufacturing. This evidence map clarifies where the field is mature and where focused effort can accelerate the impact of future research. Full article
(This article belongs to the Special Issue Fungi Activity on Remediation of Polluted Environments, 2nd Edition)
Show Figures

Figure 1

Back to TopTop