Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = liquation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 13090 KB  
Article
Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study
by Jean-Denis Béguin, Yannick Balcaen, Jade Pécune, Nathalie Aubazac and Joël Alexis
J. Manuf. Mater. Process. 2025, 9(9), 290; https://doi.org/10.3390/jmmp9090290 - 25 Aug 2025
Viewed by 756
Abstract
Laser welding, a vital process in modern industry, offers significant technical and economic benefits, including improved part quality, precision, productivity, and cost reduction. This study significantly enhances our understanding of heat-treatable weldability (AA2024, AA2017, AA6061) and non-heat-treatable AA5083 aluminum alloys. It establishes a [...] Read more.
Laser welding, a vital process in modern industry, offers significant technical and economic benefits, including improved part quality, precision, productivity, and cost reduction. This study significantly enhances our understanding of heat-treatable weldability (AA2024, AA2017, AA6061) and non-heat-treatable AA5083 aluminum alloys. It establishes a “weldability window” based on power density and interaction time, identifying three key domains: insufficient penetration, full penetration with regular weld, and irregular weld or cutoff. The study’s findings reveal that heat-treatable alloys soften in the fusion zone due to the dissolution of reinforcing precipitates during welding. In contrast, non-heat-treatable alloys exhibit hardening due to a fine dendritic microstructure. The fusion zone features fine dendrites, and in the heat-affected zone (HAZ), coarse particles and liquation at the fusion line are observed, particularly in AA6061 and 2024 alloys. The study also shows that the joint efficiency, a measure of the weld’s load-bearing capacity, is approximately 90% for the AA5083 alloy and 80% for the heat-treatable alloys. These findings significantly contribute to our understanding of welding processes. They can be used to optimize laser welding processes, thereby ensuring the production of high-quality and reliable joints in industrial applications. Full article
Show Figures

Figure 1

16 pages, 24404 KB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 626
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

130 pages, 2839 KB  
Review
Issues Relative to the Welding of Nickel and Its Alloys
by Adam Rylski and Krzysztof Siczek
Materials 2025, 18(15), 3433; https://doi.org/10.3390/ma18153433 - 22 Jul 2025
Viewed by 921
Abstract
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni [...] Read more.
Nickel is used in aerospace, military, energy, and chemical sectors. Commercially pure (CP) Ni, and its alloys, including solid-solution strengthened (SSS), precipitation strengthened (PS), and specialty alloys (SA), are widely utilized, typically at elevated temperatures, in corrosive settings and in cryogenic milieu. Ni or Ni-based alloys frequently require welding realized, inter alia, via methods using electric arc and beam power. Tungsten inert gas (TIG) and Electron-beam welding (EBW) have been utilized most often. Friction stir welding (FSW) is the most promising solid-state welding technique for connecting Ni and its alloys. The primary weldability issues related to Ni and its alloys are porosity, as well as hot and warm cracking. CP Ni exhibits superior weldability. It is vulnerable to porosity and cracking during the solidification of the weld metal. Typically, SSS alloys demonstrate superior weldability when compared to PS Ni alloys; however, both types may experience weld metal solidification cracking, liquation cracking in the partially melted and heat-affected zones, as well as ductility-dip cracking (DDC). Furthermore, PS alloys are prone to strain-age cracking (SAC). The weldability of specialty Ni alloys is limited, and brazing might provide a solution. Employing appropriate filler metal, welding settings, and minimal restraint can reduce or avert cracking. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

