Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,248)

Search Parameters:
Keywords = lipidic fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3012 KiB  
Article
Investigating Multi-Omic Signatures of Ethnicity and Dysglycaemia in Asian Chinese and European Caucasian Adults: Cross-Sectional Analysis of the TOFI_Asia Study at 4-Year Follow-Up
by Saif Faraj, Aidan Joblin-Mills, Ivana R. Sequeira-Bisson, Kok Hong Leiu, Tommy Tung, Jessica A. Wallbank, Karl Fraser, Jennifer L. Miles-Chan, Sally D. Poppitt and Michael W. Taylor
Metabolites 2025, 15(8), 522; https://doi.org/10.3390/metabo15080522 - 1 Aug 2025
Viewed by 326
Abstract
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers [...] Read more.
Background: Type 2 diabetes (T2D) is a global health epidemic with rising prevalence within Asian populations, particularly amongst individuals with high visceral adiposity and ectopic organ fat, the so-called Thin-Outside, Fat-Inside phenotype. Metabolomic and microbiome shifts may herald T2D onset, presenting potential biomarkers and mechanistic insight into metabolic dysregulation. However, multi-omics datasets across ethnicities remain limited. Methods: We performed cross-sectional multi-omics analyses on 171 adults (99 Asian Chinese, 72 European Caucasian) from the New Zealand-based TOFI_Asia cohort at 4-years follow-up. Paired plasma and faecal samples were analysed using untargeted metabolomic profiling (polar/lipid fractions) and shotgun metagenomic sequencing, respectively. Sparse multi-block partial least squares regression and discriminant analysis (DIABLO) unveiled signatures associated with ethnicity, glycaemic status, and sex. Results: Ethnicity-based DIABLO modelling achieved a balanced error rate of 0.22, correctly classifying 76.54% of test samples. Polar metabolites had the highest discriminatory power (AUC = 0.96), with trigonelline enriched in European Caucasians and carnitine in Asian Chinese. Lipid profiles highlighted ethnicity-specific signatures: Asian Chinese showed enrichment of polyunsaturated triglycerides (TG.16:0_18:2_22:6, TG.18:1_18:2_22:6) and ether-linked phospholipids, while European Caucasians exhibited higher levels of saturated species (TG.16:0_16:0_14:1, TG.15:0_15:0_17:1). The bacteria Bifidobacterium pseudocatenulatum, Erysipelatoclostridium ramosum, and Enterocloster bolteae characterised Asian Chinese participants, while Oscillibacter sp. and Clostridium innocuum characterised European Caucasians. Cross-omic correlations highlighted negative correlations of Phocaeicola vulgatus with amino acids (r = −0.84 to −0.76), while E. ramosum and C. innocuum positively correlated with long-chain triglycerides (r = 0.55–0.62). Conclusions: Ethnicity drove robust multi-omic differentiation, revealing distinctive metabolic and microbial profiles potentially underlying the differential T2D risk between Asian Chinese and European Caucasians. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

