Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,172)

Search Parameters:
Keywords = local energy transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3009 KB  
Article
Participatory Energy Diagnosis for the Design of Sustainable Rural Energy Systems: Evidence from an Indigenous Community in Mexico
by Luis Bernardo López-Sosa, Carlos A. García, Ana Yésica Martínez Villalba and Ricardo González Cárabes
Resources 2026, 15(1), 16; https://doi.org/10.3390/resources15010016 - 15 Jan 2026
Viewed by 44
Abstract
The study of energy needs in rural areas continues to be an active field of research. Although numerous gaps hinder the achievement of a sustainable energy transition in these areas, it is necessary to develop comprehensive strategies that integrate local participation with the [...] Read more.
The study of energy needs in rural areas continues to be an active field of research. Although numerous gaps hinder the achievement of a sustainable energy transition in these areas, it is necessary to develop comprehensive strategies that integrate local participation with the implementation of efficient and appropriate energy technologies. This research analyzes local energy needs using a community participatory approach and considers four main stages, including a participatory diagnosis at the community level to identify energy needs, defining priority energy needs from the community’s viewpoint, estimating a baseline of the identified needs, their economic costs, and environmental impacts, constructing a scenario with a 20-year projection, and the benefits of implementing more efficient technologies. The results show that 98.9% of energy is destined for residential needs, 0.6% for community needs, and 0.5% for productive needs, and the economic expenditure follows the same hierarchy, while total emissions are estimated annually at just over 30,000 tCO2e and 3 tPM2.5. With the proposed scenario, at the end of year 20, a reduction in consumption of just over 200 TJ is estimated, together with present value savings of USD 490,000, and a decrease in emissions of approximately 27,000 tCO2e and 2.7 tPM2.5. This proposal is expected to contribute to encouraging research with broad community participation and to the formulation of strategies that enable a sustainable energy transition in rural contexts. Full article
Show Figures

Figure 1

26 pages, 5996 KB  
Article
Spatiotemporal Wind Speed Changes Along the Yangtze River Waterway (1979–2018)
by Lei Bai, Ming Shang, Chenxiao Shi, Yao Bian, Lilun Liu, Junbin Zhang and Qian Li
Atmosphere 2026, 17(1), 81; https://doi.org/10.3390/atmos17010081 - 14 Jan 2026
Viewed by 80
Abstract
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind [...] Read more.
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind climatology, variability, and trends along China’s primary inland waterway. A pivotal regime shift was identified around 2000, marking a transition from terrestrial stilling to a recovery phase characterized by wind speed intensification. Multiple change-point detection algorithms consistently identify 2000 as a pivotal turning point, marking a transition from the late 20th century “terrestrial stilling” to a recovery phase characterized by wind speed intensification. Post-2000 trends reveal pronounced spatial heterogeneity: the upstream section exhibits sustained strengthening (+0.02 m/s per decade, p = 0.03), the midstream shows weak or non-significant trends with localized afternoon stilling in complex terrain (−0.08 m/s per decade), while the downstream coastal zone demonstrates robust intensification exceeding +0.10 m/s per decade during spring–autumn daytime hours. Three distinct wind regimes emerge along the 3000 km corridor: a high-energy maritime-influenced downstream sector (annual means > 3.9 m/s, diurnal peaks > 6.0 m/s) dominated by sea breeze circulation, a transitional midstream zone (2.3–2.7 m/s) exhibiting bimodal spatial structure and unique summer-afternoon thermal enhancement, and a topographically suppressed upstream region (<2.0 m/s) punctuated by pronounced channeling effects through the Three Gorges constriction. Critically, the observed recovery contradicts widespread basin greening (97.9% of points showing significant positive NDVI trends), which theoretically should enhance surface roughness and suppress wind speeds. Correlation analysis reveals that wind variability is systematically controlled by large-scale atmospheric circulation patterns, including the Northern Hemisphere Polar Vortex (r ≈ 0.35), Western Pacific Subtropical High (r ≈ 0.38), and East Asian monsoon systems (r > 0.60), with distinct seasonal phase-locking between baroclinic spring dynamics and monsoon-thermal summer forcing. These findings establish a comprehensive, fine-scale climatological baseline essential for optimizing pollutant dispersion modeling, and evaluating wind-assisted propulsion feasibility to support shipping decarbonization goals along the Yangtze Waterway. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