13 pages, 5305 KB  
Article
Applicability of Hf-Free 247LC as a Filler Metal for Hot Crack-Free 247LC Superalloy Welds Assisted by Varestraint Testing
by Seong-Jin Lee and Eun-Joon Chun
Materials 2025, 18(6), 1284; https://doi.org/10.3390/ma18061284 - 14 Mar 2025
Viewed by 641
Abstract
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, [...] Read more.
In this study, based on previous fundamental research on weldability, we ultimately aim to propose a filler metal that enables hot crack-free repair welding of 247LC superalloy while minimizing compositional modification. First, we investigated the liquation cracking susceptibility of two candidate filler metals, namely Hf-free and B-free 247LC superalloy welds, by individually removing Hf and B and performing a spot-Varestraint test. As a result, the liquation cracking temperature range (LCTR) of B-free 247LC was 370 K and 230 K for Hf-free 247LC. The results indicated a significant reduction in the liquation cracking temperature range (LCTR) to 230 K for the Hf-free alloy, from 620 K for the Hf-containing standard 247LC alloy. Direct microstructural analysis of the liquation cracking surfaces revealed a higher liquation initiation temperature at the γ/MC interface in the Hf-free alloy, ranging from 1460 to 1600 K, compared to that of the original 247LC alloy composition, which contributed to the reduced LCTR. These findings indicate that Hf-free 247LC superalloys offer enhanced weldability—particularly for manufacturing and repairing critical components of tools with high-temperature applications, such as gas-turbine blades. Finally, assuming the Hf-free 247LC alloy as a filler metal and the original 247LC alloy composition as a base metal, double square groove welding was performed. This clearly confirmed the possibility of hot crack-free welding with Hf-free 247LC filler metal, effectively suppressing both liquation and solidification cracking simultaneously. Full article
Show Figures

Figure 1

16 pages, 37083 KB  
Article
Comparative Study on the Effect of External Magnetic Field on Aluminum Alloy 6061 and 7075 Resistance Spot-Welding Joints
by Shitian Wei, Rui Zhang, Xiuli Liu and Yu Zhang
Metals 2024, 14(10), 1196; https://doi.org/10.3390/met14101196 - 21 Oct 2024
Cited by 2 | Viewed by 1676
Abstract
This study investigates the effects of the external magnetic field on the microstructure and mechanical property aluminum alloy 6061-T6 and 7075-T651 resistance spot welding joints. The melting behavior of 6061 and 7075 was analyzed via the calculation of the phase diagram (CALPHAD) technique. [...] Read more.
This study investigates the effects of the external magnetic field on the microstructure and mechanical property aluminum alloy 6061-T6 and 7075-T651 resistance spot welding joints. The melting behavior of 6061 and 7075 was analyzed via the calculation of the phase diagram (CALPHAD) technique. The CALPHAD results indicate that, for the 6061 aluminum alloy, the liquid fraction shows a minimal increase at the beginning stage during the solid–liquid phase transition process but with a sharp rise at the ending stage (near the liquidus). In contrast, for the 7075 aluminum alloy, the liquid fraction gradually increases throughout the entire solid–liquid phase transition process. The differences in melting behavior between the 6061 and 7075 alloys lead to different liquation crack morphologies in their spot-welded joints. In the 6061 alloy, the cracks tend to be “eyebrow-shaped”, allowing the liquid metal in the nugget to feed the gaps, and this does not significantly compromise the mechanical properties of the joint. In contrast, the 7075 alloy develops slender cracks that extend through the partially melted zone (PMZ), making it difficult for the liquid metal to feed these gaps, thereby significantly deteriorating the joint’s mechanical strength. Compared to conventional resistance spot-welding joints, the heat exchange between the nugget and the workpiece is enhanced under the external magnetic field, leading to a wider PMZ. This exacerbates the detrimental effects of liquation cracks on the mechanical properties of the 7075 joints. Lap-shear tests indicate that the mechanical properties of the 6061 aluminum alloy joints are improved under electromagnetic stirring. For 7075 aluminum alloy joints, the mechanical properties improve when the welding current is below 34 kA. However, when the welding current exceeds 34 kA, because the widening of the PMZ increases the tendency for liquation cracks, the joint’s mechanical property is deteriorated. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Figure 1

