Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = local wavenumber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11861 KiB  
Article
Convection in a Rapidly Rotating Spherical Shell: Newton’s Method Using Implicit Coriolis Integration
by Juan Cruz Gonzalez Sembla, Camille Rambert, Fred Feudel and Laurette S. Tuckerman
Mathematics 2025, 13(13), 2113; https://doi.org/10.3390/math13132113 - 27 Jun 2025
Viewed by 415
Abstract
Geophysical flows are characterized by rapid rotation. Simulating these flows requires small timesteps to achieve stability and accuracy. Numerical stability can be greatly improved by the implicit integration of the terms that are most responsible for destabilizing the numerical scheme. We have implemented [...] Read more.
Geophysical flows are characterized by rapid rotation. Simulating these flows requires small timesteps to achieve stability and accuracy. Numerical stability can be greatly improved by the implicit integration of the terms that are most responsible for destabilizing the numerical scheme. We have implemented an implicit treatment of the Coriolis force in a rotating spherical shell driven by a radial thermal gradient. We modified the resulting timestepping code to carry out steady-state solving via Newton’s method, which has no timestepping error. The implicit terms have the effect of preconditioning the linear systems, which can then be rapidly solved by a matrix-free Krylov method. We computed the branches of rotating waves with azimuthal wavenumbers ranging from 4 to 12. As the Ekman number (the non-dimensionalized inverse rotation rate) decreases, the flows are increasingly axially independent and localized near the inner cylinder, in keeping with well-known theoretical predictions and previous experimental and numerical results. The advantage of the implicit over the explicit treatment also increases dramatically with decreasing Ek, reducing the cost of computation by as much as a factor of 20 for Ekman numbers of order of 105. We carried out continuation for both the Rayleigh and Ekman numbers and obtained interesting branches in which the drift velocity remained unchanged between pairs of saddle–node bifurcations. Full article
(This article belongs to the Special Issue Numerical Simulation and Methods in Computational Fluid Dynamics)
Show Figures

Figure 1

17 pages, 10034 KiB  
Article
Elastic Wave Phase Inversion in the Local-Scale Frequency–Wavenumber Domain with Marine Towed Simultaneous Sources
by Shaobo Qu, Yong Hu, Xingguo Huang, Jingwei Fang and Zhihai Jiang
J. Mar. Sci. Eng. 2025, 13(5), 964; https://doi.org/10.3390/jmse13050964 - 15 May 2025
Viewed by 457
Abstract
Elastic full waveform inversion (EFWI) is a crucial technique for retrieving high-resolution multi-parameter information. However, the lack of low-frequency components in seismic data may induce severe cycle-skipping phenomena in elastic full waveform inversion (EFWI). Recognizing the approximately linear relationship between the phase components [...] Read more.
Elastic full waveform inversion (EFWI) is a crucial technique for retrieving high-resolution multi-parameter information. However, the lack of low-frequency components in seismic data may induce severe cycle-skipping phenomena in elastic full waveform inversion (EFWI). Recognizing the approximately linear relationship between the phase components of seismic data and the properties of subsurface media, we propose an Elastic Wave Phase Inversion in local-scale frequency–wavenumber domain (LFKEPI) method. This method aims to provide robust initial velocity models for EFWI, effectively mitigating cycle-skipping challenges. In our approach, we first employ a two-dimensional sliding window function to obtain local-scale seismic data. Following this, we utilize two-dimensional Fourier transforms to generate the local-scale frequency–wavenumber domain seismic data, constructing a corresponding elastic wave phase misfit. Unlike the Elastic Wave Phase Inversion in the frequency domain (FEPI), the local-scale frequency–wavenumber domain approach accounts for the continuity of seismic events in the spatial domain, enhancing the robustness of the inversion process. We subsequently derive the gradient operators for the LFKEPI methodology. Testing on the Marmousi model using a land seismic acquisition system and a simultaneous-source marine towed seismic acquisition system demonstrates that LFKEPI enables the acquisition of reliable initial velocity models for EFWI, effectively mitigating the cycle-skipping problem. Full article
(This article belongs to the Special Issue Modeling and Waveform Inversion of Marine Seismic Data)
Show Figures

