Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,028)

Search Parameters:
Keywords = location advantage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1932 KiB  
Article
Exploring Agronomic Management Strategies to Improve Millet, Sorghum, Peanuts and Rice in Senegal Using the DSSAT Models
by Walter E. Baethgen, Adama Faye and Mbaye Diop
Agronomy 2025, 15(8), 1882; https://doi.org/10.3390/agronomy15081882 - 4 Aug 2025
Abstract
Achieving food security for a growing population under a changing climate is a key concern in Senegal, where agriculture employs 77% of the workforce with a majority of small farmers who rely on the production of crops for their subsistence and for income [...] Read more.
Achieving food security for a growing population under a changing climate is a key concern in Senegal, where agriculture employs 77% of the workforce with a majority of small farmers who rely on the production of crops for their subsistence and for income generation. Moreover, due to the underproductive soils and variable rainfall, Senegal depends on imports to fulfil 70% of its food requirements. In this research, we considered four crops that are crucial for Senegalese agriculture: millet, sorghum, peanuts and rice. We used crop simulation models to explore existing yield gaps and optimal agronomic practices. Improving the N fertilizer management in sorghum and millet resulted in 40–100% increases in grain yields. Improved N symbiotic fixation in peanuts resulted in yield increases of 20–100% with highest impact in wetter locations. Optimizing irrigation management and N fertilizer use resulted in 20–40% gains. The best N fertilizer strategy for sorghum and millet included applying low rates at sowing and in early development stages and adjusting a third application, considering the expected rainfall. Peanut yields of the variety 73-33 were higher than Fleur-11 in all locations, and irrigation showed no clear economic advantage. The best N fertilizer management for rainfed rice included applying 30 kg N/ha at sowing, 25 days after sowing (DAS) and 45 DAS. The best combination of sowing dates for a possible double rice crop depended on irrigation costs, with a first crop planted in January or March and a second crop planted in July. Our work confirmed results obtained in field research experiments and identified management practices for increasing productivity and reducing yield variability. Those crop management practices can be implemented in pilot experiments to further validate the results and to disseminate best management practices for farmers in Senegal. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

24 pages, 6558 KiB  
Article
Utilizing Forest Trees for Mitigation of Low-Frequency Ground Vibration Induced by Railway Operation
by Zeyu Zhang, Xiaohui Zhang, Zhiyao Tian and Chao He
Appl. Sci. 2025, 15(15), 8618; https://doi.org/10.3390/app15158618 (registering DOI) - 4 Aug 2025
Abstract
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer [...] Read more.
Forest trees have emerged as a promising passive solution for mitigating low-frequency ground vibrations generated by railway operations, offering ecological and cost-effective advantages. This study proposes a three-dimensional semi-analytical method developed for evaluating the dynamic responses of the coupled track–ground–tree system. The thin-layer method is employed to derive an explicit Green’s function corresponding to a har-monic point load acting on a layered half-space, which is subsequently applied to couple the foundation with the track system. The forest trees are modeled as surface oscillators coupled on the ground surface to evaluate the characteristics of multiple scattered wavefields. The vibration attenuation capacity of forest trees in mitigating railway-induced ground vibrations is systematically investigated using the proposed method. In the direction perpendicular to the track on the ground surface, a graded array of forest trees with varying heights is capable of forming a broad mitigation frequency band below 80 Hz. Due to the interaction of wave fields excited by harmonic point loads at multiple locations, the attenuation performance of the tree system varies significantly across different positions on the surface. The influence of variability in tree height, radius, and density on system performance is subsequently examined using a Monte Carlo simulation. Despite the inherent randomness in tree characteristics, the forest still demonstrates notable attenuation effectiveness at frequencies below 80 Hz. Among the considered parameters, variations in tree height exert the most pronounced effect on the uncertainty of attenuation performance, followed sequentially by variations in density and radius. Full article
Show Figures