14 pages, 4390 KB  
Article
Assessing the Performance of a Dual-Speed Tool When Friction Stir Welding Cast Mg AZ91 with Wrought Al 6082
by Krzysztof Mroczka, Carter Hamilton, Aleksandra Węglowska, Mateusz Kopyściański, Stanisław Dymek and Adam Pietras
Materials 2024, 17(15), 3705; https://doi.org/10.3390/ma17153705 - 26 Jul 2024
Cited by 1 | Viewed by 1041
Abstract
A novel dual-speed tool for which the shoulder and pin rotation speeds are separately established was utilized to friction stir weld cast magnesium AZ91 with wrought aluminum 6082-T6. To assess the performance and efficacy of the dual-speed tool, baseline dissimilar welds were also [...] Read more.
A novel dual-speed tool for which the shoulder and pin rotation speeds are separately established was utilized to friction stir weld cast magnesium AZ91 with wrought aluminum 6082-T6. To assess the performance and efficacy of the dual-speed tool, baseline dissimilar welds were also fabricated using a conventional FSW tool. Optical microscopy characterized the weld microstructures, and a numerical simulation enhanced the understanding of the temperature and material flow behaviors. For both tool types, regions of the welds contained significant amounts of the AZ91 primary eutectic phase, Al12Mg17, indicating that weld zone temperatures exceeded the solidus temperature of α-Mg (470 °C). Liquation, therefore, occurred during processing with subsequent eutectic formation upon cooling below the primary eutectic temperature (437 °C). The brittle character of the eutectic phase promoted cracking in the fusion zone, and the “process window” for quality welds was narrow. For the conventional tool, offsetting to the aluminum side (advancing side) mitigated eutectic formation and improved weld quality. For the dual-speed tool, experimental trials demonstrated that separate rotation speeds for the shoulder and pin could mitigate eutectic formation and produce quality welds without an offset at relatively higher weld speeds than the conventional tool. Exploration of various weld parameters coupled with the simulation identified the bounds of a process window based on the percentage of weld cross-section exceeding the eutectic temperature and on the material flow rate at the tool trailing edge. For the dual-speed tool, a minimum flow rate of 26.0 cm3/s and a maximum percentage of the weld cross-section above the eutectic temperature of 35% produced a defect-free weld. Full article
Show Figures

Graphical abstract

15 pages, 2479 KB  
Article
Rheological Behavior Features of Feedstocks with a Two-Component Wax–Polyolefin Binder Compared to Analogs Based on Polyoxymethylene
by Alexander N. Muranov, Viktor R. Lysenko and Maxim A. Kocharov
J. Compos. Sci. 2024, 8(6), 199; https://doi.org/10.3390/jcs8060199 - 24 May 2024
Viewed by 2039
Abstract
Despite the large number of studies devoted to different compositions of polymer binders for PIM technology, the actual task is still a comparative analysis of the properties of different types of binders to determine their advantages and disadvantages and optimize the compositions used. [...] Read more.
Despite the large number of studies devoted to different compositions of polymer binders for PIM technology, the actual task is still a comparative analysis of the properties of different types of binders to determine their advantages and disadvantages and optimize the compositions used. In this regard, this study aims at the identification and comparative analysis of the rheological properties of the most demanded feedstocks with binders based on polyoxymethylene and a wax–polyolefin mixture under the condition of using identical steel powder filler. The rate of change in the volume fraction of the liquid phase of the binder in the compared feedstocks with temperature change was determined by the calculation–experimental method. As shown, the temperature dependence of the viscosity of feedstocks with a binder based on a polymer blend depends on factors with variable power, i.e., the viscosity change with temperature occurs by different mechanisms with their relaxation spectra. Thus, the principle of temperature–time superposition for feedstocks with multicomponent binders is not applicable, and the study of the viscosity of such materials should involve a wide range of shear rates and temperatures using experimental methods. Capillary rheometry was used to measure the flow curves of feedstocks based on polyoxymethylene and wax–polyolefin binders. The analysis of flow curves of feedstocks showed that feedstocks with a binder of solution–thermal type of debinding have significantly lower viscosity, which is an advantage for molding thin-walled products. However, their difference of 1.5 times sensitivity to the shear rate gradient leads to their lower resistance to “jets” and liquation of components because of shear rate gradients when molding products with elements of different cross-sectional areas. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