Figure 1

22 pages, 9005 KiB  
Article
A Target Near-Field Scattering Measurement Technique Utilizing 3D Near-Field Imaging via Cylindrical Scanning
by Zongkai Yang, Jingcheng Zhao, Weikang Si, Changyu Lou, Xin Zhao and Jungang Miao
Remote Sens. 2025, 17(9), 1575; https://doi.org/10.3390/rs17091575 - 29 Apr 2025
Cited by 1 | Viewed by 366
Abstract
Radar target near-field scattering characteristics are essential for the identification of target properties and the improvement of target recognition. Nevertheless, the efficiency of current precision three-dimensional (3D) imaging algorithms in near-field scattering measurements is restricted by their substantial computational complexity. To resolve this [...] Read more.
Radar target near-field scattering characteristics are essential for the identification of target properties and the improvement of target recognition. Nevertheless, the efficiency of current precision three-dimensional (3D) imaging algorithms in near-field scattering measurements is restricted by their substantial computational complexity. To resolve this matter, we propose a hybrid 3D imaging algorithm that is optimized for cylindrical sampling and operates in both the wavenumber domain and time domain (WDTD). Wavenumber domain algorithms are initially utilized for the rapid localization of strong scattering sources. Subsequently, morphological image analysis techniques are employed to delineate the regions containing strong scattering sources. Ultimately, accurate calculations are performed utilizing backpropagation (BP) in time domain algorithms. This method significantly reduces the computational burden while maintaining imaging accuracy by integrating rapid scattering source extraction with precise computation for critical regions. The proposed capacity to accomplish efficient and precise 3D imaging is effectively demonstrated by the experimental results, which effectively mitigate the computational challenges associated with traditional algorithms. Furthermore, the method effectively reconstructs near-field echoes of scattering sources, underscoring its potential for decoupling target–background interactions. The versatility of this method is further demonstrated by its ability to be applied to other 3D imaging configurations, which illustrates its potential to advance radar imaging technologies and near-field scattering research. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition (Second Edition))
Show Figures

