Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Welding Methodology and Parameters
2.3. Weld Characterization Methods and Equipment
2.4. Hot Cracking Test
3. Results
3.1. Process Window and Weld Quality
3.2. Effect of Energy Density on Weld Shape
3.3. Microstructure and Microhardness of the Welded Joint
3.4. Vaporization of Magnesium
3.5. Tensile Properties of Welded Joint
3.6. Hot Cracking Susceptibility
4. Conclusions
- The power density parameter controls the weld penetration, while the interaction time controls the weld geometry. Optimizing these parameters favors keyhole stability and reduces defects such as porosity, weld geometry, and hot cracking.
- For the AA2024 Alclad and AA2017 aluminum series, a columnar dendritic structure is observed in the FZ for welds in the weldability window. In contrast, for the AA5083 and AA6061 alloys, morphology is essentially equiaxed dendritic. A liquation phenomenon at the fusion line between the FZ and HAZ is present for all welds in the weldability window.
- The Vickers hardness values over the whole cross-section associated with this microstructure are shallow in the FZ compared to the BM for heat-treatable aluminum alloys. This is a consequence of the dissolution of the strengthening phase. In the case of the non-heat treatable alloy AA5083, a slight increase in hardness is observed, probably due to solid solution supersaturation and microstructural refinement.
- Tensile strength and elongation after fracture of welded specimens are lower than the BM for all aluminum series. The fracture of the welded joints is located at the FZ or the FZ/HAZ line. Laser welds of AA5083 alloy have the highest joint efficiency compared to the AA2017, AA2024 Alclad, and AA6061 alloys.
- A self-restraint crack test on the hotter crack-sensitive alloys AA2024 Alclad and AA6061 shows that the crack length increases with increasing heat input for both aluminum alloys. However, the crack sensitivity of the AA2024 Alclad alloy appears to be higher than that of the AA6061 alloy, probably due to the presence of a columnar dendritic structure, which favors crack propagation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pang, X.; Dai, J.; Chen, S.; Zhang, M. Microstructure and Mechanical Properties of Fiber Laser Welding of Aluminum Alloy with Beam Oscillation. Appl. Sci. 2019, 9, 5096. [Google Scholar] [CrossRef]
- Vyskoč, M.; Sahul, M.; Dománková, M.; Jurči, P.; Sahul, M.; Vyskočová, M.; Martinkovič, M. The Effect of Process Parameters on the Microstructure and Mechanical Properties of AW5083 Aluminum Laser Weld Joints. Metals 2020, 10, 1443. [Google Scholar] [CrossRef]
- Bunaziv, I.; Akselsen, O.M.; Ren, X.; Nyhus, B.; Eriksson, M. Laser Beam and Laser-Arc Hybrid Welding of Aluminium Alloys. Metals 2021, 11, 1150. [Google Scholar] [CrossRef]
- Rajendran, C.; Ben Ruben, R.; Ashokavarthanan, P.; Mallieswaran, K. Identifying the Effect of PWHT on Strength of Laser Beam Welding Joints of AA2024 Aluminum Alloy. ASME Open J. Eng. 2022, 1, 011003. [Google Scholar] [CrossRef]
- Ramiarison, H.; Barka, N.; Amira, S. Optimization of Parameters in Laser Welding of Aluminum Alloy 5052-H32 Using Beam Oscillation Technique for Mechanical Performance Improvement. Int. J. Lightweight Mater. Manuf. 2022, 5, 470–483. [Google Scholar] [CrossRef]
- Cao, X.; Wallace, W.; Immarigeon, J.-P.; Poon, C. Research and Progress in Laser Welding of Wrought Aluminum Alloys. II. Metallurgical Microstructures, Defects, and Mechanical Properties. Mater. Manuf. Process. 2003, 18, 23–49. [Google Scholar] [CrossRef]
- Garavaglia, M.; Demir, A.G.; Zarini, S.; Victor, B.M.; Previtali, B. Process Development and Coaxial Sensing in Fiber Laser Welding of 5754 Al-Alloy. J. Laser Appl. 2019, 31, 022419. [Google Scholar] [CrossRef]