32 pages, 7548 KB  
Article
Research on the Flow and Heat Transfer Characteristics of a Molten Salt Globe Valve Based on an Electromagnetic Induction Heating System
by Shuxun Li, Xiaoya Wen, Bohao Zhang, Lingxia Yang, Yuhao Tian and Xiaoqi Meng
Actuators 2026, 15(1), 50; https://doi.org/10.3390/act15010050 - 13 Jan 2026
Viewed by 68
Abstract
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, [...] Read more.
To promote the transition to a cleaner energy structure and support the achievement of the “carbon peak and carbon neutrality” goals, concentrated solar power (CSP) technology has attracted increasing attention. The molten salt globe valve, as a key control component in CSP systems, faces significant challenges related to low-temperature salt crystallization and thermal stress control. This study proposes an active electromagnetic induction heating method based on a triangular double-helix cross-section coil to address issues such as molten salt blockage in the seal bellows and excessive thermal stress during heating. First, electromagnetic simulation comparisons show that the ohmic loss of the proposed coil is approximately 3.5 times and 1.8 times higher than that of conventional circular and rectangular coils, respectively, demonstrating superior heating uniformity and energy efficiency. Second, transient electromagnetic-thermal-fluid-structure multiphysics coupling analysis reveals that during heating, the temperature in the bellows seal region stabilizes above 543.15 K, exceeding the solidification point of the molten salt, while the whole valve reaches thermal stability within about 1000 s, effectively preventing local solidification. Finally, thermal stress analysis indicates that under a preheating condition of 473.15 K, the transient thermal shock stress on the valve body and bellows is reduced by 266.84% and 253.91%, respectively, compared with the non-preheating case, with peak stresses remaining below the allowable stress limit of the material, thereby significantly extending the service life of the valve. This research provides an effective solution for ensuring reliable operation of molten salt valves and improving the overall performance of CSP systems. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

14 pages, 1019 KB  
Article
Leveraging Publicly Accessible Sustainability Tools to Quantify Health and Climate Benefits of Hospital Climate Change Mitigation Strategies
by Talya Scott, Paul Corsi and Augusta A. Williams
Green Health 2026, 2(1), 2; https://doi.org/10.3390/greenhealth2010002 - 13 Jan 2026
Viewed by 54
Abstract
Background: Healthcare is a large contributor to greenhouse gas (GHG) emissions, contributing to climate change and health impairments. However, the magnitude of health and climate benefits of local and regional GHG mitigation strategies has not been well quantified. Few studies have demonstrated the [...] Read more.
Background: Healthcare is a large contributor to greenhouse gas (GHG) emissions, contributing to climate change and health impairments. However, the magnitude of health and climate benefits of local and regional GHG mitigation strategies has not been well quantified. Few studies have demonstrated the use of public tools for this purpose in healthcare facilities. Methods: We evaluated several renewable energy and energy efficiency scenarios focused on one academic medical center in New York State. We used the Environmental Protection Agency’s (EPA) publicly available AVoided Emissions and geneRation Tool to estimate avoided GHG and health-harmful air pollutant emissions. The economic value of the resulting avoided health and climate damages was quantified using EPA’s CO-Benefits Risk Assessment screening tool. Results: Transitioning one healthcare institution to 100% solar energy and improving energy efficiency by 25% could yield approximately $807,000 to $1.5 million in annual health savings, with an additional $2.3 million benefits in avoided climate damages. There is an approximate $108.5–$196.6 million in annual climate and health benefits when extrapolating these energy solutions to hospitals across the same state. Conclusions: There are significant health savings from healthcare GHG mitigation strategies. This application of publicly available and accessible tools demonstrates ways to integrate climate and health benefits into local decision-making around climate change mitigation and sustainability efforts. Full article
Show Figures