Graphical abstract

11 pages, 1624 KiB  
Article
Local Interactions in Aqueous Ethanol Solution Revealed by the C=O Stretching Probe
by Zhiqiang Wang, Chi Chen, Ruiting Zhang, Lin Ma and Ke Lin
Molecules 2025, 30(7), 1524; https://doi.org/10.3390/molecules30071524 - 29 Mar 2025
Cited by 1 | Viewed by 595
Abstract
Accurately identifying local interactions such as hydrophilicity and hydrophobicity is of critical importance in regulating the functions of amphiphilic biomolecules, but in situ identification methods for such interactions are still lacking. This study proposes a probe based on carbonyl (C=O) stretching vibration to [...] Read more.
Accurately identifying local interactions such as hydrophilicity and hydrophobicity is of critical importance in regulating the functions of amphiphilic biomolecules, but in situ identification methods for such interactions are still lacking. This study proposes a probe based on carbonyl (C=O) stretching vibration to study the hydrophilic and hydrophobic interactions in amphiphilic alcohol–water systems. A combination of theoretical calculations and Raman spectroscopy experiments is employed to investigate the molecular interactions of ethyl acetate C=O in an ethanol aqueous solution, as well as the reasons behind the splitting of spectral peaks. The results indicate that the spectral peak splitting of the C=O stretching vibration is attributed to ethyl acetate existing in different hydrophilic and hydrophobic environments. Specifically, the two low-wavenumber components arise from the formation of double and single hydrogen bonds between C=O and water or ethanol, respectively, while the high-wavenumber component is attributed to the interaction between C=O and the hydrophobic alkyl group. These findings suggest that the C=O stretching vibration of esters is sensitive to the surrounding hydrophilic and hydrophobic environments, thereby indicating its potential as a useful probe for identifying hydrophilic and hydrophobic interactions. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 3691 KiB  
Article
Adaptive Steered Frequency–Wavenumber Analysis for High-Frequency Source Localization in Shallow Water
by Y. H. Choi, Gihoon Byun, Donghyeon Kim and J. S. Kim
Sensors 2025, 25(7), 2036; https://doi.org/10.3390/s25072036 - 25 Mar 2025
Viewed by 512
Abstract
In shallow-water environments, source localization often suffers from reduced performance in conventional array signal processing techniques for frequency bands above 1 kHz due to environmental mismatch. A recently proposed technique, called the steered frequency–wavenumber (SFK) analysis method, overcomes this limitation. By incorporating beam-steering [...] Read more.
In shallow-water environments, source localization often suffers from reduced performance in conventional array signal processing techniques for frequency bands above 1 kHz due to environmental mismatch. A recently proposed technique, called the steered frequency–wavenumber (SFK) analysis method, overcomes this limitation. By incorporating beam-steering techniques into frequency–wavenumber analysis, this method enables target localization even in sparse conditions where high-frequency signals are received. This study extends the SFK method by applying various adaptive signal processing techniques, with a particular focus on the minimum-variance distortionless response and white noise gain constraint methods. Using snapping shrimp sounds from the SAVEX15 experiment, we analyzed localization performance and compared it with the Bartlett SFK approach. The snapping shrimp signals have frequency components ranging from 5 to 24 kHz and exhibit impulsive characteristics with a duration of 0.2 ms. Signals recorded by a sparse vertical array of 16 sensors, with a 60-m aperture in 100-m shallow water, enabled the localization of a source at a range of 38 m and a depth of 99.8 m. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 3878 KiB  
Article
Turbulence Theory for the Characterization of the Surface Urban Heat Island Signature
by Gabriel I. Cotlier, Juan Carlos Jimenez and José Antonio Sobrino
Land 2025, 14(3), 620; https://doi.org/10.3390/land14030620 - 14 Mar 2025
Cited by 1 | Viewed by 904
Abstract
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of [...] Read more.
Urban heat islands (UHIs) constitute one of the most conspicuous anthropogenic impacts on local climates, characterized by elevated land surface temperatures in urban areas compared to surrounding rural regions. This study represents a novel and comprehensive effort to characterize the spectral signature of SUHI through the lens of the two-dimensional (2D) turbulence theory, with a particular focus on identifying energy cascade regimes and their climatic modulation. The theory of two-dimensional (2D) turbulence, first described by Kraichnan and Batchelor, predicts two distinct energy cascade regimes: an inverse energy cascade at larger scales (low wavenumbers) and a direct enstrophy cascade at smaller scales (high wavenumbers). These cascades can be detected and characterized through spatial power spectra analysis, offering a scale-dependent understanding of the SUHI phenomenon. Despite the theoretical appeal, empirical validation of the 2D turbulence hypothesis in urban thermal landscapes remains scarce. This study aims to fill this gap by analyzing the spatial power spectra of land surface temperatures across 14 cities representing diverse climatic zones, capturing varied urban morphologies, structures, and materials. We analyzed multi-decadal LST datasets to compute spatial power spectra across summer and winter seasons, identifying spectral breakpoints that separate large-scale energy retention from small-scale dissipative processes. The findings reveal systematic deviations from classical turbulence scaling laws, with spectral slopes before the breakpoint ranging from ~K−1.6 to ~K−2.7 in winter and ~K−1.5 to ~K−2.4 in summer, while post-breakpoint slopes steepened significantly to ~K−3.5 to ~K−4.6 in winter and ~K−3.3 to ~K−4.3 in summer. These deviations suggest that urban heat turbulence is modulated by anisotropic surface heterogeneities, mesoscale instabilities, and seasonally dependent energy dissipation mechanisms. Notably, desert and Mediterranean climates exhibited the most pronounced small-scale dissipation, whereas oceanic and humid subtropical cities showed more gradual spectral transitions, likely due to differences in moisture availability and convective mixing. These results underscore the necessity of incorporating turbulence theory into urban climate models to better capture the scale-dependent nature of urban heat exchange. The observed spectral breakpoints offer a diagnostic tool for identifying critical scales at which urban heat mitigation strategies—such as green infrastructure, optimized urban ventilation, and reflective materials—can be most effective. Furthermore, our findings highlight the importance of regional climatic context in shaping urban spectral energy distributions, necessitating climate-specific urban design interventions. By advancing our understanding of urban thermal turbulence, this research contributes to the broader discourse on sustainable urban development and resilience in a warming world. Full article
Show Figures