26 pages, 10645 KiB  
Article
Classical Paal-Knorr Cyclization for Synthesis of Pyrrole-Based Aryl Hydrazones and In Vitro/In Vivo Evaluation on Pharmacological Models of Parkinson’s Disease
by Maya Georgieva, Martin Sharkov, Emilio Mateev, Diana Tzankova, Georgi Popov, Vasil Manov, Alexander Zlatkov, Rumyana Simeonova and Magdalena Kondeva-Burdina
Molecules 2025, 30(15), 3154; https://doi.org/10.3390/molecules30153154 - 28 Jul 2025
Viewed by 222
Abstract
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is [...] Read more.
Some studies performed in our laboratory on pyrrole and its derivatives pointed towards the enrichment of the evaluations of these promising chemical structures for the potential treatment of neurodegenerative conditions in general and Parkinson’s disease in particular. A classical Paal-Knorr cyclization approach is applied to synthesize the basic hydrazine used for the formation of the designed series of hydrazones (15a15g). The potential neurotoxic and neuroprotective effects of the newly synthesized derivatives were investigated in vitro using different models of induced oxidative stress at three subcellular levels (rat brain synaptosomes, mitochondria, and microsomes). The results identified as the least neurotoxic molecules, 15a, 15d, and 15f applied at a concentration of 100 µM to the isolated fractions. In addition, the highest statistically significant neuroprotection was observed for 15a and 15d at a concentration of 100 µM using three different injury models on subcellular fractions, including 6-hydroxydopamine in rat brain synaptosomes, tert-butyl hydroperoxide in brain mitochondria, and non-enzyme-induced lipid peroxidation in brain microsomes. The hMAOA/MAOB inhibitory activity of the new compounds was studied at a concentration of 1 µM. The lack of a statistically significant hMAOA inhibitory effect was observed for all tested compounds, except for 15f, which showed 40% inhibitory activity. The most prominent statistically significant hMAOB inhibitory effect was determined for 15a, 15d, and 15f, comparable to that of selegiline. The corresponding selectivity index defined 15f as a non-selective MAO inhibitor and all other new hydrazones as selective hMAOB inhibitors, with 15d indicating the highest selectivity index of >471. The most active and least toxic representative (15d) was evaluated in vivo on Rotenone based model of Parkinson’s disease. The results revealed no microscopically visible alterations in the ganglion and glial cells in the animals treated with rotenone in combination with 15d. Full article
(This article belongs to the Special Issue Small-Molecule Targeted Drugs)
Show Figures

Figure 1

15 pages, 2240 KiB  
Article
Olive Pomace Extract Acts as a New Potent Ferroptosis Inhibitor in Human Cells
by Edoardo Giuseppe Di Leo, Chiara Stranieri, Gianni Zoccatelli, Maria Bellumori, Beatrice Zonfrillo, Luciano Cominacini and Anna Maria Fratta Pasini
Molecules 2025, 30(15), 3095; https://doi.org/10.3390/molecules30153095 - 24 Jul 2025
Viewed by 198
Abstract
The olive oil-production sector engages with the environment on multiple levels, and the valorization of olive pomace (OP) has emerged as a key strategy to improve the entire system’s sustainability. Numerous studies have investigated the biological effects of OP phenolic fraction for nutraceutical [...] Read more.
The olive oil-production sector engages with the environment on multiple levels, and the valorization of olive pomace (OP) has emerged as a key strategy to improve the entire system’s sustainability. Numerous studies have investigated the biological effects of OP phenolic fraction for nutraceutical applications, highlighting its antioxidant properties. This study aimed to assess the effect of an OP extract (OPE) and its phenolic content on ferroptosis induced by RAS-selective lethal 3 (RSL3), an inhibitor of glutathione peroxidase 4. After characterization of OPE phenolic composition, its antioxidant properties were confirmed through the Fenton reaction assay. Subsequently, we examined the effect of OPE on ter-butyl hydroperoxide-induced ROS generation and lipid peroxidation in TPH-1 and HIECs cells and found that OPE reduced ROS and lipid peroxidation. RSL3 decreased the number of vital cells, which was associated with an elevation in ROS and lipid peroxidation, and a reduction in GSH. Interestingly, all these detrimental effects were reversed by OPE. Furthermore, OPE was also found to significantly increase GSH and the GSH/GSSG ratio per se. In conclusion, the fact that OPE decreases ROS and lipid peroxidation induced by RSL3 and augments GSH and cell viability suggests that OPE has potential as a ferroptosis inhibitor. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Figure 1