Figure 1

17 pages, 3422 KB  
Article
Binder-Free Spinel Co2CuO4 Nanosheet Electrodes with Cu-Driven Kinetic Enhancement for Alkaline OER Applications
by Abu Talha Aqueel Ahmed, Momin M. Mujtaba, Abu Saad Ansari and Sangeun Cho
Materials 2026, 19(2), 301; https://doi.org/10.3390/ma19020301 - 12 Jan 2026
Viewed by 136
Abstract
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge [...] Read more.
Developing electrocatalysts that are efficient and durable for the oxygen evolution reaction (OER) is essential for improving the energy efficiency of alkaline water splitting. Spinel-type transition-metal oxides have emerged as promising non-noble alternatives; however, their catalytic performance is often limited by sluggish charge transport and insufficient utilization of active sites. Herein, we present a systematic comparative study of electrodeposited Co3O4 (CO-300) and Cu-substituted Co2CuO4 (CCO-300) nanosheet films directly grown on Ni foam. Structural, morphological, and spectroscopic analyses reveal that Cu2+ integration into Co-oxide spinel lattice modifies the local electronic environment and produces a more open and interconnected nanosheet architecture, thereby enhancing conductivity and increasing the density of accessible redox-active sites. As a result, the optimized CCO-300 exhibits superior catalytic performance at higher current densities, along with a smaller Tafel slope (44 mV dec–1), a larger electrochemically active surface area (ECSA), and reduced charge-transfer resistance compared to CCO-300, indicating accelerated reaction kinetics and improved electron-ion transport. Furthermore, the multistep chronopotentiometry measurements and long-term stability tests over 100 h at current densities of 10 and 250 mA cm–2 highlight the excellent operational stability of the CCO-300 catalyst. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

16 pages, 1360 KB  
Article
Enhancement of Building Heating Systems Connected to Third-Generation Centralized Heating Systems
by Ekaterina Boyko, Felix Byk, Lyudmila Myshkina, Elizaveta Nasibova and Pavel Ilyushin
Technologies 2026, 14(1), 56; https://doi.org/10.3390/technologies14010056 - 11 Jan 2026
Viewed by 95
Abstract
In third-generation centralized heating systems, qualitative regulation of the heat transfer medium parameters is mainly performed at heat sources, while quantitative regulation is implemented at central and individual heating points, with buildings remaining passive heat consumers. Unlike fourth-generation systems, such systems generally do [...] Read more.
In third-generation centralized heating systems, qualitative regulation of the heat transfer medium parameters is mainly performed at heat sources, while quantitative regulation is implemented at central and individual heating points, with buildings remaining passive heat consumers. Unlike fourth-generation systems, such systems generally do not employ renewable energy sources, thermal energy storage, or low-temperature operating regimes. Third-generation centralized heating systems operate based on design high-temperature schedules and centralized control, without considering the actual thermal loads of consumers. Under conditions of physical deterioration of heating networks, hydraulic imbalance, and operational constraints, the actual parameters of the heat transfer medium supplied to buildings often deviate from design values, resulting in deviations of thermal conditions at the level of end consumers and disruptions of thermal comfort. This study proposes the concept of an intelligent active individual heating point (IAIHP), designed to provide adaptive qualitative–quantitative regulation of heat transfer medium parameters at the level of individual buildings. Unlike approaches focused on demand-side management, the use of thermal energy storage, or the integration of renewable energy sources, the proposed solution is based on the application of a local thermal energy source. The IAIHP compensates for deviations in heat transfer medium parameters and acts as a local thermal energy source within the building heat supply system (BHSS). Control of the IAIHP operation is performed by a developed automation system that provides combined qualitative and quantitative regulation of the heat transfer medium supplied to the BHSS. The study assesses the potential scale of IAIHP implementation in third-generation centralized heating systems, develops a methodology for selecting the capacity of a local heat source, and presents the operating algorithm of the automatic control system of the IAIHP. At present, the reconstruction of an individual heating point of a kindergarten connected via a dependent scheme is being carried out based on the developed project documentation. Modeling and calculations show that the application of the IAIHP makes it possible to ensure indoor thermal comfort by reducing the risk of temperature deviations, which are otherwise typically compensated for by electric heaters. The proposed concept provides a methodological basis for a gradual transition from third-generation to fourth-generation centralized heating systems, while equipping the IAIHP with an intelligent control system opens opportunities for improving the energy efficiency of urban heating networks. The proposed integrated solution and the developed automatic control algorithms exhibit scientific novelty and practical relevance for Russia and other countries operating third-generation centralized heating systems, including Northern and Eastern European states, where large-scale infrastructure modernization and the implementation of fourth-generation technologies are technically or economically constrained. Full article
(This article belongs to the Section Construction Technologies)
Show Figures