Figure 1

22 pages, 1566 KiB  
Review
Multi-Objective Evolutionary Algorithms in Waste Disposal Systems: A Comprehensive Review of Applications, Case Studies, and Future Directions
by Saad Talal Alharbi
Computers 2025, 14(8), 316; https://doi.org/10.3390/computers14080316 - 4 Aug 2025
Abstract
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, [...] Read more.
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful optimization tools for addressing the complex, often conflicting goals present in modern waste disposal systems. This review explores recent advances and practical applications of MOEAs in key areas, including waste collection routing, waste-to-energy (WTE) systems, and facility location and allocation. Real-world case studies from cities like Braga, Lisbon, Uppsala, and Cyprus demonstrate how MOEAs can enhance operational efficiency, boost energy recovery, and reduce environmental impacts. While these algorithms offer significant advantages, challenges remain in computational complexity, adapting to dynamic environments, and integrating with emerging technologies. Future research directions highlight the potential of combining MOEAs with machine learning and real-time data to create more flexible and responsive waste management strategies. By leveraging these advancements, MOEAs can play a pivotal role in developing sustainable, efficient, and adaptive waste disposal systems capable of meeting the growing demands of urbanization and stricter environmental regulations. Full article
(This article belongs to the Special Issue Operations Research: Trends and Applications)
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 157
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

31 pages, 4347 KiB  
Article
Optimizing Passive Thermal Enhancement via Embedded Fins: A Multi-Parametric Study of Natural Convection in Square Cavities
by Saleh A. Bawazeer
Energies 2025, 18(15), 4098; https://doi.org/10.3390/en18154098 - 1 Aug 2025
Viewed by 113
Abstract
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a [...] Read more.
Internal fins are commonly utilized as a passive technique to enhance natural convection, but their efficiency depends on complex interplay between fin design, material properties, and convective strength. This study presents an extensive numerical analysis of buoyancy-driven flow in square cavities containing a single horizontal fin on the hot wall. Over 9000 simulations were conducted, methodically varying the Rayleigh number (Ra = 10 to 105), Prandtl number (Pr = 0.1 to 10), and fin characteristics, such as length, vertical position, thickness, and the thermal conductivity ratio (up to 1000), to assess their overall impact on thermal efficiency. Thermal enhancements compared to scenarios without fins are quantified using local and average Nusselt numbers, as well as a Nusselt number ratio (NNR). The results reveal that, contrary to conventional beliefs, long fins positioned centrally can actually decrease heat transfer by up to 11.8% at high Ra and Pr due to the disruption of thermal plumes and diminished circulation. Conversely, shorter fins located near the cavity’s top and bottom wall edges can enhance the Nusselt numbers for the hot wall by up to 8.4%, thereby positively affecting the development of thermal boundary layers. A U-shaped Nusselt number distribution related to fin placement appears at Ra ≥ 103, where edge-aligned fins consistently outperform those positioned mid-height. The benefits of high-conductivity fins become increasingly nonlinear at larger Ra, with advantages limited to designs that minimally disrupt core convective patterns. These findings challenge established notions regarding passive thermal enhancement and provide a predictive thermogeometric framework for designing enclosures. The results can be directly applied to passive cooling systems in electronics, battery packs, solar thermal collectors, and energy-efficient buildings, where optimizing heat transfer is vital without employing active control methods. Full article
Show Figures

Figure 1

10 pages, 1924 KiB  
Article
A Waypoint-Based Flow Capture Location Model for Siting Facilities on Transportation Networks
by Joni Downs, Yujie Hu and Ran Tao
Future Transp. 2025, 5(3), 93; https://doi.org/10.3390/futuretransp5030093 (registering DOI) - 1 Aug 2025
Viewed by 69
Abstract
We introduce a waypoint-based flow capture location model (WbFCLM) for siting facilities on networks with the objective of maximally capturing flows. The advantages of the waypoint-based formulation are that (1) demand is modeled along observed trajectories rather than assumed travel paths, and (2) [...] Read more.
We introduce a waypoint-based flow capture location model (WbFCLM) for siting facilities on networks with the objective of maximally capturing flows. The advantages of the waypoint-based formulation are that (1) demand is modeled along observed trajectories rather than assumed travel paths, and (2) demand is allowed to vary across geographic space. We demonstrate the WbFCLM using a test dataset derived from vehicle tracking data. Though solving the WbFCLM can require considerable computing power, it can be used to site facilities on networks where both flows and demand vary spatially. Full article
Show Figures

