Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (195)

Search Parameters:
Keywords = local effective microorganisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4322 KiB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 (registering DOI) - 1 Aug 2025
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

18 pages, 2731 KiB  
Article
Dose-Dependent Anti-Inflammatory Effects of Live and Heat-Treated Ligilactobacillus salivarius and Bifidobacterium breve via NF-κB and COX-2 Modulation in an In Vitro Model of Airway Inflammation
by Marta Pagnini, Annalisa Visciglia, Giovanni Deusebio, Marco Pane, Alessandro Celi, Angela Amoruso and Tommaso Neri
Nutrients 2025, 17(15), 2504; https://doi.org/10.3390/nu17152504 - 30 Jul 2025
Viewed by 204
Abstract
Background: Probiotics are live microorganisms known for their health-promoting effects, particularly in modulating immune responses and reducing inflammation within the gastrointestinal tract. Emerging evidence suggests probiotics may also influence respiratory health, prompting investigation into their potential therapeutic application in lung inflammation. Methods: This [...] Read more.
Background: Probiotics are live microorganisms known for their health-promoting effects, particularly in modulating immune responses and reducing inflammation within the gastrointestinal tract. Emerging evidence suggests probiotics may also influence respiratory health, prompting investigation into their potential therapeutic application in lung inflammation. Methods: This study examined the anti-inflammatory effects of Ligilactobacillus salivarius (LS01 DSM 22775) and Bifidobacterium breve (B632 DSM 24706) on inflamed pulmonary epithelial cells. Lung carcinoma epithelial cells (A549) and normal bronchial epithelial cells (16HBE) were stimulated with IL-1β and treated with viable and heat-treated probiotics. Results: CCL-2 levels were significantly reduced by up to 40%, in A549 by viable form (105–107 AFU/g), instead of in 16HBE by heat-treated form (107–109 TFU/g). In A549 cells, TNF-α decreased by 20–80% with all formulations; instead, in 16HBE cells, IL-8 was reduced by viable strains (107 AFU/g) by approximately 50%, while heat-treated strains (109 TFU/g) decreased both IL-6 and IL-8 by 50%. All effective treatments completely inhibited IL-4 and eotaxin and suppressed NF-κB activation in both cell lines, with up to 80% reduction in phospho-p65 levels. In A549 cells, heat-treated strains fully blocked PGE2 production; instead, all four probiotics significantly inhibited COX-2 expression by approximately 50%. Conclusions: These findings demonstrate that both viable and heat-treated probiotics can modulate inflammatory responses in pulmonary epithelial cells, suggesting their potential application in inflammatory respiratory diseases. Heat-treated formulations may be particularly suited for local administration via inhalation, offering a promising strategy for targeting airway inflammation directly. Full article
Show Figures

Figure 1

17 pages, 5178 KiB  
Article
Improvement of Unconfined Compressive Strength in Granite Residual Soil by Indigenous Microorganisms
by Ya Wang, Meiqi Li, Hao Peng, Jiaxin Kang, Hong Guo, Yasheng Luo and Mingjiang Tao
Sustainability 2025, 17(15), 6895; https://doi.org/10.3390/su17156895 - 29 Jul 2025
Viewed by 189
Abstract
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, [...] Read more.
In order to study how indigenous microorganisms can enhance the strength properties of granite residual soil in the Hanzhong area, two Bacillus species that produce urease were isolated from the local soil. The two Bacillus species are Bacillus subtilis and Bacillus tequilensis, and they were used for the solidification and improvement of the granite residual soil. Unconfined compressive strength tests, scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were systematically used to analyze the influence and mechanism of different cementation solution concentrations on the improvement effect. It has been found that with the growth of cementing fluid concentration, the unconfined compressive strength of improved soil specimens shows an increasing tendency, reaching its highest value when the cementing solution concentration is 2.0 mol/L. Among different bacterial species, curing results vary; Bacillus tequilensis demonstrates better performance across various cementing solution concentrations. The examination of failure strain in improved soil samples indicates that brittleness has been successfully alleviated, with optimal outcomes obtained at a cementing solution concentration of 1.0 mol/L. SEM and XRD analyses show that calcium carbonate precipitates (CaCO3) are formed in soil samples treated by both strains. These precipitates effectively bond soil particles, verifying improvement effects on a microscopic level. The present study proposes an environmentally friendly and economical method for enhancing engineering applications of granite residual soil in Hanzhong area, which holds significant importance for projects such as artificial slope filling, subgrade filling, and foundation pit backfilling. Full article
Show Figures