- Deepak, J.R.; Anirudh, R.P.; Saran Sundar, S. Applications of Lasers in Industries and Laser Welding: A Review. Mater. Today Proc. 2023, S221478532300620X. [Google Scholar] [CrossRef]
- Deng, A.; Chen, H.; Zhang, Y.; Liu, Y.; Yang, X.; Zhang, Z.; Zhang, B.; He, D. Prediction of the Influence of Welding Metal Composition on Solidification Cracking of Laser Welded Aluminum Alloy. Mater. Today Commun. 2023, 35, 105556. [Google Scholar] [CrossRef]
- Ghaini, F.M.; Sheikhi, M.; Torkamany, M.J.; Sabbaghzadeh, J. The Relation between Liquation and Solidification Cracks in Pulsed Laser Welding of 2024 Aluminium Alloy. Mater. Sci. Eng. A 2009, 519, 167–171. [Google Scholar] [CrossRef]
- Dittrich, D.; Keßler, B.; Strohbach, R.; Jahn, A. Laser Beam Welding of Hot Crack Sensitive Al-Alloys without Filler Wire by Intensity Controlled Dynamic Beam Oscillation. Procedia CIRP 2022, 111, 435–438. [Google Scholar] [CrossRef]
- Löveborn, D.; Larsson, J.K.; Persson, K.-A. Weldability of Aluminium Alloys for Automotive Applications. Phys. Procedia 2017, 89, 89–99. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.-P.; Wang, X.; Cui, H.; Lu, F. Statistical Analysis of Process Parameters to Eliminate Hot Cracking of Fiber Laser Welded Aluminum Alloy. Opt. Laser Technol. 2015, 66, 15–21. [Google Scholar] [CrossRef]
- Abioye, T.E.; Mustar, N.; Zuhailawati, H.; Suhaina, I. Prediction of the Tensile Strength of Aluminium Alloy 5052-H32 Fibre Laser Weldments Using Regression Analysis. Int. J. Adv. Manuf. Technol. 2019, 102, 1951–1962. [Google Scholar] [CrossRef]
- Demirorer, M.; Suder, W.; Ganguly, S.; Hogg, S.; Naeem, H. Development of Laser Welding of High Strength Aluminium Alloy 2024-T4 with Controlled Thermal Cycle. MATEC Web Conf. 2020, 326, 08005. [Google Scholar] [CrossRef]
- Ahn, J.; Chen, L.; He, E.; Dear, J.P.; Davies, C.M. Optimisation of Process Parameters and Weld Shape of High Power Yb-Fibre Laser Welded 2024-T3 Aluminium Alloy. J. Manuf. Process. 2018, 34, 70–85. [Google Scholar] [CrossRef]
- Hekmatjou, H.; Naffakh-Moosavy, H. Hot Cracking in Pulsed Nd:YAG Laser Welding of AA5456. Opt. Laser Technol. 2018, 103, 22–32. [Google Scholar] [CrossRef]
- Hou, J.; Li, R.; Xu, C.; Li, T.; Shi, Z. A Comparative Study on Microstructure and Properties of Pulsed Laser Welding and Continuous Laser Welding of Al-25Si-4Cu-Mg High Silicon Aluminum Alloy. J. Manuf. Process. 2021, 68, 657–667. [Google Scholar] [CrossRef]
- Rasch, M.; Roider, C.; Kohl, S.; Strauß, J.; Maurer, N.; Nagulin, K.Y.; Schmidt, M. Shaped Laser Beam Profiles for Heat Conduction Welding of Aluminium-Copper Alloys. Opt. Lasers Eng. 2019, 115, 179–189. [Google Scholar] [CrossRef]
- Punzel, E.; Hugger, F.; Dinkelbach, T.; Bürger, A. Influence of Power Distribution on Weld Seam Quality and Geometry in Laser Beam Welding of Aluminum Alloys. Procedia CIRP 2020, 94, 601–604. [Google Scholar] [CrossRef]
- Davis, J.R. Introduction to Aluminum and Aluminum Alloys. In Metals Handbook Desk Edition; ASM International: Materials Park, OH, USA, 1998; pp. 417–423. ISBN 978-1-62708-199-3. [Google Scholar]
- Mondolfo, L.F. Aluminum–Magnesium, Aluminum–Manganese Alloys. In Aluminum Alloys; Elsevier: Amsterdam, The Netherlands, 1976; pp. 806–841. ISBN 978-0-408-70932-3. [Google Scholar]
- Cao, X.; Wallace, W.; Poon, C.; Immarigeon, J.-P. Research and Progress in Laser Welding of Wrought Aluminum Alloys. I. Laser Welding Processes. Mater. Manuf. Process. 2003, 18, 1–22. [Google Scholar] [CrossRef]
- Bouffier, L. Modélisation de La Fissuration à Chaud Lors Du Soudage de l’alliage Base Nickel IN600. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2013. [Google Scholar]