Figure 1

30 pages, 1761 KB  
Review
Harnessing Optical Energy for Thermal Applications: Innovations and Integrations in Nanoparticle-Mediated Energy Conversion
by José Rubén Morones-Ramírez
Processes 2026, 14(2), 236; https://doi.org/10.3390/pr14020236 - 9 Jan 2026
Viewed by 236
Abstract
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions [...] Read more.
Nanoparticle-mediated photothermal conversion exploits the unique light-to-heat transduction properties of engineered nanomaterials to address challenges in energy, water, and healthcare. This review first examines fundamental mechanisms—localized surface plasmon resonance (LSPR) in plasmonic metals and broadband interband transitions in semiconductors—demonstrating how tailored nanoparticle compositions can achieve >96% absorption across 250–2500 nm and photothermal efficiencies exceeding 98% under one-sun illumination (1000 W·m−2, AM 1.5G). Next, we highlight advances in solar steam generation and desalination: floating photothermal receivers on carbonized wood or hydrogels reach >95% efficiency in solar-to-vapor conversion and >2 kg·m−2·h−1 evaporation rates; three-dimensional architectures recapture diffuse flux and ambient heat; and full-spectrum nanofluids (LaB6, Au colloids) extend photothermal harvesting into portable, scalable designs. We then survey photothermal-enhanced thermal energy storage: metal-oxide–paraffin composites, core–shell phase-change material (PCM) nanocapsules, and MXene– polyethylene glycol—PEG—aerogels deliver >85% solar charging efficiencies, reduce supercooling, and improve thermal conductivity. In biomedicine, gold nanoshells, nanorods, and transition-metal dichalcogenide (TMDC) nanosheets enable deep-tissue photothermal therapy (PTT) with imaging guidance, achieving >94% tumor ablation in preclinical and pilot clinical studies. Multifunctional constructs combine PTT with chemotherapy, immunotherapy, or gene regulation, yielding synergistic tumor eradication and durable immune responses. Finally, we explore emerging opto-thermal nanobiosystems—light-triggered gene silencing in microalgae and poly(N-isopropylacrylamide) (PNIPAM)–gold nanoparticle (AuNP) membranes for microfluidic photothermal filtration and control—demonstrating how nanoscale heating enables remote, reversible biological and fluidic functions. We conclude by discussing challenges in scalable nanoparticle synthesis, stability, and integration, and outline future directions: multicomponent high-entropy alloys, modular photothermal–PCM devices, and opto-thermal control in synthetic biology. These interdisciplinary innovations promise sustainable solutions for global energy, water, and healthcare demands. Full article
(This article belongs to the Special Issue Transport and Energy Conversion at the Nanoscale and Molecular Scale)
Show Figures

Figure 1

24 pages, 6216 KB  
Article
Three-Dimensional Surface High-Precision Modeling and Loss Mechanism Analysis of Motor Efficiency Map Based on Driving Cycles
by Jiayue He, Yan Sui, Qiao Liu, Zehui Cai and Nan Xu
Energies 2026, 19(2), 302; https://doi.org/10.3390/en19020302 - 7 Jan 2026
Viewed by 140
Abstract
Amid fossil-fuel depletion and worsening environmental impacts, battery electric vehicles (BEVs) are pivotal to the energy transition. Energy management in BEVs relies on accurate motor efficiency maps, yet real-time onboard control demands models that balance fidelity with computational cost. To address map inaccuracy [...] Read more.
Amid fossil-fuel depletion and worsening environmental impacts, battery electric vehicles (BEVs) are pivotal to the energy transition. Energy management in BEVs relies on accurate motor efficiency maps, yet real-time onboard control demands models that balance fidelity with computational cost. To address map inaccuracy under real driving and the high runtime cost of 2-D interpolation, we propose a driving-cycle-aware, physically interpretable quadratic polynomial-surface framework. We extract priority operating regions on the speed–torque plane from typical driving cycles and model electrical power Pe  as a function of motor speed n and mechanical power Pm. A nested model family (M3–M6) and three fitting strategies—global, local, and region-weighted—are assessed using R2, RMSE, a computational complexity index (CCI), and an Integrated Criterion for accuracy–complexity and stability (ICS). Simulations on the Worldwide Harmonized Light Vehicles Test Cycle, the China Light-Duty Vehicle Test Cycle, and the Urban Dynamometer Driving Schedule show that region-weighted fitting consistently achieves the best or near-best ICS; relative to Global fitting, mean ICS decreases by 49.0%, 46.4%, and 90.6%, with the smallest variance. Regarding model order, the four-term M4 +Pm2 offers the best accuracy–complexity trade-off. Finally, the region-weighted fitting M4 +Pm2 polynomial model was integrated into the vehicle-level economic speed planning model based on the dynamic programming algorithm. In simulations covering a 27 km driving distance, this model reduced computational time by approximately 87% compared to a linear interpolation method based on a two-dimensional lookup table, while achieving an energy consumption deviation of about 0.01% relative to the lookup table approach. Results demonstrate that the proposed model significantly alleviates computational burden while maintaining high energy consumption prediction accuracy, thereby providing robust support for real-time in-vehicle applications in whole-vehicle energy management. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Energy Management)
Show Figures