Figure 1

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 332
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 9542 KiB  
Article
Effect of Electron Beam Irradiation on Microbiological Safety and Quality of Chilled Poultry Meat from Kazakhstan
by Raushangul Uazhanova, Ulbala Tungyshbayeva, Sungkar Nurdaulet, Almas Zhanbolat, Yus Aniza Yusof, Shakhsanam Seksenbay, Igor Danko and Zamzagul Moldakhmetova
Processes 2025, 13(7), 2267; https://doi.org/10.3390/pr13072267 - 16 Jul 2025
Viewed by 388
Abstract
Ensuring the safety and extending the shelf life of chilled poultry meat is vital in modern poultry meat production, particularly given the recent increase in demand in this area. Chilled meat has a short shelf life, so producers have limited time to sell [...] Read more.
Ensuring the safety and extending the shelf life of chilled poultry meat is vital in modern poultry meat production, particularly given the recent increase in demand in this area. Chilled meat has a short shelf life, so producers have limited time to sell their products and must rely on various methods of extending shelf life. Compared with other non-thermal methods, electron beam irradiation is a new non-thermal meat preservation technique with low cost, avoidance of contamination, and antibacterial effects. In this study, we investigate the effect of electron beam irradiation on the microbiological and physicochemical quality of chilled poultry meat produced in Kazakhstan to assess its suitability for use in local food processing systems. The samples were electron-beam-treated at doses of 2, 4, 6, and 8 kGy and stored in a refrigerator. Microbiological and physicochemical property evaluations were carried out for a period of 14 days. Our results demonstrated a significant decrease in total aerobic and facultative anaerobic microorganisms, and no detectable levels of Salmonella spp. and Listeria monocytogenes in the irradiated samples. The pH measurements remained stable at low doses; in comparison, higher doses resulted in a slight decrease. Moisture, protein, fat, and ash content were also evaluated and showed minimal changes as functions of irradiation dose. Our results indicate that electron beam irradiation, particularly at a dose of 2–4 kGy, effectively improves microbiological safety and extends the shelf life of chilled poultry meat up to 5–6 days, making it a promising solution for the modern poultry meat industry. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

19 pages, 1446 KiB  
Review
Postbiotics Derived from Lactic Acid Bacteria Fermentation: Therapeutic Potential in the Treatment of Muscular Complications in Inflammatory Bowel Disease
by Emili Bruna Toso Bueno, Kimberlly de Oliveira Silva, Maria Eduarda Ferraz Mendes, Lívia Batista de Oliveira, Felipe Prado de Menezes, Anna Cardoso Imperador, Lucimeire Fernandes Correia and Lizziane Kretli Winkelstroter
Fermentation 2025, 11(7), 362; https://doi.org/10.3390/fermentation11070362 - 23 Jun 2025
Viewed by 785
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, which can result in several muscular complications, including sarcopenia, the loss of muscle mass, and impaired muscle function. Recently, postbiotics derived from lactic bacteria, such as Lactobacillus and Bifidobacterium, [...] Read more.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, which can result in several muscular complications, including sarcopenia, the loss of muscle mass, and impaired muscle function. Recently, postbiotics derived from lactic bacteria, such as Lactobacillus and Bifidobacterium, have emerged as potential therapeutic modulators for these complications. Postbiotics are bioactive metabolites, such as short-chain fatty acids (SCFAs), antimicrobial peptides, and other compounds produced by microorganisms during fermentation, which have anti-inflammatory, antioxidant, and metabolic regulatory effects. These metabolites are important due to their potential to positively influence muscle health in patients with IBD, mainly by reducing systemic and local inflammation, improving gut microbiota, and modulating muscle metabolism. Studies suggest that these postbiotics may help minimize muscle degradation and promote muscle tissue regeneration, assisting in the prevention or management of IBD-associated sarcopenia. Despite the promising results, challenges remain, such as variability in postbiotic production and the need for further clinical studies to establish clear therapeutic guidelines. This review article explores the mechanisms of action of postbiotics derived from lactic acid bacteria and their potential applications in the treatment of muscle complications in patients with IBD, highlighting future therapeutic perspectives. Full article
(This article belongs to the Topic News and Updates on Probiotics)
Show Figures