Figure 1

14 pages, 961 KiB  
Article
The Parameterization of the Sound Speed Profile in the Sea of Japan and Its Perturbation Caused by a Synoptic Eddy
by Mikhail Sorokin, Aleksey Gudimenko, Vladimir Luchin, Andrey Tyschenko and Pavel Petrov
J. Mar. Sci. Eng. 2024, 12(12), 2207; https://doi.org/10.3390/jmse12122207 - 2 Dec 2024
Viewed by 985
Abstract
This study presents the description of the parameterization of sound speed distribution in the Sea of Japan in the presence of a synoptic eddy. An analytical representation of the background sound speed profile (SSP) on its periphery is proposed. The perturbation of sound [...] Read more.
This study presents the description of the parameterization of sound speed distribution in the Sea of Japan in the presence of a synoptic eddy. An analytical representation of the background sound speed profile (SSP) on its periphery is proposed. The perturbation of sound speed directly associated with the presence of an eddy is investigated. The proposed parameterization of the background SSP leads to a Sturm–Liouville problem for normal mode computation, which is equivalent to the eigenvalue problem for the Schrödinger equation with the Morse potential. This equivalence leads to simple analytical formulae for normal modes and their respective horizontal wavenumbers. It is shown that in the presence of an eddy causing moderate variations in sound speed, the standard perturbation theory for acoustic modes can be applied to describe the variability in horizontal wavenumbers across the area in which the eddy is localized. The proposed parameterization can be applied to the sound propagation modeling in the Sea of Japan. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

30 pages, 11511 KiB  
Article
Sources and Radiations of the Fermi Bubbles
by Vladimir A. Dogiel and Chung-Ming Ko
Universe 2024, 10(11), 424; https://doi.org/10.3390/universe10110424 - 12 Nov 2024
Viewed by 1387
Abstract
Two enigmatic gamma-ray features in the galactic central region, known as Fermi Bubbles (FBs), were found from Fermi-LAT data. An energy release, (e.g., by tidal disruption events in the Galactic Center, GC), generates a cavity with a shock that expands into the local [...] Read more.
Two enigmatic gamma-ray features in the galactic central region, known as Fermi Bubbles (FBs), were found from Fermi-LAT data. An energy release, (e.g., by tidal disruption events in the Galactic Center, GC), generates a cavity with a shock that expands into the local ambient medium of the galactic halo. A decade or so ago, a phenomenological model of the FBs was suggested as a result of routine star disruptions by the supermassive black hole in the GC which might provide enough energy for large-scale structures, like the FBs. In 2020, analytical and numerical models of the FBs as a process of routine tidal disruption of stars near the GC were developed; these disruption events can provide enough cumulative energy to form and maintain large-scale structures like the FBs. The disruption events are expected to be 104105yr1, providing an average power of energy release from the GC into the halo of E˙3×1041 erg s1, which is needed to support the FBs. Analysis of the evolution of superbubbles in exponentially stratified disks concluded that the FB envelope would be destroyed by the Rayleigh–Taylor (RT) instabilities at late stages. The shell is composed of swept-up gas of the bubble, whose thickness is much thinner in comparison to the size of the envelope. We assume that hydrodynamic turbulence is excited in the FB envelope by the RT instability. In this case, the universal energy spectrum of turbulence may be developed in the inertial range of wavenumbers of fluctuations (the Kolmogorov–Obukhov spectrum). From our model we suppose the power of the FBs is transformed partly into the energy of hydrodynamic turbulence in the envelope. If so, hydrodynamic turbulence may generate MHD fluctuations, which accelerate cosmic rays there and generate gamma-ray and radio emission from the FBs. We hope that this model may interpret the observed nonthermal emission from the bubbles. Full article
(This article belongs to the Special Issue Studying Astrophysics with High-Energy Cosmic Particles)
Show Figures