Figure 1

22 pages, 2499 KiB  
Article
Low-Power Vibrothermography for Detecting Barely Visible Impact Damage in CFRP Laminates: A Comparative Imaging Study
by Zulham Hidayat, Muhammet Ebubekir Torbali, Nicolas P. Avdelidis and Henrique Fernandes
Appl. Sci. 2025, 15(15), 8514; https://doi.org/10.3390/app15158514 (registering DOI) - 31 Jul 2025
Viewed by 104
Abstract
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of [...] Read more.
This study explores the application of low-power vibrothermography (LVT) for detecting barely visible impact damage (BVID) in carbon fibre-reinforced polymer (CFRP) laminates. Composite specimens with varying impact energies (2.5–20 J) were excited using a single piezoelectric transducer with a nominal centre frequency of 28 kHz, operated at a fixed excitation frequency of 28 kHz. Thermal data were captured using an infrared camera. To enhance defect visibility and suppress background noise, the raw thermal sequences were processed using principal component analysis (PCA) and robust principal component analysis (RPCA). In LVT, RPCA and PCA provided comparable signal-to-noise ratios (SNR), with no consistent advantage for either method across all cases. In contrast, for pulsed thermography (PT) data, RPCA consistently resulted in higher SNR values, except for one sample. The LVT results were further validated by comparison with PT and phased array ultrasonic testing (PAUT) data to confirm the location and shape of detected damage. These findings demonstrate that LVT, when combined with PCA or RPCA, offers a reliable method for identifying BVID and can support safer, more efficient structural health monitoring of composite materials. Full article
(This article belongs to the Special Issue Application of Acoustics as a Structural Health Monitoring Technology)
Show Figures

Figure 1

12 pages, 537 KiB  
Article
Surgical Versus Conservative Management of Supratentorial ICH: A Single-Center Retrospective Analysis (2017–2023)
by Cosmin Cindea, Samuel Bogdan Todor, Vicentiu Saceleanu, Tamas Kerekes, Victor Tudor, Corina Roman-Filip and Romeo Gabriel Mihaila
J. Clin. Med. 2025, 14(15), 5372; https://doi.org/10.3390/jcm14155372 - 30 Jul 2025
Viewed by 317
Abstract
Background: Intracerebral hemorrhage (ICH) is a severe form of stroke associated with high morbidity and mortality. While neurosurgical evacuation may offer theoretical benefits, its impact on survival and hospital course remains debated. We aimed to compare the outcomes of surgical versus conservative [...] Read more.
Background: Intracerebral hemorrhage (ICH) is a severe form of stroke associated with high morbidity and mortality. While neurosurgical evacuation may offer theoretical benefits, its impact on survival and hospital course remains debated. We aimed to compare the outcomes of surgical versus conservative management in patients with lobar, capsulo-lenticular, and thalamic ICH and to identify factors influencing mortality and the surgical decision. Methods: This single-center, retrospective cohort study included adult patients admitted to the County Clinical Emergency Hospital of Sibiu (2017–2023) with spontaneous supratentorial ICH confirmed via CT (deepest affected structure determining lobar, capsulo-lenticular, or thalamic location). We collected data on demographics, clinical presentation (Glasgow Coma Scale [GCS], anticoagulant use), hematoma characteristics (volume, extension), treatment modality (surgical vs. conservative), and in-hospital outcomes (mortality, length of stay). Statistical analyses included t-tests, χ2, correlation tests, and logistic regression to identify independent predictors of mortality and surgery. Results: A total of 445 patients were analyzed: 144 lobar, 150 capsulo-lenticular, and 151 thalamic. Surgical intervention was more common in patients with larger volumes and lower GCS. Overall, in-hospital mortality varied by location, reaching 13% in the lobar group, 20.7% in the capsulo-lenticular group, and 35.1% in the thalamic group. Within each location, surgical intervention did not significantly reduce overall in-hospital mortality despite the more severe baseline presentation in surgical patients. In lobar ICH specifically, no clear survival advantage emerged, although surgery may still benefit those most severely compromised. For capsulo-lenticular hematomas > 30 mL, surgery was associated with lower mortality (39.4% vs. 61.5%). In patients with large lobar ICH, surgical intervention was associated with mortality rates similar to those seen in less severe, conservatively managed cohorts. Multivariable adjustment confirmed GCS and hematoma volume as independent mortality predictors; age and volume predicted the likelihood of surgical intervention. Conclusions: Despite targeting more severe cases, neurosurgical evacuation did not uniformly lower in-hospital mortality. In lobar ICH, surgical patients with larger hematomas (~48 mL) and lower GCS (~11.6) had mortality rates (~13%) comparable to less severe, conservative cohorts, indicating that surgical intervention was associated with similar mortality rates despite higher baseline risk. However, these findings do not establish a causal survival benefit and should be interpreted in the context of non-randomized patient selection. For capsulo-lenticular hematomas > 30 mL, surgery was associated with lower observed mortality (39.4% vs. 61.5%). Thalamic ICH remained most lethal, highlighting the difficulty of deep-brain bleeds and frequent ventricular extension. Across locations, hematoma volume and GCS were the primary outcome predictors, indicating the need for timely intervention, better patient selection, and possibly minimally invasive approaches. Future prospective multicenter research is necessary to refine surgical indications and validate these findings. To our knowledge, this investigation represents the largest and most contemporary single-center cohort study of supratentorial intracerebral hemorrhage conducted in Romania. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 327
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