Figure 1

22 pages, 3738 KiB  
Article
Field Experiments of Mineral Deposition by Cathodic Polarization as a Sustainable Management Strategy for the Reuse of Marine Steel Structures
by Tiziano Bellezze, Giuseppina Colaleo, Pasquale Contestabile, Pietro Forcellese, Simone Ranieri, Nicola Simoncini, Gianni Barucca, Cinzia Corinaldesi, Fabio Conversano, Oriano Francescangeli, Luigi Montalto, Michela Pisani, Simona Sabbatini, Francesco Vita, Diego Vicinanza and Antonio Dell’Anno
Sustainability 2025, 17(13), 5720; https://doi.org/10.3390/su17135720 - 21 Jun 2025
Viewed by 1245
Abstract
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to [...] Read more.
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to both protect steel from corrosion in the absence of a cathodic current, thus operating as an inorganic coating, and provide an effective substrate for colonization by microorganisms still needs to be fully explained. To this end, two identical steel structure prototypes were installed at a depth of 20 m: one was submitted to cathodic polarization, while the other was left under free corrosion for comparison. After 6 months, the current supplied to the electrified structure was interrupted. A multidisciplinary approach was used to analyze the deposits on steel round bars installed in the prototypes over time, in the presence and in the absence of a cathodic current. Different investigation techniques were employed to provide the following information on the deposit: the composition in terms of elements, compounds and macro-biofouling; the morphology; the thickness and the degree of protection estimated by electrochemical impedance spectroscopy (EIS). The results showed that under cathodic polarization, the thickness of the deposit increased to 2.5 mm and then remained almost constant after the current was interrupted. Conversely, the surface impedance decreased from 3 kΩ cm2 to about 1.5 kΩ cm2 at the same time, and the aragonite–brucite ratio also decreased. This indicates a deterioration in the protection performance and soundness of the deposit, respectively. Considering the trends in thickness and impedance together, it can be concluded that the preformed mineral deposit does not undergo generalized deterioration after current interruption, which would result in a reduction in thickness, but rather localized degradation. This phenomenon was attributed to the burrowing action of marine organisms, which created porosities and/or capillary pathways through the deposit. Therefore, the corrosion protection offered by the mineral deposit without a cathodic current is insufficient because it loses its protective properties. However, the necessary current can be quite limited in the presence of the deposit, which in any case provides a suitable substrate for sustaining the colonization and growth of sessile marine organisms, thus promoting biodiversity. Full article
Show Figures