Figure 1

16 pages, 2734 KB  
Article
Experimental Study on the Impact Resistance of UHMWPE Flexible Film Against Hypervelocity Particles
by Chen Liu, Zhirui Rao, Hao Liu, Changlin Zhao, Yifan Wang and Aleksey Khaziev
Polymers 2026, 18(2), 161; https://doi.org/10.3390/polym18020161 - 7 Jan 2026
Viewed by 214
Abstract
The increasing threat posed by micrometeoroids and orbital debris to in-orbit spacecraft necessitates the development of lightweight and deformable shielding systems capable of withstanding hypervelocity impacts. Ultra-high-molecular-weight polyethylene (UHMWPE) films, owing to their high specific strength and energy-absorption capacity, present a promising candidate [...] Read more.
The increasing threat posed by micrometeoroids and orbital debris to in-orbit spacecraft necessitates the development of lightweight and deformable shielding systems capable of withstanding hypervelocity impacts. Ultra-high-molecular-weight polyethylene (UHMWPE) films, owing to their high specific strength and energy-absorption capacity, present a promising candidate for such applications. However, the hypervelocity impact response of thin, highly oriented UHMWPE films—distinct from bulk plates or composites—remains poorly understood, particularly for micron-scale particles at velocities relevant to space debris (≥8 km/s). In this study, we systematically investigate the impact resistance of 0.1 mm UHMWPE films using a plasma-driven microparticle accelerator and a hypervelocity dust gun to simulate impacts by micron-sized Al2O3 and Fe particles at velocities up to ~8.5 km/s. Through detailed analysis of crater morphology via scanning electron microscopy, we identify three distinct damage modes: plastic-dominated craters (Type I), fracture-melting craters (Type II), and perforations (Type III). These modes are correlated with impact energy and particle size, revealing the material’s transition from large-scale plastic deformation to localized thermal softening and eventual penetration. Crucially, we provide quantitative penetration thresholds (e.g., 2.25 μm Al2O3 at 8.5 km/s) and establish a microstructure-informed damage classification that advances the fundamental understanding of UHMWPE film behavior under extreme strain rates. Our findings not only elucidate the energy-dissipation mechanisms in oriented polymer films but also offer practical guidelines for the design of next-generation, flexible spacecraft shielding systems. Full article
Show Figures