Figure 1

13 pages, 6335 KiB  
Article
Double Gold/Nitrogen Nanosecond-Laser-Doping of Gold-Coated Silicon Wafer Surfaces in Liquid Nitrogen
by Sergey Kudryashov, Alena Nastulyavichus, Victoria Pryakhina, Evgenia Ulturgasheva, Michael Kovalev, Ivan Podlesnykh, Nikita Stsepuro and Vadim Shakhnov
Technologies 2024, 12(11), 224; https://doi.org/10.3390/technologies12110224 - 7 Nov 2024
Cited by 1 | Viewed by 2466
Abstract
A novel double-impurity doping process for silicon (Si) surfaces was developed, utilizing nanosecond-laser melting of an 11 nm thick gold (Au) top film and a Si wafer substrate in a laser plasma-activated liquid nitrogen (LN) environment. Scanning electron microscopy revealed a fluence- and [...] Read more.
A novel double-impurity doping process for silicon (Si) surfaces was developed, utilizing nanosecond-laser melting of an 11 nm thick gold (Au) top film and a Si wafer substrate in a laser plasma-activated liquid nitrogen (LN) environment. Scanning electron microscopy revealed a fluence- and exposure-independent surface micro-spike topography, while energy-dispersive X-ray spectroscopy identified minor Au (~0.05 at. %) and major N (~1–2 at. %) dopants localized within a 0.5 μm thick surface layer and the slight surface post-oxidation of the micro-relief (oxygen (O), ~1.5–2.5 at. %). X-ray photoelectron spectroscopy was used to identify the bound surface (SiNx) and bulk doping chemical states of the introduced nitrogen (~10 at. %) and the metallic (<0.01 at. %) and cluster (<0.1 at. %) forms of the gold dopant, and it was used to evaluate their depth distributions, which were strongly affected by the competition between gold dopants due to their marginal local concentrations and the other more abundant dopants (N, O). In this study, 532 nm Raman microspectroscopy indicated a slight reduction in the crystalline order revealed in the second-order Si phonon band; the tensile stresses or nanoscale dimensions of the resolidified Si nano-crystallites envisioned by the main Si optical–phonon peak; a negligible a-Si abundance; and a low-wavenumber peak of the Si3N4 structure. In contrast, Fourier transform infrared (FT-IR) reflectance and transmittance studies exhibited only broad structureless absorption bands in the range of 600–5500 cm−1 related to dopant absorption and light trapping in the surface micro-relief. The room-temperature electrical characteristics of the laser double-doped Si layer—a high carrier mobility of 1050 cm2/Vs and background carrier sheet concentration of ~2 × 1010 cm−2 (bulk concentration ~1014–1015 cm−3)—are superior to previously reported parameters of similar nitrogen-implanted/annealed Si samples. This novel facile double-element laser-doping procedure paves the way to local maskless on-demand introductions of multiple intra-gap intermediate donor and acceptor bands in Si, providing related multi-wavelength IR photoconductivity for optoelectronic applications. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