20 pages, 3967 KiB  
Article
Targeting the Opioid System in Cardiovascular Disease: Liver Proteomic and Lipid Profile Effects of Naloxone in Atherosclerosis
by Kinga Jaskuła, Agata Nawrocka, Piotr Poznański, Aneta Stachowicz, Marzena Łazarczyk, Mariusz Sacharczuk, Zbigniew Gaciong and Dominik S. Skiba
Biomedicines 2025, 13(8), 1802; https://doi.org/10.3390/biomedicines13081802 - 23 Jul 2025
Viewed by 242
Abstract
Background: The endogenous opioid system plays a pivotal role in numerous physiological processes and is implicated in a range of diseases, including atherosclerosis, a condition contributing to nearly 50% of deaths in Western societies. Objectives: This study investigates the effects of opioid receptor [...] Read more.
Background: The endogenous opioid system plays a pivotal role in numerous physiological processes and is implicated in a range of diseases, including atherosclerosis, a condition contributing to nearly 50% of deaths in Western societies. Objectives: This study investigates the effects of opioid receptor blockade, using naloxone, on the plasma lipid profile and atherosclerosis progression. Methods: ApoE−/− mice with advanced atherosclerosis were treated with naloxone for seven days, and the effects on atherosclerotic plaque development and liver steatosis were evaluated. Results: A proteomic analysis of liver samples post-treatment identified 38 proteins with altered abundance. The results revealed that naloxone treatment led to an increase in HDL cholesterol, a lipid fraction associated with protective cardiovascular effects. Furthermore, naloxone did not influence the progression of atherosclerotic plaques or the development of liver steatosis. Conclusions: In conclusion, while short-term naloxone treatment in mice with advanced atherosclerosis does not alter overall atherosclerotic plaque progression or liver steatosis, the observed elevation in HDL cholesterol and the extensive changes in liver protein abundance underscore the complex and multifaceted role of the opioid system in lipid metabolism and cardiovascular health. These findings provide a foundation for further exploration of opioid receptor antagonists as modulators of lipid profiles and potential contributors to cardiovascular therapy. Full article
Show Figures

Graphical abstract

16 pages, 1415 KiB  
Article
Targeted Overexpression of Mitochondrial ALDH2 in Coronary Endothelial Cells Mitigates HFpEF in a Diabetic Mouse Model
by Guodong Pan, Bipradas Roy, Emmanuel Oppong Yeboah, Thomas Lanigan, Roland Hilgarth, Rajarajan A. Thandavarayan, Michael C. Petriello, Shailendra Giri and Suresh Selvaraj Palaniyandi
Biomolecules 2025, 15(7), 1029; https://doi.org/10.3390/biom15071029 - 16 Jul 2025
Viewed by 473
Abstract
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF [...] Read more.
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF include oxidative stress, microvascular dysfunction, and chronic unresolved inflammation. Our lab focuses on oxidative stress-mediated cellular dysfunction, particularly the toxic effects of lipid peroxidation products like 4-hydroxy-2-nonenal (4HNE). Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, plays a vital role in detoxifying 4HNE and thereby protecting the heart against pathological stress. ALDH2 activity is reduced in various metabolic stress-mediated cardiac pathologies. The dysfunction of coronary vascular endothelial cells (CVECs) is critical in initiating HFpEF development. Thus, we hypothesized that ectopic overexpression of ALDH2 in CVECs could mitigate metabolic stress-induced HFpEF pathogenesis. In this study, we tested the efficacy of intracardiac injections of the ALDH2 gene into CVECs in db/db mice—a model of obesity-induced type 2 diabetes mellitus (T2DM)—and their controls, db/m mice, by injection with ALDH2 constructs (AAV9-VE-cadherin-hALDH2-HA tag-P2A) or control constructs (AAV9-VE-cadherin-HA tag-P2A-eGFP). We found that intracardiac ALDH2 gene transfer increased ALDH2 levels specifically in CVECs compared to other myocardial cells. Additionally, we observed increased ALDH2 levels and activity, along with decreased 4HNE adducts, in the hearts of mice receiving ALDH2 gene transfer compared to control GFP transfer. Furthermore, ALDH2 gene transfer to CVECs improved diastolic function compared to GFP control alone. In conclusion, ectopic ALDH2 expression in CVECs can contribute, at least partially, to the amelioration of HFpEF. Full article
Show Figures