Figure 1

38 pages, 18338 KB  
Article
Damage Characterisation of Scour in Riprap-Protected Jackets and Hybrid Foundations
by João Chambel, Tiago Fazeres-Ferradosa, Mahdi Alemi, Francisco Taveira-Pinto and Pedro Lomonaco
J. Mar. Sci. Eng. 2026, 14(2), 114; https://doi.org/10.3390/jmse14020114 - 6 Jan 2026
Viewed by 221
Abstract
The global transition towards sustainable energy has accelerated the development and deployment of offshore wind turbines. Jacket foundations, commonly installed in intermediate to deep water depths to access available space and higher load capacities, are built to withstand intensified hydrodynamic loads. Due to [...] Read more.
The global transition towards sustainable energy has accelerated the development and deployment of offshore wind turbines. Jacket foundations, commonly installed in intermediate to deep water depths to access available space and higher load capacities, are built to withstand intensified hydrodynamic loads. Due to their structural complexity near the seabed, however, they are prone to local and global scour, which can compromise stability and increase maintenance costs. While extensive research has addressed scour protections around monopiles, limited attention has been given to complex foundation geometries or even hybrid configurations that combine energy-harvesting devices with structural support. These hybrid systems introduce highly unsteady flow fields and amplified turbulence effects that current design frameworks appear to be unable to capture. This study provides an experimental characterisation of scour damage in riprap-protected jackets as well as additional tests for a hybrid jacket foundation. A novel adaptation of a high-resolution overlapping sub-area methodology was employed. For the first time, it was successfully applied to quantify the damage to riprap protections for a complex offshore foundation. Results revealed that, although hybrid jackets showed the capacity to attenuate incident waves, the scour protection experienced damage numbers (S3D) two to six times higher than conventional jackets due to flow amplifications. The findings highlight the need for revised design guidelines that can account for the complex hydrodynamic-structural interactions of next-generation marine harvesting technologies integrated into complex foundations. Full article
Show Figures

Figure 1

23 pages, 5975 KB  
Article
Flow Loss and Transient Hydrodynamic Analysis of a Multi-Way Valve for Thermal Management Systems in New Energy Vehicles
by Dehong Meng, Xiaoxia Sun, Yongwei Zhai, Li Wang, Panpan Song, Mingshan Wei, Ran Tian and Lili Shen
Energies 2026, 19(2), 287; https://doi.org/10.3390/en19020287 - 6 Jan 2026
Viewed by 221
Abstract
With the rapid advancement of integrated thermal management systems (ITMS) for new energy vehicles (NEVs), flow losses and hydrodynamic characteristics within multi-way valves have become critical determinants of system performance. In this study, a three-dimensional computational fluid dynamics model is established for a [...] Read more.
With the rapid advancement of integrated thermal management systems (ITMS) for new energy vehicles (NEVs), flow losses and hydrodynamic characteristics within multi-way valves have become critical determinants of system performance. In this study, a three-dimensional computational fluid dynamics model is established for a multi-way valve used in a representative NEV ITMS, where PAG46 coolant is employed as the working fluid. The steady-state pressure-loss characteristics under three typical operating modes—cooling, heating, and waste heat recovery—are investigated, together with the transient hydrodynamic response during mode switching. The steady-state results indicate that pressure losses are primarily concentrated in regions with abrupt changes in flow direction and sudden variations in cross-sectional area, and that the cooling mode generally exhibits the highest overall pressure loss due to the involvement of all flow channels and stronger flow curvature. Furthermore, a parametric analysis of the valve body corner chamfers and valve spool fillets reveals a non-monotonic dependence of pressure drop on chamfer radius, highlighting a trade-off between streamline smoothness and the effective flow cross-sectional area. Transient analysis, exemplified by the transition from heating to waste heat recovery mode, demonstrates that dynamic changes in channel opening induce a significant reconstruction of the internal velocity and pressure fields. Local high-velocity zones, transient pressure peaks, and pronounced fluctuations of hydraulic torque on the valve spool emerge during the switching process, imposing higher requirements on the torque output and motion stability of the actuator mechanism. Consequently, this study provides a theoretical basis and engineering guidance for the structural optimization and actuator matching of multi-way valves in NEV thermal management systems. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications—2nd Edition)
Show Figures