Figure 1

34 pages, 1199 KiB  
Review
Antechodynamics and Antechokinetics: Dynamics and Kinetics of Antibiotic Resistance Biomolecules
by F. Baquero, R. Cantón, A. E. Pérez-Cobas, T. M. Coque, B. Levin and J. Rodríguez-Beltrán
Biomolecules 2025, 15(6), 823; https://doi.org/10.3390/biom15060823 - 5 Jun 2025
Viewed by 583
Abstract
The pharmacology of antimicrobial agents comprises pharmacodynamics and pharmacokinetics. Pharmacodynamics refers to studying drugs’ mode of action on their molecular targets at various concentrations and the resulting effect(s). Pharmacokinetics refers to studying the way(s) in which drugs enter the body and are distributed [...] Read more.
The pharmacology of antimicrobial agents comprises pharmacodynamics and pharmacokinetics. Pharmacodynamics refers to studying drugs’ mode of action on their molecular targets at various concentrations and the resulting effect(s). Pharmacokinetics refers to studying the way(s) in which drugs enter the body and are distributed to their targets in various compartments (such as tissues) and how local drug concentrations are modified in time, such as by metabolism or excretion. Pharmacodynamics and pharmacokinetics constitute pivotal knowledge for establishing the breakpoints used to identify the appropriate antimicrobial agents for infection therapy. Antibiotic resistance is the biological force opposing antimicrobials’ pharmacological effects. However, we do not have a term similar to pharmacology for microbial antibiotic resistance reactions. Here, we propose the new scientific field of antechology (from the classic Greek antechó, resistance), studying the dynamics and kinetics of antibiotic resistance molecules which oppose the effect of antimicrobial drugs. Antechodynamics refers to the study of the molecular mechanisms through which antibiotic molecules are chemically modified or degraded by particular bacterial resistance enzymes (primary effectors) or drive the modification of an antibiotic’s target inhibition sites through molecules released by antibiotic action on the microorganism (secondary effectors). Antechokinetics refers to the study of the processes leading to bacterial spatial cellular (subcellular, pericellular, extracellular) localizations of the molecules involved in antibiotic detoxifying mechanisms. Molecules’ local concentrations change over time due to their production, their degradation, and ultimately their excretion rates. We will examine the antechodynamics and antechokinetics for various antimicrobial classes and the relation between pharmacodynamics/pharmacokinetics and antechodynamics/antechokinetics. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
Exploring Microbial Diversity in Forest Litter-Based Fermented Bioproducts and Their Effects on Tomato (Solanum lycopersicum L.) Growth in Senegal
by Alexandre Mahougnon Aurel Zoumman, Paula Fernandes, Mariama Gueye, Clémence Chaintreuil, Laurent Cournac, Aboubacry Kane and Komi Assigbetse
Int. J. Plant Biol. 2025, 16(2), 55; https://doi.org/10.3390/ijpb16020055 - 23 May 2025
Viewed by 453
Abstract
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental [...] Read more.
Reducing the use of chemical inputs (fertilizers, pesticides) in agriculture while maintaining crop productivity is the main challenge facing sub-Saharan African family farming systems. The use of effective microorganisms (EM) is among the various innovative approaches for minimizing chemical inputs and the environmental impact of agricultural production and protecting soil health while enhancing crop yields and improving food security. This study sought to characterize the microbial biodiversity of local beneficial microorganisms (BMs) products from locally fermented forest litter and investigate their ability to enhance tomato plant growth and development. Beneficial microorganisms (BMs) were obtained by anaerobic fermentation of forest litter collected in four agroecological regions of Senegal mixed with sugarcane molasses and various types of carbon sources (groundnut shells, millet stovers, and rice bran in different proportions). The microbial community composition was analyzed using next-generation rDNA sequencing, and their effects on tomato growth traits were tested in greenhouse experiments. Results show that regardless of the litter geographical collection site, the dominant bacterial taxa in the BMs belonged to the phyla Firmicutes (27.75–97.06%) and Proteobacteria (2.93–72.24%). Within these groups, the most prevalent classes were Bacilli (14.41–89.82%), α-proteobacteria (2.83–72.09%), and Clostridia (0.024–13.34%). Key genera included Lactobacillus (13–65.83%), Acetobacter (8.91–72.09%), Sporolactobacillus (1.40–43.35%), and Clostridium (0.08–13.34%). Fungal taxa were dominated by the classes Leotiomycetes and Sordariomycetes, with a prevalence of the acidophilic genus Acidea. Although microbial diversity is relatively uniform across samples, the relative abundance of microbial taxa is influenced by the litter’s origin. This is illustrated by the PCoA analysis, which clusters microbial communities based on their litter source. Greenhouse experiments revealed that five BMs (DK-M, DK-G, DK-GM, NB-R, and NB-M) significantly (p < 0.05) enhanced tomato growth traits, including plant height (+10.75% for DK-G and +9.44% for NB-R), root length (+56.84–62.20%), root volume (+84.32–97.35%), root surface area (+53.16–56.72%), and both fresh and dry shoot biomass when compared to untreated controls. This study revealed that forest-fermented litter products (BMs), produced using litter collected from various regions in Senegal, contain beneficial microorganisms known as plant growth-promoting microorganisms (PGPMs), which enhanced tomato growth. These findings highlight the potential of locally produced BMs as an agroecological alternative to inorganic inputs, particularly within Senegal’s family farming systems. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