19 pages, 26478 KiB  
Article
Three-Dimensional Numerical Simulation of Flow Around a Spur Dike in a Meandering Channel Bend
by Yan Xing, Congfang Ai, Hailong Cui and Zhangling Xiao
Fluids 2025, 10(8), 198; https://doi.org/10.3390/fluids10080198 - 29 Jul 2025
Viewed by 208
Abstract
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an [...] Read more.
This paper presents a three-dimensional (3D) free surface model to predict incompressible flow around a spur dike in a meandering channel bend, which is highly 3D due to the presence of curvature effects. The model solves the Reynolds-averaged Navier–Stokes (RANS) equations using an explicit projection method. The 3D grid system is built from a two-dimensional grid by adding dozens of horizontal layers in the vertical direction. Numerical simulations consider four test cases with different spur dike locations in the same meandering channel bend with the same Froude numbers as 0.22. Four turbulence models, the standard k-ε model, the k-ω model, the RNG k-ε model and a nonlinear k-ε model, are implemented in our three-dimensional free surface model. The performance of these turbulence models within the RANS framework is assessed. Comparisons between the model results and experimental data show that the nonlinear k-ε model behaves better than the three other models in general. Based on the results obtained by the nonlinear k-ε model, the highly 3D flow field downstream of the spur dike was revealed by presenting velocity vectors at representative cross-sections and streamlines at the surface and bottom layers. Meanwhile, the 3D characteristics of the downstream separation zone were also investigated. In addition, to highlight the advantage of the nonlinear turbulence model, comparisons of velocity vectors at representative cross-sections between the results obtained by the linear and nonlinear k-ε models are also presented. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics Applied to Transport Phenomena)
Show Figures

Figure 1

34 pages, 56730 KiB  
Article
Land Consolidation Potential Assessment by Using the Production–Living–Ecological Space Framework in the Guanzhong Plain, China
by Ziyi Xie, Siying Wu, Xin Liu, Hejia Shi, Mintong Hao, Weiwei Zhao, Xin Fu and Yepeng Liu
Sustainability 2025, 17(15), 6887; https://doi.org/10.3390/su17156887 - 29 Jul 2025
Viewed by 246
Abstract
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis [...] Read more.
Land consolidation (LC) is a sustainability-oriented policy tool designed to address land fragmentation, inefficient spatial organization, and ecological degradation in rural areas. This research proposes a Production–Living–Ecological (PLE) spatial utilization efficiency evaluation system, based on an integrated methodological framework combining Principal Component Analysis (PCA), Entropy Weight Method (EWM), Attribute-Weighting Method (AWM), Linear Weighted Sum Method (LWSM), Threshold-Verification Coefficient Method (TVCM), Jenks Natural Breaks (JNB) classification, and the Obstacle Degree Model (ODM). The framework is applied to Qian County, located in the Guanzhong Plain in Shaanxi Province. The results reveal three key findings: (1) PLE efficiency exhibits significant spatial heterogeneity. Production efficiency shows a spatial pattern characterized by high values in the central region that gradually decrease toward the surrounding areas. In contrast, the living efficiency demonstrates higher values in the eastern and western regions, while remaining relatively low in the central area. Moreover, ecological efficiency shows a marked advantage in the northern region, indicating a distinct south–north gradient. (2) Integrated efficiency consolidation potential zones present distinct spatial distributions. Preliminary consolidation zones are primarily located in the western region; priority zones are concentrated in the south; and intensive consolidation zones are clustered in the central and southeastern areas, with sporadic distributions in the west and north. (3) Five primary obstacle factors hinder land use efficiency: intensive utilization of production land (PC1), agricultural land reutilization intensity (PC2), livability of living spaces (PC4), ecological space security (PC7), and ecological space fragmentation (PC8). These findings provide theoretical insights and practical guidance for formulating tar-gated LC strategies, optimizing rural spatial structures, and advancing sustainable development in similar regions. Full article
Show Figures