Figure 1

33 pages, 1141 KB  
Review
The Protonic Brain: Nanoscale pH Dynamics, Proton Wires, and Acid–Base Information Coding in Neural Tissue
by Valentin Titus Grigorean, Catalina-Ioana Tataru, Cosmin Pantu, Felix-Mircea Brehar, Octavian Munteanu and George Pariza
Int. J. Mol. Sci. 2026, 27(2), 560; https://doi.org/10.3390/ijms27020560 - 6 Jan 2026
Viewed by 238
Abstract
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have [...] Read more.
Emerging research indicates that neuronal activity is maintained by an architectural system of protons in a multi-scale fashion. Proton architecture is formed when organelles (such as mitochondria, endoplasmic reticulum, lysosomes, synaptic vesicles, etc.) are coupled together to produce dynamic energy domains. Techniques have been developed to visualize protons in neurons; recent advances include near-atomic structural imaging of organelle interfaces using cryo-tomography and nanoscale resolution imaging of organelle interfaces and proton tracking using ultra-fast spectroscopy. Results of these studies indicate that protons in neurons do not diffuse randomly throughout the neuron but instead exist in organized geometric configurations. The cristae of mitochondrial cells create oscillating proton micro-domains that are influenced by the curvature of the cristae, hydrogen bonding between molecules, and localized changes in dielectric properties that result in time-patterned proton signals that can be used to determine the metabolic load of the cell and the redox state of its mitochondria. These proton patterns also communicate to the rest of the cell via hydrated aligned proton-conductive pathways at the mitochon-dria-endoplasmic reticulum junctions, through acidic lipid regions, and through nano-tethered contact sites between mitochondria and other organelles, which are typically spaced approximately 10–25 nm apart. Other proton architectures exist in lysosomes, endosomes, and synaptic vesicles. In each of these organelles, the V-ATPase generates steep concentration gradients across their membranes, controlling the rate of cargo removal from the lumen of the organelle, recycling receptors from the surface of the membrane, and loading neurotransmitters into the vesicles. Recent super-resolution pH mapping has indicated that populations of synaptic vesicles contain significant heterogeneity in the amount of protons they contain, thereby influencing the amount of neurotransmitter released per vesicle, the probability of vesicle release, and the degree of post-synaptic receptor protonation. Additionally, proton gradients in each organelle interact with the cytoskeleton: the protonation status of actin and microtubules influences filament stiffness, protein–protein interactions, and organelle movement, resulting in the formation of localized spatial structures that may possess some type of computational significance. At multiple scales, it appears that neurons integrate the proton micro-domains with mechanical tension fields, dielectric nanodomains, and phase-state transitions to form distributed computing elements whose behavior is determined by the integration of energy flow, organelle geometry, and the organization of soft materials. Alterations to the proton landscape in neurons (e.g., due to alterations in cristae structure, drift in luminal pH, disruption in the hydration-structure of the cell, or imbalance in the protonation of cytoskeletal components) could disrupt the intracellular signaling network well before the onset of measurable electrical or biochemical pathologies. This article will summarize evidence indicating that proton–organelle interaction provides a previously unknown source of energetic substrate for neural computation. Using an integrated approach combining nanoscale proton energy, organelle interface geometry, cytoskeletal mechanics, and AI-based multiscale models, this article outlines current principles and unresolved questions related to the subject area as well as possible new approaches to early detection and precise intervention of pathological conditions related to altered intracellular energy flow. Full article
(This article belongs to the Special Issue Molecular Synapse: Diversity, Function and Signaling)
Show Figures