31 pages, 823 KiB  
Review
Traditional and Recent Alternatives for Controlling Bacterial Foodborne Pathogens in Fresh Horticultural Commodities—A Review
by Silvia Bautista-Baños, Zormy Nacary Correa-Pacheco, Rosa Isela Ventura-Aguilar, Patricia Landa-Salgado, Mónica Cortés-Higareda and Margarita de Lorena Ramos-García
Coatings 2025, 15(5), 597; https://doi.org/10.3390/coatings15050597 - 17 May 2025
Cited by 1 | Viewed by 1202
Abstract
Fresh horticultural products have proven to be an excellent source of minerals, vitamins, and functional compounds for human consumption, resulting in horticultural production evolving from a local to a worldwide condition. However, during their commercialization, there can be side effects, such as the [...] Read more.
Fresh horticultural products have proven to be an excellent source of minerals, vitamins, and functional compounds for human consumption, resulting in horticultural production evolving from a local to a worldwide condition. However, during their commercialization, there can be side effects, such as the risk of contamination of foodborne illness outbreaks caused largely by bacterial microorganisms. To reduce their incidence, there exist conventional strategies that include mainly chemical and physical methods. Some of them have already been adopted by the horticultural food industry, while others are still under investigation, such as biological control. In recent years, research about the development and application of coatings has increased. There is a growing trend to design and evaluate active formulations based on naturally and non-toxic occurring compounds with antimicrobial effects against foodborne pathogens including, among others, essential oils, plant extracts, organic acids, and chitosan. Furthermore, nanomaterial-based formulations have also been recently tested, resulting in excellent materials to control them. Nevertheless, it is paramount to assess the safety and risk of these materials associated with human consumption. In this review, the current situation of foodborne pathogens in fruit and vegetables, the traditional control methods, and the future development of coating formulations with new materials are reviewed. In addition, the overall action mechanisms of the antimicrobial coating components were briefly described. Full article
Show Figures

Figure 1

27 pages, 6077 KiB  
Article
Photodynamic Effectiveness of Copper-Iminopyridine Photosensitizers Coupled to Zinc Oxide Nanoparticles Against Klebsiella pneumoniae and the Bacterial Response to Oxidative Stress
by Dafne Berenice Hormazábal, Ángeles Beatriz Reyes, Matías Fabián Cuevas, Angélica R. Bravo, David Moreno-da Costa, Iván A. González, Daniel Navas, Iván Brito, Paulina Dreyse, Alan R. Cabrera and Christian Erick Palavecino
Int. J. Mol. Sci. 2025, 26(9), 4178; https://doi.org/10.3390/ijms26094178 - 28 Apr 2025
Viewed by 628
Abstract
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial [...] Read more.
One of the most urgent threats to public health worldwide is the ongoing rise of multidrug-resistant (MDR) bacterial strains. Among the most critical pathogens are MDR-Klebsiella pneumoniae strains. The lack of new antibiotics has led to an increased need for non-antibiotic antimicrobial therapies. Photodynamic therapy (PDT) has become increasingly significant in treating MDR bacteria. PDT uses photosensitizer compounds (PS) that generate reactive oxygen species (ROS) when activated by light. These ROS produce localized oxidative stress, damaging the bacterial envelope. A downside of PDT is the limited bioavailability of PSs in vivo, which can be enhanced by conjugating them with carriers like nanoparticles (NPs). Zinc nanoparticles possess antibacterial properties, decreasing the adherence and viability of microorganisms on surfaces. The additive or synergistic effect of the combined NP-PS could improve phototherapeutic action. Therefore, this study evaluated the effectiveness of the copper(I)-based PS CuC1 compound in combination with Zinc Oxide NP, ZnONP, to inhibit the growth of both MDR and sensitive K. pneumoniae strains. The reduction in bacterial viability after exposure to a PS/NP mixture activated by 61.2 J/cm2 of blue light photodynamic treatment was assessed. The optimal PS/NP ratio was determined at 2 µg/mL of CuC1 combined with 64 µg/mL of ZnONP as the minimum effective concentration (MEC). The bacterial gene response aligned with a mechanism of photooxidative stress induced by the treatment, which damages the bacterial cell envelope. Additionally, we found that the PS/NP mixture is not harmful to mammalian cells, such as Hep-G2 and HEK-293. In conclusion, the CuC1/ZnONP combination could effectively aid in enhancing the antimicrobial treatment of infections caused by MDR bacteria. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