16 pages, 3959 KB  
Article
Influence of Crosslink Density on Electrical Performance and Rheological Properties of Crosslinked Polyethylene
by Linting Di, Chenyuan Qin, Wenying Wang, Anping Huang, Fuqing Wei, Huifang Xu and Shiyuan Yang
Polymers 2024, 16(5), 676; https://doi.org/10.3390/polym16050676 - 1 Mar 2024
Cited by 7 | Viewed by 2944
Abstract
To investigate the influence of the crosslinked polyethylene (XLPE) structure on electrical performance, various analytical methods were employed to study polyethylene structures with different degrees of crosslinking. Dynamic rheological analysis was conducted to determine material shear viscosity, dynamic viscosity, storage modulus (G′), loss [...] Read more.
To investigate the influence of the crosslinked polyethylene (XLPE) structure on electrical performance, various analytical methods were employed to study polyethylene structures with different degrees of crosslinking. Dynamic rheological analysis was conducted to determine material shear viscosity, dynamic viscosity, storage modulus (G′), loss modulus (G″), and other rheological parameters. Additionally, the electrical performance of the material was analyzed by studying the phenomenon of space charge accumulation under direct current voltage. The results indicate that with an increasing mass fraction of the crosslinking agent, the crosslink density of crosslinked polyethylene initially increases and then decreases. When the dicumyl peroxide (DCP) content exceeds 1.0 wt.%, there is an accumulation of like-polarity space charges. The best rheological processing performance of crosslinked polyethylene is observed when the DCP content is in the range of 1.0–1.5 wt.%. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 5041 KB  
Article
Analysis of X5CrNi18-10 (AISI 304) Steel Susceptibility to Hot Cracking in Welded Joints Based on Determining the Range of High-Temperature Brittleness and the Nil-Strength Temperature
by Sławomir Janusz Krajewski, Wojciech Gutsche and Kamil Urbanowicz
Metals 2023, 13(10), 1633; https://doi.org/10.3390/met13101633 - 22 Sep 2023
Cited by 3 | Viewed by 2170
Abstract
The conducted research of X5CrNi18-10 (AISI 304) in the DSI Gleeble 3500 device aimed to determine the tensile strength of this steel at elevated temperatures, simulating welding-like conditions while sensitizing the steel to liquation cracking. The defined High-Temperature Brittleness Range (HTBR) made it [...] Read more.
The conducted research of X5CrNi18-10 (AISI 304) in the DSI Gleeble 3500 device aimed to determine the tensile strength of this steel at elevated temperatures, simulating welding-like conditions while sensitizing the steel to liquation cracking. The defined High-Temperature Brittleness Range (HTBR) made it possible to determine whether the material is susceptible to hot cracking, which can significantly affect the weldability of steel structures. The Nil-Strength Temperature (NST), with an average temperature of 1375 °C, was determined through a thermoplastic test, where the samples were pre-strained and subsequently heated. After the NST tests, no necking or plastic elongation of analyzed samples were noticed. The fracture of the samples was brittle at a low tensile force of 0.1 kN, indicating the value of NST (represents the upper limit of the HTBR). The lower limit of the HTBR (assumed to occur at a relative necking of 5%) was determined by heating samples to a temperature 5 °C lower than the NST and then cooling them to the specified temperature. Once the temperature was reached, the samples were subjected to tensile testing at that temperature, and the percentage necking (Z) and percentage elongation (A) were measured to determine the loss. This work indicates that the estimated Ductility Recovery Temperature (DRT) is slightly lower than 1350 °C, and X5CrNi18-10 (AISI 304) steel has a small HTBR, approximately 15 °C during heating and close to 25 °C during cooling, suggesting minimal tendencies to form hot cracks. Full article
Show Figures