Figure 1

21 pages, 749 KiB  
Review
HDL Function Versus Small Dense LDL: Cardiovascular Benefits and Implications
by Claudiu Stoicescu, Cristina Vacarescu and Dragos Cozma
J. Clin. Med. 2025, 14(14), 4945; https://doi.org/10.3390/jcm14144945 - 12 Jul 2025
Viewed by 651
Abstract
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence [...] Read more.
High-density lipoprotein (HDL) and small dense low-density lipoprotein (sdLDL) represent two critical yet contrasting components in lipid metabolism and cardiovascular risk modulation. While HDL has traditionally been viewed as cardioprotective due to its role in reverse cholesterol transport and anti-inflammatory effects, emerging evidence emphasizes that HDL functionality—rather than concentration alone—is pivotal in atheroprotection. Conversely, sdLDL particles are increasingly recognized as highly atherogenic due to their enhanced arterial penetration, oxidative susceptibility, and prolonged plasma residence time. This review critically examined the physiological roles, pathological implications, and therapeutic interventions targeting HDL function and sdLDL burden. Lifestyle modifications, pharmacologic agents including statins, fibrates, PCSK9 inhibitors, and novel therapies such as icosapent ethyl were discussed in the context of their effects on HDL quality and sdLDL reduction. Additionally, current clinical guidelines were analyzed, highlighting a paradigm shift away from targeting HDL-C levels toward apoB-driven risk reduction. Although HDL-targeted therapies remain under investigation, the consensus supports focusing on lowering apoB-containing lipoproteins while leveraging lifestyle strategies to improve HDL functionality. In the setting of heart failure, particularly with preserved ejection fraction (HFpEF), alterations in HDL composition and elevated sdLDL levels have been linked to endothelial dysfunction and systemic inflammation, further underscoring their relevance beyond atherosclerosis. A comprehensive understanding of HDL and sdLDL dynamics is essential for optimizing cardiovascular prevention strategies. Full article
(This article belongs to the Special Issue Clinical Management of Patients with Heart Failure—2nd Edition)
Show Figures

Figure 1

15 pages, 1149 KiB  
Article
Effects of Dietary Lipid Levels on Growth Performance, Hematological Parameters, and Muscle Fatty Acid Composition of Juvenile Arapaima gigas
by Carlos Andre Amaringo Cortegano, Luz Angélica Panaifo-García, Nidia Llapapasca, Nieves Sandoval, Adhemir Valera, Juan Rondón Espinoza, Gonzalo Orihuela, Andrea Carhuallanqui, Daphne D. Ramos-Delgado, Fred W. Chu-Koo and Ligia Uribe Gonçalves
Animals 2025, 15(14), 2027; https://doi.org/10.3390/ani15142027 - 10 Jul 2025
Viewed by 360
Abstract
This study evaluates the effects of dietary lipid levels on growth performance, hematological health, and muscle composition of juvenile Arapaima gigas. We tested five isonitrogenous diets (451.7 g kg−1 of crude protein) with increasing lipid levels (6%, 10%, 14%, 18%, and [...] Read more.
This study evaluates the effects of dietary lipid levels on growth performance, hematological health, and muscle composition of juvenile Arapaima gigas. We tested five isonitrogenous diets (451.7 g kg−1 of crude protein) with increasing lipid levels (6%, 10%, 14%, 18%, and 22%). A total of 600 juvenile A. gigas (80.0 ± 10.5 g; 21.8 ± 1.0 cm) were distributed into 20 tanks (500 L; n = 4; 30 fish per tank) in an indoor open system. The fish were fed to apparent satiety four times daily for 60 days. As dietary lipid levels increased, all growth parameters and lipid content in both the whole body and muscle declined. The diet containing 6% lipids resulted in the maximum final weight, weight gain, feed intake, and the lowest feed conversion rate. However, a maximum lipid level of up to 10.26%, with a gross energy-to-protein ratio of 10.15 kcal g−1 in the diet, as determined through polynomial regression analysis, can be used for juvenile A. gigas without significantly affecting weight gain. Diets with high lipid content (18% and 22% lipids) resulted in the lowest survival rates, highest feed conversion rates, lowest condition factor, visible skeletal protrusions, scale depigmentation, and impaired blood biochemistry. The content of eicosapentaenoic acid, docosahexaenoic acid, n-3, and the n-3:n-6 ratio increased in the muscle lipid fraction (mg g−1 of total lipids) in response to higher dietary lipid levels; however, this does not represent an overall improvement in the meat quality, since the total lipid content in the muscle (g of lipid per 100 g of muscle) was reduced due to impaired growth in fish fed high-lipid diets. Notably, the experimental diets also differed in fatty acid composition, which may have influenced some of the physiological and compositional responses observed. Diets with 6% lipids are recommended to provide optimal growth performance, and a maximum dietary lipid level of up to 10.26% is advised to ensure successful A. gigas farming without impairing weight gain. Full article
(This article belongs to the Special Issue Advances in Aquaculture Nutrition for Sustainable Health Management)
Show Figures