Figure 1

11 pages, 556 KiB  
Article
Added Value of SPECT/CT in Radio-Guided Occult Localization (ROLL) of Non-Palpable Pulmonary Nodules Treated with Uniportal Video-Assisted Thoracoscopy
by Demetrio Aricò, Lucia Motta, Giulia Giacoppo, Michelangelo Bambaci, Paolo Macrì, Stefania Maria, Francesco Barbagallo, Nicola Ricottone, Lorenza Marino, Gianmarco Motta, Giorgia Leone, Carlo Carnaghi, Vittorio Gebbia, Domenica Caponnetto and Laura Evangelista
J. Clin. Med. 2025, 14(15), 5337; https://doi.org/10.3390/jcm14155337 - 29 Jul 2025
Viewed by 240
Abstract
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule [...] Read more.
Background/Objectives: The extensive use of computed tomography (CT) has led to a significant increase in the detection of small and non-palpable pulmonary nodules, necessitating the use of invasive methods for definitive diagnosis. Video-assisted thoracoscopic surgery (VATS) has become the preferred procedure for nodule resections; however, intraoperative localization remains challenging, especially for deep or subsolid lesions. This study explores whether SPECT/CT improves the technical and clinical outcomes of radio-guided occult lesion localization (ROLL) before uniportal video-assisted thoracoscopic surgery (u-VATS). Methods: This is a retrospective study involving consecutive patients referred for the resection of pulmonary nodules who underwent CT-guided ROLL followed by u-VATS between September 2017 and December 2024. From January 2023, SPECT/CT was systematically added after planar imaging. The cohort was divided into a planar group and a planar + SPECT/CT group. The inclusion criteria involved nodules sized ≤ 2 cm, with ground glass or solid characteristics, located at a depth of <6 cm from the pleural surface. 99mTc-MAA injected activity, timing, the classification of planar and SPECT/CT image findings (focal uptake, multisite with focal uptake, multisite without focal uptake), spillage, and post-procedure complications were evaluated. Statistical analysis was performed, with continuous data expressed as the median and categorical data as the number. Comparisons were made using chi-square tests for categorical variables and the Mann–Whitney U test for procedural duration. Cohen’s kappa coefficient was calculated to assess agreement between imaging modalities. Results: In total, 125 patients were selected for CT-guided radiotracer injection followed by uniportal-VATS. The planar group and planar + SPECT/CT group comprised 60 and 65 patients, respectively. Focal uptake was detected in 68 (54%), multisite with focal uptake in 46 (36.8%), and multisite without focal uptake in 11 patients (8.8%). In comparative analyses between planar and SPECT/CT imaging in 65 patients, 91% exhibited focal uptake, revealing significant differences in classification for 40% of the patients. SPECT/CT corrected the classification of 23 patients initially categorized as multisite with focal uptake to focal uptake, improving localization accuracy. The mean procedure duration was 39 min with SPECT/CT. Pneumothorax was more frequently detected with SPECT/CT (43% vs. 1.6%). The intraoperative localization success rate was 96%. Conclusions: SPECT/CT imaging in the ROLL procedure for detecting pulmonary nodules before u-VATs demonstrates a significant advantage in reclassifying radiotracer positioning compared to planar imaging. Considering its limited impact on surgical success rates and additional procedural time, SPECT/CT should be reserved for technically challenging cases. Larger sample sizes, multicentric and prospective randomized studies, and formal cost–utility analyses are warranted. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

26 pages, 5031 KiB  
Article
Insulation Condition Assessment of High-Voltage Single-Core Cables Via Zero-Crossing Frequency Analysis of Impedance Phase Angle
by Fang Wang, Zeyang Tang, Zaixin Song, Enci Zhou, Mingzhen Li and Xinsong Zhang
Energies 2025, 18(15), 3985; https://doi.org/10.3390/en18153985 - 25 Jul 2025
Viewed by 166
Abstract
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core [...] Read more.
To address the limitations of low detection efficiency and poor spatial resolution of traditional cable insulation diagnosis methods, a novel cable insulation diagnosis method based on impedance spectroscopy has been proposed. An impedance spectroscopy analysis model of the frequency response of high-voltage single-core cables under different aging conditions has been established. The initial classification of insulation condition is achieved based on the impedance phase deviation between the test cable and the reference cable. Under localized aging conditions, the impedance phase spectroscopy is more than twice as sensitive to dielectric changes as the amplitude spectroscopy. Leveraging this advantage, a multi-parameter diagnostic framework is developed that integrates key spectral features such as the first phase angle zero-crossing frequency, initial phase, and resonance peak amplitude. The proposed method enables quantitative estimation of aging severity, spatial extent, and location. This technique offers a non-invasive, high-resolution solution for advanced cable health diagnostics and provides a foundation for practical deployment of power system asset management. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