Figure 1

15 pages, 12313 KB  
Article
Solidification and Liquation Cracking in Welds of High Entropy CoCrFeNiCux Alloys
by Ping Yu, Sindo Kou and Chun-Ming Lin
Materials 2023, 16(16), 5621; https://doi.org/10.3390/ma16165621 - 14 Aug 2023
Cited by 4 | Viewed by 2090
Abstract
High entropy CoCrFeNiCux alloys with a Cu molar ratio of x ≈ 0, 0.5, 1, 1.5 and 2 were arc welded. Solidification cracking occurred in the fusion zones of alloys with x ≈ 0.5, 1 and 1.5. Cu-rich material was observed around [...] Read more.
High entropy CoCrFeNiCux alloys with a Cu molar ratio of x ≈ 0, 0.5, 1, 1.5 and 2 were arc welded. Solidification cracking occurred in the fusion zones of alloys with x ≈ 0.5, 1 and 1.5. Cu-rich material was observed around cracks, increasing in quantity with increasing Cu content. Liquation cracking occurred in the partially melted zone next to the fusion zone, and it propagated into the fusion zone as solidification cracking. A recently proposed index for the susceptibility to solidification cracking was tried, i.e., |dT/d(fS)1/2| near (fS)1/2 = 1, where T is temperature and fS the solid fraction. The index was higher in alloys with x ≈ 0.5, 1.0 and 1.5, consistent with the solidification cracking observed. Full article
(This article belongs to the Special Issue Advances in Welding of Alloy and Composites)
Show Figures

Figure 1

14 pages, 4157 KB  
Article
The Effect of Tool Rotation Speed on the Formation of Eutectic Structure during Friction Stir Welding of Aluminum to Magnesium
by Kiarash Torabi, Reza Beygi, Ghasem Eisaabadi Bozchaloei and Lucas F. M. da Silva
Appl. Sci. 2023, 13(12), 7133; https://doi.org/10.3390/app13127133 - 14 Jun 2023
Cited by 10 | Viewed by 2220
Abstract
Friction stir welding (FSW) is a solid-state welding process capable of joining a wide range of light metals. However, liquation and solidification may occur during joining of dissimilar metals which leads to eutectic formation. This article aims to discover the influence of tool [...] Read more.
Friction stir welding (FSW) is a solid-state welding process capable of joining a wide range of light metals. However, liquation and solidification may occur during joining of dissimilar metals which leads to eutectic formation. This article aims to discover the influence of tool rotation speed on the formation of eutectic structure during friction stir welding of aluminum to magnesium. To do so, friction stir welding was performed at 600 and 950 rpm to join pure aluminum and ECO-AZ91 magnesium alloy in a lap configuration. In order to investigate the influence of the welding speed, the welding speeds of 23.5 and 37.5 mm/min were also chosen. Scanning electron microscopy (SEM) was used to study the microstructure of the joints. A shear-tensile test was used to evaluate the joints’ strengths. The fracture surfaces were also studied by SEM. The results revealed that changing the rotation speed directly affects the eutectic formation, whereas the welding speed had no influence. A lower rotation speed resulted in a thin, continuous intermetallic layer, whereas a higher speed led to the formation of a massive Mg-Al12Mg17 eutectic microstructure. The formation of eutectic, as an indicative of liquation, may affect the material flow during the process due to decreasing the friction coefficient between the tool and material. The macrostructure analyses showed that the phase evolution as well as the mechanism of material flow are highly affected by liquation. Full article
(This article belongs to the Special Issue Advanced Manufacturing Processes)
Show Figures