16 pages, 2365 KiB  
Article
Elastic Local Buckling Analysis of a Sandwich Corrugated Steel Plate Pipe-Arch in Underground Space
by Chengwen Che, Zhanying Sun, Pengsen Xu, Feng Shi, Junxiu Liu and Kai Li
Buildings 2024, 14(9), 2696; https://doi.org/10.3390/buildings14092696 - 28 Aug 2024
Viewed by 1163
Abstract
In underground spaces, corrugated steel plate (CSP) pipe-arches may experience local buckling instability, which can subsequently lead to the failure of the entire structure. Recently, sandwich CSP pipe-arches have been used to enhance the stability of embedded engineering outcomes, and their buckling behaviors [...] Read more.
In underground spaces, corrugated steel plate (CSP) pipe-arches may experience local buckling instability, which can subsequently lead to the failure of the entire structure. Recently, sandwich CSP pipe-arches have been used to enhance the stability of embedded engineering outcomes, and their buckling behaviors require in-depth research. In this paper, we establish a theoretical model by simplifying soil support and using Hoff sandwich plate theory to focus on the local buckling stability of the straight segment in embedded sandwich CSP pipe-arches using the Rayleigh–Ritz method. Through stability analysis, the instability criteria for embedded sandwich CSP pipe-arches are analytically determined. Numerical calculations reveal that the critical buckling load of a sandwich CSP pipe-arch is affected by several factors, including the elastic modulus, thickness, Poisson’s ratio, rotational constraint stiffness, and the length of the straight segment. Specifically, increasing the thickness of the sandwich CSP pipe-arch can substantially enhance the critical buckling load. Meanwhile, the wavenumber is affected by the elastic modulus and the length of the straight segment. The analytical results are in agreement with those obtained from finite element analysis. These findings provide a theoretical basis and guidance for the application of sandwich CSP pipe-arches in fields such as subway stations, tunnel construction, underground passages, and underground parking facilities. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 20176 KiB  
Article
Computation of Green’s Function in a Strongly Heterogeneous Medium Using the Lippmann–Schwinger Equation: A Generalized Successive Over-Relaxion plus Preconditioning Scheme
by Yangyang Xu, Jianguo Sun and Yaoda Shang
Mathematics 2024, 12(13), 2066; https://doi.org/10.3390/math12132066 - 1 Jul 2024
Viewed by 1165
Abstract
The computation of Green’s function is a basic and time-consuming task in realizing seismic imaging using integral operators because the function is the kernel of the integral operators and because every image point functions as the source point of Green’s function. If the [...] Read more.
The computation of Green’s function is a basic and time-consuming task in realizing seismic imaging using integral operators because the function is the kernel of the integral operators and because every image point functions as the source point of Green’s function. If the perturbation theory is used, the problem of the computation of Green’s function can be transformed into one of solving the Lippmann–Schwinger (L–S) equation. However, if the velocity model under consideration has large scale and strong heterogeneity, solving the L–S equation may become difficult because only numerical or successive approximate (iterative) methods can be used in this case. In the literature, one of these methods is the generalized successive over-relaxation (GSOR) iterative method, which can effectively solve the L–S equation and obtain the desired convergent iterative series. However, the GSOR iterative method may encounter slow convergence when calculating the high-frequency Green’s function. In this paper, we propose a new scheme that utilizes the GSOR iterative with a precondition to solve the complex wavenumber L–S equation in a slightly attenuated medium. The complex wavenumber with imaginary components localizes the energy of the background Green’s function and reduces its singularity by enabling exponential decay. Introduction of the preconditioning operator can further improve the convergence speed of the GSOR iterative series. Then, we provide a preconditioned generalized successive over-relaxation (pre-GSOR) iterative format. Our numerical results show that if an appropriate damping factor and a proper preconditioning operator are selected, the method presented here outperforms the GSOR iterative for the real wavenumber L–S equation in terms of the convergence speed, accuracy, and adaptation to high frequencies. Full article
(This article belongs to the Special Issue Numerical Modeling and Simulation in Geomechanics)
Show Figures