Graphical abstract

12 pages, 4263 KiB  
Article
Characterization of a Novel Lentzea Species Isolated from the Kumtagh Desert and Genomic Insights into the Secondary Metabolite Potential of the Genus
by Ying Wen, Jiahui Li, Fujun Qiao, Wanyin Luo, Tuo Chen, Guangxiu Liu and Wei Zhang
Microorganisms 2025, 13(7), 1628; https://doi.org/10.3390/microorganisms13071628 - 10 Jul 2025
Viewed by 307
Abstract
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, [...] Read more.
A novel actinobacterial strain, designated E54T, was isolated from a hyper-arid desert soil sample collected from the Kumtagh Desert in Dunhuang, Gansu Province, China. Phylogenetic analysis based on 16S rRNA gene sequences placed strain E54T within the genus Lentzea, showing highest similarity to Lentzea waywayandensis DSM 44232T (98.9%) and Lentzea flava NBRC 15743T (98.5%). However, whole-genome comparisons revealed that the average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between E54T and these related strains were below the thresholds for species delineation. Strain E54T exhibited typical morphological characteristics of the genus Lentzea, forming a branched substrate. It grew optimally at 28–30 °C, pH 7.0–9.0, and tolerated up to 10% NaCl. The cell wall contained meso-diaminopimelic acid, the predominant menaquinone was MK-9(H4), and major fatty acids included iso-C16:0. The polar lipid profile comprised diphosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, hydroxyphosphatidyl ethanolamine, and an unidentified lipid. The characteristic amino acid type of the cell wall was meso-DAP. Whole-cell hydrolysis experiments revealed the characteristic cell wall sugar fractions: ribose and galactose. The genome of strain E54T is approximately 8.0 Mb with a DNA G+C content of 69.38 mol%. Genome mining revealed 39 biosynthetic gene clusters (BGCs), including non-ribosomal peptide synthetases (NRPS), polyketide synthases (PKS), terpenes, and siderophores. Comparative antiSMASH-based genome analysis across 38 Lentzea strains further demonstrated the genus’ remarkable biosynthetic diversity. NRPS and type I PKS (T1PKS) were the most prevalent BGC types, indicating a capacity to synthesize structurally complex and pharmacologically relevant metabolites. Together, these findings underscore the untapped biosynthetic potential of the genus Lentzea and support the proposal of strain E54T as a novel species. The strain E54T (=JCM 34936T = GDMCC 4.216T) should represent a novel species, for which the name Lentzea xerophila sp. nov. is proposed. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 1292 KiB  
Article
Compartmentalization of Free Fatty Acids in Blood-Feeding Tabanus bovinus Females
by Mikołaj Drozdowski and Mieczysława Irena Boguś
Insects 2025, 16(7), 696; https://doi.org/10.3390/insects16070696 - 6 Jul 2025
Viewed by 464
Abstract
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the [...] Read more.
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the qualitative and quantitative profiles of free fatty acids (FFAs) in the female Tabanus bovinus, a hematophagous horsefly species, across different anatomical regions, including the head, wings, legs, thorax, and abdomen. The surface and internal lipid fractions were isolated using petroleum ether/dichloromethane extraction followed by sonication. GC-MS revealed the presence of 21 FFAs, including 16 saturated (C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C19:0, C20:0, C22:0, C24:0) and five unsaturated (C16:1, C18:2, C18:1, C20:5, C20:4). The head and wings showed the highest concentrations of cuticular FFAs. At the same time, internal lipid stores were most prominent in the thorax and abdomen (but four times lower than in the head cuticle), reflecting their role in energy storage and reproduction. All cuticular and internal extracts were dominated by C16:0, C18:0, and C18:1. Notably, several FFAs were undetected in specific compartments: C10:0 from inside the head, C11:0 and C13:0 from inside all examined body parts, C19:0 was absent from inside the head, wings and legs, while C20:5 and C20:4 were absent from both the cuticular and internal lipid pools of the wings. Interestingly, our analysis of the cuticle on the thorax and abdomen together revealed that both C13:0 and C19:0 were present only on the dorsal side, i.e., absent from the ventral side. These absences suggest a selective lipid metabolism tailored to the functional and ecological demands of T. bovinus females. Our findings suggest that the absence of specific compounds from individual body parts may serve as an indicator of physiological specialization. This work provides new insights into lipid compartmentalization in Tabanidae and offers a framework for future comparative and ecological lipidomics studies in insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