18 pages, 2813 KiB  
Article
Spatiotemporal Differentiation and Driving Factors Analysis of the EU Natural Gas Market Based on Geodetector
by Xin Ren, Qishen Chen, Kun Wang, Yanfei Zhang, Guodong Zheng, Chenghong Shang and Dan Song
Sustainability 2025, 17(15), 6742; https://doi.org/10.3390/su17156742 - 24 Jul 2025
Viewed by 293
Abstract
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving [...] Read more.
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving the resilience of its supply chain and ensuring the stable supply of energy resources. This paper summarizes the law of the change of its import volume by using the complex network method, constructs a multi-dimensional index system such as demand, economy, and security, and uses the geographic detector model to mine the driving factors affecting the spatiotemporal evolution of natural gas imports in EU countries and propose different sustainable development paths. The results show that from 2000 to 2023, Europe’s natural gas imports generally show an upward trend, and the import structure has undergone great changes, from pipeline gas dominance to LNG diversification. After the conflict between Russia and Ukraine, the number of import source countries has increased, the market network has become looser, France has become the core hub of the EU natural gas market, the importance of Russia has declined rapidly, and the status of countries in the United States, North Africa, and the Middle East has increased rapidly; natural gas consumption is the leading factor in the spatiotemporal differentiation of EU natural gas imports, and the influence of import distance and geopolitical risk is gradually expanding, and the proportion of energy consumption is significantly higher than that of other factors in the interaction with other factors. Combined with the driving factors, three different evolutionary directions of natural gas imports in EU countries are identified, and energy security paths such as improving supply chain control capabilities, ensuring export stability, and using location advantages to become hub nodes are proposed for different development trends. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

24 pages, 5980 KiB  
Article
Extraction of Agricultural Parcels Using Vector Contour Segmentation Network with Hybrid Backbone and Multiscale Edge Feature Extraction
by Feiyu Teng, Ling Wu and Shukuan Liu
Remote Sens. 2025, 17(15), 2556; https://doi.org/10.3390/rs17152556 - 23 Jul 2025
Viewed by 255
Abstract
The accurate acquisition of agricultural parcels from remote sensing images is crucial for agricultural management and crop production monitoring. Most of the existing agricultural parcel extraction methods comprise semantic segmentation through remote sensing images, pixel-level classification, and then vectorized raster data. However, this [...] Read more.
The accurate acquisition of agricultural parcels from remote sensing images is crucial for agricultural management and crop production monitoring. Most of the existing agricultural parcel extraction methods comprise semantic segmentation through remote sensing images, pixel-level classification, and then vectorized raster data. However, this approach faces challenges such as internal cavities, unclosed boundaries, and fuzzy edges, which hinder the accurate extraction of complete agricultural parcels. Therefore, this paper proposes a vector contour segmentation network based on the hybrid backbone and multiscale edge feature extraction module (HEVNet). We use the extraction of vector polygons of agricultural parcels by predicting the location of contour points, which avoids the above problems that may occur when raster data is converted to vector data. Simultaneously, this paper proposes a hybrid backbone for feature extraction. A hybrid backbone combines the respective advantages of the Resnet and Transformer backbone networks to balance local features and global features in feature extraction. In addition, we propose a multiscale edge feature extraction module, which can extract and enhance the edge features of different scales to prevent the possible loss of edge details in down sampling. This paper uses the datasets of Denmark, the Netherlands, iFLYTEK, and Hengyang in China to evaluate our model. The obtained IOU indexes were 67.92%, 81.35%, 78.02%, and 66.35%, which are higher than previous IOU indexes based on the optimal model (DBBANet). The results demonstrate that the proposed model significantly enhances the integrity and edge accuracy of agricultural parcel extraction. Full article
Show Figures

Figure 1

Back to TopTop