30 pages, 4548 KiB  
Article
Effects of Auricularia heimuer Residue Amendment on Soil Quality, Microbial Communities, and Maize Growth in the Black Soil Region of Northeast China
by Ying Wang, Jionghua Wang, Keqing Qian, Yuting Feng, Jiangyan Ao, Yinzhen Zhai, Yu Li, Xiao Li, Bo Zhang and Han Yu
Agriculture 2025, 15(8), 879; https://doi.org/10.3390/agriculture15080879 - 17 Apr 2025
Viewed by 558
Abstract
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study [...] Read more.
This study reveals how microbial diversity relates to soil properties in Auricularia heimuer residue–chicken manure composting, presenting sustainable waste recycling solutions. These microbial-straw strategies are adaptable to various agroecological regions, offering flexible residue valorization approaches for local conditions, crops, and resources. This study examined the effects of composting Auricularia heimuer residue and chicken manure at three ratios (6:4, 7:3, 8:2) on soil properties, lignocellulose content, enzyme activity, microbial diversity, and maize growth. The compost was mixed into potting soil at different proportions (0:10 to 10:0). During composting, the temperature remained above 50 °C for more than 14 days, meeting safety and sanitation requirements. The composting process resulted in a pH range of 7–8, a stable moisture content of 60%, a color change from brown to gray-brown, the elimination of unpleasant odors, and the formation of loose aggregates. Lignocellulose content steadily decreased, while lignocellulosic enzyme activity and actinomycete abundance increased, indicating suitability for field application. Compared with the control (CK), total nitrogen, total phosphorus, and total potassium in the soil increased by 57.81–77.91%, 4.5–19.28%, and 301.09–577.2%, respectively. Lignin, cellulose, and hemicellulose increased 50.6–83.49%, 59.6–340.33%, and 150.86–310.5%, respectively. The activities of lignin peroxidase, cellulase, and hemicellulase increased by 9.05–36.31%, 6.7–36.66%, and 37.39–52.16%, respectively. Maize root weight, plant biomass, and root number increased by 120.87–138.59%, 117.83–152.86%, and 29.03–75.81%, respectively. In addition, composting increased the relative abundance of actinomycetes while decreasing the abundance of ascomycetes and ascomycetes. The relative abundance of Sphingomonas and Gemmatimonas increased, whereas pathogenic fungi such as Cladosporium and Fusarium decreased. Compost application also enhanced bacterial and fungal diversity, with bacterial diversity indices ranging from 6.744 to 9.491 (B1), 5.122 to 9.420 (B2), 8.221 to 9.552 (B3), and 6.970 to 9.273 (CK). Fungal diversity indices ranged from 4.811 to 8.583 (B1), 1.964 to 9.160 (B2), 5.170 to 9.022 (B3), and 5.893 to 7.583 (CK). Correlation analysis of soil physicochemical properties, lignocellulose content, enzymes, microbial community composition, and diversity revealed that total nitrogen, total phosphorus, total potassium, and lignocellulose content were the primary drivers of rhizosphere microbial community dynamics. These factors exhibited significant correlations with the dominant bacterial and fungal taxa. Additionally, bacterial and fungal diversity increased with the incorporation of Auricularia heimuer residue. In conclusion, this study elucidates the relationships between microbial diversity and soil properties across different proportions of Auricularia heimuer residue and chicken manure composting, offering alternative strategies for waste recycling and sustainable agricultural development. At present, the production of biobiotics using waste culture microorganisms is still in the laboratory research stage, and no expanded experiments have been carried out. Therefore, how to apply waste bacterial bran to the production of biocontrol biotics on a large scale needs further research. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