22 pages, 2989 KiB  
Article
Photoautotrophic Batch Cultivation of Limnospira (Spirulina) platensis: Optimizing Biomass Productivity and Bioactive Compound Synthesis Through Salinity and pH Modulation
by Matteo Rizzoli, Giovanni Antonio Lutzu, Luca Usai, Giacomo Fais, Debora Dessì, Robinson Soto-Ramirez, Bartolomeo Cosenza and Alessandro Concas
Mar. Drugs 2025, 23(7), 281; https://doi.org/10.3390/md23070281 - 5 Jul 2025
Viewed by 589
Abstract
This study investigates the effects of salinity and pH modulation on the growth, biochemical composition, and bioactive compound production of Limnospira platensis under photoautotrophic batch cultivation. Cultures were grown in cylindrical photobioreactors using modified Jourdan medium, with controlled variations in NaCl concentrations (0.2–10 [...] Read more.
This study investigates the effects of salinity and pH modulation on the growth, biochemical composition, and bioactive compound production of Limnospira platensis under photoautotrophic batch cultivation. Cultures were grown in cylindrical photobioreactors using modified Jourdan medium, with controlled variations in NaCl concentrations (0.2–10 g L−1) and pH levels (9–11) to simulate moderate environmental stress. Maximum biomass productivity (1.596 g L−1) was achieved at pH 11 with 10 g L−1 NaCl, indicating that L. platensis can tolerate elevated stress conditions. Phycocyanin (PC) content peaked at 9.54 g 100 g−1 dry weight (DW) at pH 10 and 5 g L−1 NaCl, triple the value at pH 9, highlighting optimal physiological conditions for pigment synthesis. Protein fraction dominated biomass composition (40–60%), while total lipid content increased significantly under high pH and salinity. Polyphenol content reached 19.5 mg gallic acid equivalents (GAE) gDW−1 at pH 10 with 0.2 g L−1 NaCl, correlating with the highest antioxidant activity (Trolox equivalent antioxidant capacity). These findings underscore the potential of L. platensis as a valuable source of proteins, pigments, and antioxidants, and emphasize the utility of moderate environmental stress in enhancing biomass quality, defined by protein, pigment, and antioxidant enrichment. While this study focused on physiological responses, future research will apply omics approaches to elucidate stress-response mechanisms. This study provides insights into optimizing cultivation strategies for large-scale production exploitable in food, pharmaceutical, and bio-based industries. Full article
(This article belongs to the Special Issue Algal Cultivation for Obtaining High-Value Products, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 4053 KiB  
Article
Saponins from Solanum nigrum L. Fruit: Extraction Optimization, Structural Characterization, and Dual-Functional Efficacy
by Shuyuan Chen, Weiyun Guo, Tonghe Zhang, Jianfang Chen, Li Huang, Jihong Huang and Ruqiang Huang
Foods 2025, 14(13), 2370; https://doi.org/10.3390/foods14132370 - 3 Jul 2025
Viewed by 468
Abstract
Solanum nigrum L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from S. nigrum fruits (8.59% total saponin yield), followed by isolation via column chromatography and [...] Read more.