Figure 1

22 pages, 10554 KB  
Article
Spatial Relationship between Eclogite and Copper-Nickel Mineralization in East Kunlun, China
by Yong Zhang, Tong Pan, Aikui Zhang, Shuyue He, Ye Qian and Yongshan Bai
Minerals 2023, 13(3), 330; https://doi.org/10.3390/min13030330 - 26 Feb 2023
Cited by 5 | Viewed by 2381
Abstract
In recent years, Cu-Ni deposits have been discovered at different localities in the Eastern part of the Kunlun orogenic belt such as Xiarihamu, Langmuri, Shitoukengde, and Wenquan. Eclogites are usually exposed in the areas associated with these deposits, thereby implying a certain coupling [...] Read more.
In recent years, Cu-Ni deposits have been discovered at different localities in the Eastern part of the Kunlun orogenic belt such as Xiarihamu, Langmuri, Shitoukengde, and Wenquan. Eclogites are usually exposed in the areas associated with these deposits, thereby implying a certain coupling relationship between the Cu-Ni deposits and eclogite distribution. In this study, eclogite samples from the Xiarihamu and Langmuri areas were analyzed using petrogeochemistry, U-Pb zircon geochronology, and electron probe microanalysis (EPMA). Further, eclogite protolith properties, the formation environment, and the metallogenic mechanism were also investigated. Geochemically, eclogite is rich in MgO and FeO and low in alkali and SiO2. Its m/f ratios are 0.72 to 1.53 and Mg# values of 42 to 61. Overall, the chondrite-normalized rare-earth elements (REE) patterns showed characteristics of weak enrichment with LREE, weak negative Eu anomalies, relative enrichment of large-ion lithophile elements such as K and Rb, active incompatible element Th, the depletion of high-field strength elements Nb, Ta, Zr, and Hf, and V-shaped valleys caused by depletion in Sr, P, and Ti. These geochemical characteristics indicated that the protolith is highly differentiated Fe gabbro that formed in a continental margin type of rift environment. The EPMA analyses showed that the composition of garnet consists of almandite and grossularite, and omphacite often contains augite. Geochronological investigations showed that the peak metamorphic age of eclogite in Xiarihamu and Langmuri is 415.6 ± 2.7 Ma (MSWD = 0.43, n = 16) and 449.1 ± 8.5 Ma (MSWD = 0.88, n = 19), which are related to the early Paleozoic orogenic cycle and formed slightly earlier than the formation of the magmatic liquation type of Cu-Ni deposits in this area. On the basis of spatial coupling, formation age approximation, and geochemical correlation between eclogite and mafic rock masses, in combination with the previous research results of earlier work, it has been considered that the Cu-Ni ore deposits in the East Kunlun Range were formed in the post-collisional extension environment after the deep subduction of the continental crust. The ultra-high-pressure metamorphic melange formed by continental deep subduction or the enriched mantle formed by crust-mantle metasomatism was partially melted to form sulfur-rich mafic–ultramafic magmas in the post-collision extension environment. During the deep subduction of the continental crust, a large amount of crust-derived sulfur was brought into the mantle, which is the key factor for the mineralization of Cu-Ni ore in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

18 pages, 11206 KB  
Article
Microstructural and Mechanical Characterization of Ledeburitic AISI D2 Cold-Work Tool Steel in Semisolid Zones via Direct Partial Remelting Process
by M. N. Mohammed, M. Z. Omar, Adnan Naji Jameel Al-Tamimi, Hakim S. Sultan, Luay Hashem Abbud, Salah Al-Zubaidi, Oday I. Abdullah and M. Abdulrazaq
J. Manuf. Mater. Process. 2023, 7(1), 11; https://doi.org/10.3390/jmmp7010011 - 28 Dec 2022
Cited by 1 | Viewed by 4090
Abstract
The success of the thixoforming process largely depends on the created microstructure, which must be globular in the liquid phase. The solid–liquid structural changes that occur on as-annealed D2 tool steel when it is subjected to the so-called DPRM are described in this [...] Read more.
The success of the thixoforming process largely depends on the created microstructure, which must be globular in the liquid phase. The solid–liquid structural changes that occur on as-annealed D2 tool steel when it is subjected to the so-called DPRM are described in this work (direct partial remelting method). The paper discusses phase changes and how carbide dissolution affects grain boundary liquation and grain spheroidization. Equiaxed grains with undissolved carbide particles have been found in the microstructural analysis at 1250 °C; however, the carbides gradually disappear as the temperature rises. Additionally, the equiaxed grains were transformed to a globular structure, which improves the shape factor and grain size for the thixoforming process. For AISI D2 thixoforming, which produced grains with a diameter of 50 μm and a shape factor of 1.18, temperatures of 1300 °C and a holding period of 5 min were the optimum parameters. The outcomes also showed that the mechanical properties of the AISI D2 were greatly enhanced after using direct partial remelting, where hardness was increased from 220 Hv to 350 Hv and tensile strength from 791 MPa to 961 MPa. Full article
Show Figures