Figure 1

20 pages, 9967 KiB  
Article
Investigation of Viscoelastic Guided Wave Properties in Anisotropic Laminated Composites Using a Legendre Orthogonal Polynomials Expansion–Assisted Viscoelastodynamic Model
by Hongye Liu, Ziqi Huang, Zhuang Yin, Maoxun Sun, Luyu Bo, Teng Li and Zhenhua Tian
Polymers 2024, 16(12), 1638; https://doi.org/10.3390/polym16121638 - 10 Jun 2024
Cited by 3 | Viewed by 1230
Abstract
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated [...] Read more.
This study investigates viscoelastic guided wave properties (e.g., complex–wavenumber–, phase–velocity–, and attenuation–frequency relations) for multiple modes, including different orders of antisymmetric, symmetric, and shear horizontal modes in viscoelastic anisotropic laminated composites. To obtain those frequency–dependent relations, a guided wave characteristic equation is formulated based on a Legendre orthogonal polynomials expansion (LOPE)–assisted viscoelastodynamic model, which fuses the hysteretic viscoelastic model–based wave dynamics and the LOPE–based mode shape approximation. Then, the complex–wavenumber–frequency solutions are obtained by solving the characteristic equation using an improved root–finding algorithm, which leverages coefficient matrix determinant ratios and our proposed local tracking windows. To trace the solutions on the dispersion curves of different wave modes and avoid curve–tracing misalignment in regions with phase–velocity curve crossing, we presented a curve–tracing strategy considering wave attenuation. With the LOPE–assisted viscoelastodynamic model, the effects of material viscosity and fiber orientation on different guided wave modes are investigated for unidirectional carbon–fiber–reinforced composites. The results show that the viscosity in the hysteresis model mainly affects the frequency–dependent attenuation of viscoelastic guided waves, while the fiber orientation influences both the phase–velocity and attenuation curves. We expect the theoretical work in this study to facilitate the development of guided wave–based techniques for the NDT and SHM of viscoelastic anisotropic laminated composites. Full article
Show Figures

Figure 1

22 pages, 34917 KiB  
Article
Unsteady Subsonic/Supersonic Flow Simulations in 3D Unstructured Grids over an Acoustic Cavity
by Guillermo Araya
Fluids 2024, 9(4), 92; https://doi.org/10.3390/fluids9040092 - 17 Apr 2024
Viewed by 1916
Abstract
In this study, the unsteady Reynolds-averaged Navier–Stokes (URANS) equations are employed in conjunction with the Menter Shear Stress Transport (SST)-Scale-Adaptive Simulation (SAS) turbulence model in compressible flow, with an unstructured mesh and complex geometry. While other scale-resolving approaches in space and time, such [...] Read more.
In this study, the unsteady Reynolds-averaged Navier–Stokes (URANS) equations are employed in conjunction with the Menter Shear Stress Transport (SST)-Scale-Adaptive Simulation (SAS) turbulence model in compressible flow, with an unstructured mesh and complex geometry. While other scale-resolving approaches in space and time, such as direct numerical simulation (DNS) and large-eddy simulation (LES), supply more comprehensive information about the turbulent energy spectrum of the fluctuating component of the flow, they imply computationally intensive situations, usually performed over structured meshes and relatively simple geometries. In contrast, the SAS approach is designed according to “physically” prescribed length scales of the flow. More precisely, it operates by locally comparing the length scale of the modeled turbulence to the von Karman length scale (which depends on the local first- and second fluid velocity derivatives). This length-scale ratio allows the flow to dynamically adjust the local eddy viscosity in order to better capture the large-scale motions (LSMs) in unsteady regions of URANS simulations. While SAS may be constrained to model only low flow frequencies or wavenumbers (i.e., LSM), its versatility and low computational cost make it attractive for obtaining a quick first insight of the flow physics, particularly in those situations dominated by strong flow unsteadiness. The selected numerical application is the well-known M219 three-dimensional rectangular acoustic cavity from the literature at two different free-stream Mach numbers, M (0.85 and 1.35) and a length-to-depth ratio of 5:1. Thus, we consider the “deep configuration” in experiments by Henshaw. The SST-SAS model demonstrates a satisfactory compromise between simplicity, accuracy, and flow physics description. Full article
Show Figures