Figure 1

22 pages, 511 KB  
Article
Renewable Dependence as an Institutional Transition Risk in Hydrocarbon Economies: Insights from Azerbaijan
by Matteo Landoni and Nijat Muradzada
Economies 2026, 14(1), 14; https://doi.org/10.3390/economies14010014 - 5 Jan 2026
Viewed by 289
Abstract
Transition to renewable energy leads to assumed economic diversification; however, the institutional risks for hydrocarbon-dependent economies remain high. This paper identifies the conditions under which transitioning economies enter a novel dependency during the renewable transition. Our analysis combines the Multi-Level Perspective with Historical [...] Read more.
Transition to renewable energy leads to assumed economic diversification; however, the institutional risks for hydrocarbon-dependent economies remain high. This paper identifies the conditions under which transitioning economies enter a novel dependency during the renewable transition. Our analysis combines the Multi-Level Perspective with Historical Institutionalism to explore Azerbaijan’s 30-year trajectory across the oil, gas, and emerging renewable phases, serving as an illustrative case. Evidence from the literature and expert interviews illustrates that renewable investments are channelled through hydrocarbon-era institutional practices, enclave-style contracting, centralised decision-making, and reliance on foreign technology providers. These conditions constrain domestic niche formation and limit opportunities for local capability development. As a result, renewables become embedded within the existing institutional architecture rather than displacing it, serving primarily to substitute hydrocarbons as an export commodity rather than to catalyse diversification. The paper conceptualises this trajectory as a possible renewable dependence: a pathway in which renewable energy is integrated into an export-oriented, state-dominated political economy without altering its core institutional logic. The identified configurations are common across hydrocarbon economies in Central Asia and MENA, offering transferable insights into when and why renewable transitions risk reproducing, rather than transforming, established development models. Full article
(This article belongs to the Section Economic Development)
33 pages, 4040 KB  
Review
Societal Welfare Implications of Solar and Renewable Energy Deployment: A Systematic Review
by Svetlana Kunskaja and Artur Budzyński
Solar 2026, 6(1), 3; https://doi.org/10.3390/solar6010003 - 4 Jan 2026
Viewed by 333
Abstract
The deployment of solar and other renewable energy technologies (RETs) plays a central role in the global energy transition and the pursuit of sustainable development. Beyond reducing greenhouse gas emissions, these technologies generate far-reaching societal co-benefits that shape environmental quality, social equity, and [...] Read more.
The deployment of solar and other renewable energy technologies (RETs) plays a central role in the global energy transition and the pursuit of sustainable development. Beyond reducing greenhouse gas emissions, these technologies generate far-reaching societal co-benefits that shape environmental quality, social equity, and economic growth. This study systematically reviews peer-reviewed literature published between 2009 and 2025 to identify, integrate, and assess empirical evidence on how RET deployment contributes to societal welfare. Following the SALSA framework and PRISMA guidelines, 147 studies were selected from Scopus and Web of Science. The evidence reveals a consistent welfare triad: environmental gains (emission and pollution reduction, climate mitigation), social gains (improved health, affordability, energy security, and inclusion), and economic gains (employment and income growth, local development). These benefits are, however, heterogeneous and depend on enabling conditions such as policy stability, financial development, grid integration, innovation capacity, and social acceptance. The review highlights that solar energy, in particular, acts as both an environmental and social catalyst in advancing sustainable welfare outcomes. The findings provide a comprehensive basis for policymakers and researchers seeking to design equitable and welfare-enhancing renewable energy transitions. Full article
Show Figures

Figure 1

15 pages, 1769 KB  
Article
Phage Display Selection and In Silico Characterization of Peptides as Potential GroEL Modulators
by Stefania Olla, Stella Garcia Colombarolli, Chiara Siguri, Davide Murrau and Alberto Vitali
Pharmaceutics 2026, 18(1), 46; https://doi.org/10.3390/pharmaceutics18010046 - 30 Dec 2025
Viewed by 326
Abstract
Background/Objectives. Antibiotic resistance is an escalating global health concern, highlighting the need for innovative antibacterial strategies beyond traditional drugs. GroEL, a highly conserved bacterial chaperonin essential for protein folding and stress tolerance, represents a promising but underexplored therapeutic target. This study [...] Read more.
Background/Objectives. Antibiotic resistance is an escalating global health concern, highlighting the need for innovative antibacterial strategies beyond traditional drugs. GroEL, a highly conserved bacterial chaperonin essential for protein folding and stress tolerance, represents a promising but underexplored therapeutic target. This study aimed to identify short peptides capable of binding GroEL monomers and potentially altering their function, with the long-term goal of disrupting bacterial survival mechanisms. Methods. A phage display screening of a 12-mer peptide library was performed against purified GroEL monomers, yielding five candidate peptides (G1–G5). Their interactions with GroEL were analyzed through molecular docking and molecular dynamics simulations using three-dimensional GroEL structures (1MNF, 1XCK, 8S32). Stability of binding and interaction profiles were assessed through molecular dynamics-based analyses and MM/GBSA free energy calculations. Results. Peptides G4 and G5 displayed the most stable and energetically favorable interactions, with G4–8S32 showing the strongest binding (−116.68 kcal/mol). These peptides localized near inter-subunit interfaces, suggesting potential interference with GroEL oligomerization or allosteric transitions, which are critical for its biological function. Conclusions. Our findings demonstrate that short peptides can stably bind GroEL and potentially modulate its activity. Peptides G4 and G5 represent at our knowledge the first promising scaffolds for developing a novel class of peptide-based antibacterial agents targeting conserved chaperonin systems. This work introduces a new avenue that warrants further experimental validation. Full article
(This article belongs to the Special Issue In Silico Approaches of Drug–Target Interactions)
Show Figures

Graphical abstract

Back to TopTop