20 pages, 1012 KiB  
Review
The Impact of Vitamin D in the Prevention of Influenza, COVID-19, and Dengue: A Review
by Mario Galindo-Méndez, Mario Galindo-Ruiz, María Florencia Concheso-Venegas, Sebastián Uriel Mendoza-Molina, David Orozco-Cruz and Efraín Weintraub-Benzion
Biomedicines 2025, 13(4), 927; https://doi.org/10.3390/biomedicines13040927 - 9 Apr 2025
Viewed by 1702
Abstract
Since its discovery, vitamin D (VD) has been known for its implications in maintaining bone homeostasis. However, in recent years it has been discovered that the vitamin D receptor is expressed on different cells of the immune system and that these cells can [...] Read more.
Since its discovery, vitamin D (VD) has been known for its implications in maintaining bone homeostasis. However, in recent years it has been discovered that the vitamin D receptor is expressed on different cells of the immune system and that these cells can locally produce the active form of this molecule, calcitriol, strongly suggesting that this vitamin might play a key role in both branches of the immune system, innate and adaptive. Recent evidence has demonstrated that VD participates in the different protective phases of the immune system against invading microorganisms, including in the activation and production of antimicrobial peptides, in the inactivation of replication of infectious agents, in the prevention of the exposure of cellular receptors to microbial adhesion, and, more importantly, in the modulation of the inflammatory response. In recent years, the world has witnessed major outbreaks of an ancient infectious disease, dengue fever; the emergence of a pandemic caused by an unknown virus, SARS-CoV-2; and the resurgence of a common respiratory infection, influenza. Despite belonging to different viral families, the etiological agents of these infections present a common trait: their capacity to cause complications not only through their cytopathic effect on target tissues but also through the excessive inflammatory response produced by the human host against an infection. This review outlines the current understanding of the role that vitamin D plays in the prevention of the aforementioned diseases and in the development of their complications through its active participation as a major modulator of the immune response. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

17 pages, 3193 KiB  
Article
Effects of Biochar on Cadmium Availability, Nitrification and Microbial Communities in Soils with Varied pH Levels
by Wei Zhao, Xiaoxu Cao, Hong Pan, Yanhong Lou, Hui Wang, Quangang Yang and Yuping Zhuge
Microorganisms 2025, 13(4), 839; https://doi.org/10.3390/microorganisms13040839 - 7 Apr 2025
Viewed by 634
Abstract
Cadmium (Cd) contamination poses severe threats to agricultural productivity and ecosystem health. Biochar has shown promise in immobilizing Cd and enhancing microbial functions, yet its pH-dependent mechanisms remain underexplored. This study aimed to elucidate pH-dependent variations in biochar-mediated cadmium (Cd) immobilization efficiency, nitrification [...] Read more.
Cadmium (Cd) contamination poses severe threats to agricultural productivity and ecosystem health. Biochar has shown promise in immobilizing Cd and enhancing microbial functions, yet its pH-dependent mechanisms remain underexplored. This study aimed to elucidate pH-dependent variations in biochar-mediated cadmium (Cd) immobilization efficiency, nitrification activity, and bacterial community diversity across soils of contrasting pH levels, with mechanistic insights into the synergistic interplay between biochar properties and soil pH. Real-time quantitative PCR (qPCR) and high-throughput sequencing were used to investigate the effects of a 1% (w/w) biochar amendment on ammonia-oxidizing microorganism abundance and microbial diversity in neutral Shandong soil (SD, pH 7.46) and acidic Yunnan soil (YN, pH 5.88). In neutral SD soil, available Cd decreased from 0.22 mg kg−1 (day 0) to 0.1 mg kg−1 (day 56) and stabilized, accompanied by insignificant changes in ammonia-oxidizing bacteria (AOB) abundance. However, nitrification activity was enhanced through the enrichment of Nitrospira (nitrite-oxidizing bacteria within Nitrospirales and Nitrospiraceae). In acidic YN soil, biochar reduced available Cd by 53.37% over 56 days, concurrent with a 34.28% increase in AOB amoA gene abundance (predominantly Nitrosomonadales), driving pH-dependent nitrification enhancement. These findings demonstrated that biochar efficacy was critically modulated by soil pH; the acidic soils require higher biochar dosages (>1% w/w, adjusted to local soil properties and agronomic conditions) for optimal Cd immobilization. Meanwhile, pH-specific nitrifier taxa (Nitrosomonadales in acidic vs. Nitrospira in neutral soils) underpinned biochar-induced nitrification dynamics. The study provided a mechanistic framework for tailoring biochar remediation strategies to soil pH gradients, emphasizing the synergistic regulation of Cd immobilization and microbial nitrogen cycling. Full article
(This article belongs to the Special Issue Microbial Processes in the Soil Environment)
Show Figures