Figure 1

43 pages, 94001 KB  
Article
The Effect of Fe Addition in the RM(Nb)IC Alloy Nb–30Ti–10Si–2Al–5Cr–3Fe–5Sn–2Hf (at.%) on Its Microstructure, Complex Concentrated and High Entropy Phases, Pest Oxidation, Strength and Contamination with Oxygen, and a Comparison with Other RM(Nb)ICs, Refractory Complex Concentrated Alloys (RCCAs) and Refractory High Entropy Alloys (RHEAs)
by Nikos Vellios and Panos Tsakiropoulos
Materials 2022, 15(17), 5815; https://doi.org/10.3390/ma15175815 - 23 Aug 2022
Cited by 4 | Viewed by 2062
Abstract
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn [...] Read more.
In this work, the RM(Nb)IC alloy Nb–30Ti–10Si–5Cr–5Sn–3Fe–2Al–2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs—in particular, the alloy Nb–24Ti–18Si–5Cr–5Fe–5Sn (NV5)—and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15–Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m’ and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14–Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with “conventional” phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15–Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15–Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs. Full article
(This article belongs to the Special Issue Compositional Complex Alloys: From Amorphous to High-Entropy)
Show Figures

Figure 1

16 pages, 12773 KB  
Article
Study of the Printability, Microstructures, and Mechanical Performances of Laser Powder Bed Fusion Built Haynes 230
by Ziheng Wu, Srujana Rao Yarasi, Junwon Seo, Nicholas Lamprinakos and Anthony D. Rollett
Metals 2022, 12(8), 1380; https://doi.org/10.3390/met12081380 - 19 Aug 2022
Cited by 9 | Viewed by 3846
Abstract
The nickel-based superalloy, Haynes 230 (H230), is widely used in high-temperature applications, e.g., heat exchangers, because of its excellent high-temperature mechanical properties and corrosion resistance. As of today, H230 is not yet in common use for 3D printing, i.e., metal additive manufacturing (AM), [...] Read more.
The nickel-based superalloy, Haynes 230 (H230), is widely used in high-temperature applications, e.g., heat exchangers, because of its excellent high-temperature mechanical properties and corrosion resistance. As of today, H230 is not yet in common use for 3D printing, i.e., metal additive manufacturing (AM), primarily because of its hot cracking tendency under fast solidification. The ability to additively fabricate components in H230 attracts many applications that require the additional advantages leveraged by adopting AM, e.g., higher design complexity and faster prototyping. In this study, we fabricated nearly fully dense H230 in a laser powder bed fusion (L-PBF) process through parameter optimization. The efforts revealed the optimal process space which could guide future fabrication of H230 in various metal powder bed fusion processes. The metallurgical analysis identified the cracking problem, which was resolved by increasing the pre-heat temperature from 80 °C to 200 °C. A finite element simulation suggested that the pre-heat temperature has limited impacts on the maximum stress experienced by each location during solidification. Additionally, the crack morphology and the microstructural features imply that solidification and liquation cracking are the more probable mechanisms. Both the room temperature tensile test and the creep tests under two conditions, (a) 760 °C and 100 MPa and (b) 816 °C and 121 MPa, confirmed that the AM H230 has properties comparable to its wrought counterpart. The fractography showed that the heat treatment (anneal at 1200 °C for 2 h, followed by water quench) balances the strength and the ductility, while the printing defects did not appreciably accelerate part failure. Full article
(This article belongs to the Special Issue Superalloy—Microstructural Characterization of Ni-Based Superalloys)
Show Figures

Figure 1

Back to TopTop