Figure 1

14 pages, 2496 KiB  
Article
A Comparative Computational Study of the Solidification Kinetic Coefficients for the Soft-Sphere BCC-Melt and the FCC-Melt Interfaces
by Zun Liang, Xin Zhang, Yashen Wang, Songtai Lv, Dmitri V. Alexandrov, Hongtao Liang and Yang Yang
Crystals 2024, 14(4), 292; https://doi.org/10.3390/cryst14040292 - 22 Mar 2024
Cited by 1 | Viewed by 1268
Abstract
Using the non-equilibrium molecular dynamics (NEMD) simulations and the time-dependent Ginzburg–Landau (TDGL) theory for solidification kinetics, we study the crystal-melt interface (CMI) kinetic coefficients for both the soft-sphere (SS) BCC-melt and the FCC-melt interfaces, modeled with the inverse-power repulsive potential ( [...] Read more.
Using the non-equilibrium molecular dynamics (NEMD) simulations and the time-dependent Ginzburg–Landau (TDGL) theory for solidification kinetics, we study the crystal-melt interface (CMI) kinetic coefficients for both the soft-sphere (SS) BCC-melt and the FCC-melt interfaces, modeled with the inverse-power repulsive potential (n=8). The collective dynamics of the interfacial liquids at four equilibrium CMIs are calculated and employed to eliminate the discrepancy between the predictions of the kinetic coefficient using the NEMD simulations and the TDGL solidification theory. The speedup of the two modes of the interfacial liquid collective dynamics (at wavenumbers equal to the principal and the secondary reciprocal lattice vector of the grown crystal) at the equilibrium FCC CMI is observed. The calculated local collective dynamics of the SS BCC CMIs are compared with the previously reported data for the BCC Fe CMIs, validating a hypothesis proposed recently that the density relaxation times of the interfacial liquids at the CMIs are anisotropic and material dependent. With the insights provided by the improved application of the TDGL solidification theory, an attempt has been made to interpret the variation physics of the crystal-structure dependence of the solidification kinetic coefficient. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

13 pages, 1938 KiB  
Article
Global Investigation of Wind–Wave Interaction Using Spaceborne SAR Measurements
by Huimin Li and Yijun He
J. Mar. Sci. Eng. 2024, 12(3), 433; https://doi.org/10.3390/jmse12030433 - 28 Feb 2024
Viewed by 1627
Abstract
Spaceborne synthetic aperture radar (SAR) has been widely acknowledged for its advantages in collecting ocean surface measurements under all weather conditions during day and night. Despite the strongly nonlinear imaging process, SAR measurements of ocean waves provide an invaluable resource for studies into [...] Read more.
Spaceborne synthetic aperture radar (SAR) has been widely acknowledged for its advantages in collecting ocean surface measurements under all weather conditions during day and night. Despite the strongly nonlinear imaging process, SAR measurements of ocean waves provide an invaluable resource for studies into wave dynamics at the global scale. In this study, we take advantage of a newly defined parameter, the mean cross-spectrum (MACS) at a discrete wavenumber along the sensor line-of-sight axis, to further investigate the ocean wave properties. With the range peak wavenumber extracted from the MACS profile, together with the collocated model winds, the inverse wave age (iwa) is estimated. As an indicator of local wind–wave coupling, the global map of the iwa depicts a distinct pattern, with larger iwa values observed in the storm tracks. In addition to the mean, stronger variability in the iwa is also found in the storm tracks, while the iwa remains relatively steady in the trade winds with lower variability. This makes the SAR-derived iwa a significant parameter in reflecting the varying degrees of wind–wave coupling in variable geographical locations across the ocean basins. It will help to promote the practical application of SAR measurements, as well as advancing our understanding of ocean wave dynamics. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

Back to TopTop