- Miyagi, M.; Wang, H.; Yoshida, R.; Kawahito, Y.; Kawakami, H.; Shoubu, T. Effect of Alloy Element on Weld Pool Dynamics in Laser Welding of Aluminum Alloys. Sci. Rep. 2018, 8, 12944. [Google Scholar] [CrossRef]
- Faye, A.; Balcaen, Y.; Lacroix, L.; Alexis, J. Effects of Welding Parameters on the Microstructure and Mechanical Properties of the AA6061 Aluminium Alloy Joined by a Yb: YAG Laser Beam. J. Adv. Join. Process. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Alfieria, V.; Caiazzoa, F.; Sergi, V. Autogenous Laser Welding of AA 2024 Aluminium Alloy: Process Issues and Bead Features. Procedia CIRP 2015, 33, 406–411. [Google Scholar] [CrossRef]
- Zhang, P.; Jia, Z.; Yu, Z.; Shi, H.; Li, S.; Wu, D.; Yan, H.; Ye, X.; Chen, J.; Wang, F.; et al. A Review on the Effect of Laser Pulse Shaping on the Microstructure and Hot Cracking Behavior in the Welding of Alloys. Opt. Laser Technol. 2021, 140, 107094. [Google Scholar] [CrossRef]
- Qin, L.; Du, W.; Cipiccia, S.; Bodey, A.J.; Rau, C.; Mi, J. Synchrotron X-Ray Operando Study and Multiphysics Modelling of the Solidification Dynamics of Intermetallic Phases under Electromagnetic Pulses. Acta Mater. 2024, 265, 119593. [Google Scholar] [CrossRef]
- Ion, J.C. Laser Beam Welding of Wrought Aluminium Alloys. Sci. Technol. Weld. Join. 2000, 5, 265–276. [Google Scholar] [CrossRef]
- El-Batahgy, A.; Kutsuna, M. Laser Beam Welding of AA5052, AA5083, and AA6061 Aluminum Alloys. Adv. Mater. Sci. Eng. 2009, 2009, 974182. [Google Scholar] [CrossRef]
Mg | Si | Cu | Fe | Mn | Zn | Cr | Ti | Al | |
---|---|---|---|---|---|---|---|---|---|
AA2017-T4 | 0.69 ± 0.01 | 0.62 ± 0.01 | 4.35 ± 0.03 | 0.32 ± 0.04 | 0.64 ± 0.006 | 0.17 ± 0.002 | 0.02 ± 0.001 | 0.05 ± 0.002 | Bal. |
AA2024-T3 | 1.36 ± 0.07 | 0.07 ± 0.002 | 4.29 ± 0.06 | 0.11 ± 0.002 | 0.39 ± 0.005 | 0.05 ± 0.002 | 0.0039 ± 0.0003 | 0.03 ± 0.002 | Bal. |
AA5083-H111 | 3.99 ± 0.08 | 0.20 ± 0.004 | 0.04 ± 0.003 | 0.20 ± 0.003 | 0.39 ± 0.008 | 0.01 ± 0.001 | 0.09 ± 0.002 | 0.01 ± 0.001 | Bal. |
AA6061-T6 | 0.8 ± 0.01 | 0.72 ± 0.01 | 0.20 ± 0.005 | 0.44 ± 0.01 | 0.10 ± 0.001 | 0.03 ± 0.001 | 0.02 ± 0.002 | 0.06 ± 0.002 | Bal. |
Melting Range (°C) | Thermal Conductivity (in W/m. K) at 25 °C | |
---|---|---|
AA2017-T4 | 535–645 | 138 |
AA2024-T3 | 502–638 | 120 |
AA5083-H111 | 570–638 | 120 |
AA6061-T6 | 582–652 | 167 |
Welding Parameters | Values | Responses |
---|---|---|
Power [W] Speed [m/min] Focal spot diameter [µm] Argon gas flow [L/min] | 2500–2700 (3 levels) 1–13 (7 levels) 133–586 (7 levels) 40 (top); 20 (bottom) | Visual aspect Weld penetration Weld geometry Tensile test |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Béguin, J.-D.; Balcaen, Y.; Pécune, J.; Aubazac, N.; Alexis, J. Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study. J. Manuf. Mater. Process. 2025, 9, 290. https://doi.org/10.3390/jmmp9090290
Béguin J-D, Balcaen Y, Pécune J, Aubazac N, Alexis J. Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study. Journal of Manufacturing and Materials Processing. 2025; 9(9):290. https://doi.org/10.3390/jmmp9090290
Chicago/Turabian StyleBéguin, Jean-Denis, Yannick Balcaen, Jade Pécune, Nathalie Aubazac, and Joël Alexis. 2025. "Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study" Journal of Manufacturing and Materials Processing 9, no. 9: 290. https://doi.org/10.3390/jmmp9090290
APA StyleBéguin, J.-D., Balcaen, Y., Pécune, J., Aubazac, N., & Alexis, J. (2025). Optimizing Laser Weldability of Heat-Treatable and Non-Heat-Treatable Aluminum Alloys: A Comprehensive Study. Journal of Manufacturing and Materials Processing, 9(9), 290. https://doi.org/10.3390/jmmp9090290