Figure 1

17 pages, 2504 KiB  
Article
Serum CD5L Responds Positively to Selenium and Coenzyme Q10 Supplementation with Relation to Thyroid Hormones, Mortality, and Health-Related Quality-of-Life—A Sub-Analysis of a Double-Blind Randomised Placebo-Controlled Trial in Elderly Low in Selenium
by Urban Alehagen, Jan O. Aaseth, Trine B. Opstad, Anders Larsson, Sabrina Asaad, Lutz Schomburg and Jan Alexander
Antioxidants 2025, 14(3), 366; https://doi.org/10.3390/antiox14030366 - 20 Mar 2025
Viewed by 1008
Abstract
The Cluster of Differentiation 5-like protein (CD5L) is produced by tissue-resident macrophages. It is an innate immune mediator protein with a multitude of functions, such as binding of invading microorganisms and oxidised LDL, and it is associated with clinical conditions, i.e., atherosclerosis and [...] Read more.
The Cluster of Differentiation 5-like protein (CD5L) is produced by tissue-resident macrophages. It is an innate immune mediator protein with a multitude of functions, such as binding of invading microorganisms and oxidised LDL, and it is associated with clinical conditions, i.e., atherosclerosis and inflammation. The circulating CD5L level has been reported to correlate to selenium status and thyroid hormone activity. In order to test this hypothesis, we analysed CD5L in serum samples from a randomized controlled trial (RCT) with selenium and coenzyme Q10 supplementation and examined associations between CD5L and thyroid hormones, health-related quality-of-life (Hr-QoL), and mortality in an elderly population low in selenium. Circulating levels of CD5L and thyroid hormones were determined in 359 elderly community-living individuals enrolled in an RCT at inclusion and after 48 months of supplementation (179 received selenium and coenzyme Q10, and 180 placebo). Hr-QoL was recorded at both time-points using Short Form 36. Pre-intervention plasma selenium was low, mean 67 µg/L. CD5L correlated positively to free tri-iodothyronine (fT3) and showed an inverse relation with thyroid stimulating hormone (TSH). Low CD5L concentrations at inclusion in the placebo group were associated with increased cardiovascular mortality during 10 years of follow-up, and impaired Hr-QoL at 48 months. Selenium and coenzyme Q10 supplementation significantly increased CD5L and fT3 levels, in association with a better health outcome. The data indicate that circulating CD5L positively responds to selenium and coenzyme Q10 supplementation, correlates with thyroid hormone status, and associates with positive health indices. The observed effect may be due to increased selenium-dependent deiodinase isozyme expression that converts thyroxine (T4) to T3 locally and supports thyroid hormone activities. Whether the observed associations with Hr-QoL and cardiovascular mortality are a direct effect of circulating CD5L or local thyroid hormone activity is unclear and should be further investigated. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

Back to TopTop