Solanum nigrum L., a widely consumed Asian medicinal edible plant, is a promising source of bioactive saponins for functional food applications. This study optimized the extraction of saponins from S. nigrum fruits (8.59% total saponin yield), followed by isolation via column chromatography and structural elucidation using spectroscopic analyses (IR, NMR, and MS). Concurrently, the antioxidant properties and antibacterial activity of the purified substances were detected and analyzed. The three saponins (SNL1, SNL2, SNL3) were identified as γ2-Solamargine , Diosgenin, and β-Solanine. The  n-butanol -purified fraction demonstrated a remarkable capacity to scavenge DPPH, hydroxyl, and ABTS radicals (DPPH IC50 = 0.0096 mg/mL; hydroxyl radical IC50 = 0.8 mg/mL; ABTS IC50 = 0.061 μg/mL), indicating the inhibition of a multi-pathway oxidative chain reaction. Concurrently, the saponins exhibited selective antimicrobial efficacy against key foodborne pathogens, particularly Escherichia coli. To the best of our knowledge, this work provides the first empirical evidence of S. nigrum fruit saponins as dual-functional natural preservatives, synergistically suppressing lipid oxidation and microbial growth. These findings highlight their potential as safer, multi-mechanistic alternatives to synthetic additives, aligning with clean-label food industry demands. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 22603 KiB  
Article
High-Fat Diet-Induced Diabetic Cardiomyopathy in Female Zebrafish: Cardiac Pathology and Functional Decline Mediated by Type 2 Diabetes
by Shuaiwang Huang, Zhanglin Chen, Haoming Li, Yunyi Zou, Bihan Wang, Wenjun Zhao, Lan Zheng, Zuoqiong Zhou, Xiyang Peng and Changfa Tang
Nutrients 2025, 17(13), 2209; https://doi.org/10.3390/nu17132209 - 2 Jul 2025
Viewed by 531
Abstract
Background: Diabetic cardiomyopathy (DCM) is characterized by progressive cardiac dysfunction, metabolic dysregulation, myocardial fibrosis, and mitochondrial impairment. Existing animal models, such as streptozotocin (STZ)-induced models, suffer from high mortality and fail to replicate chronic metabolic dysregulation induced by high-fat diets (HFD), whereas HFD [...] Read more.
Background: Diabetic cardiomyopathy (DCM) is characterized by progressive cardiac dysfunction, metabolic dysregulation, myocardial fibrosis, and mitochondrial impairment. Existing animal models, such as streptozotocin (STZ)-induced models, suffer from high mortality and fail to replicate chronic metabolic dysregulation induced by high-fat diets (HFD), whereas HFD or HFD/STZ-combined rodent models require high maintenance costs. This study aimed to establish a zebrafish HFD-DCM model to facilitate mechanistic exploration and drug discovery. Methods: Eighty wild-type female zebrafish were divided into normal diet (N, 6% fat) and HFD (H, 24% fat) groups and fed the diet for 8 weeks. Metabolic phenotypes were evaluated using intraperitoneal glucose tolerance tests and insulin level analysis. Cardiac function was assessed by using echocardiography (ejection fraction, E peak). Structural, metabolic, and oxidative stress alterations were analyzed by histopathology (H&E, Masson, and Oil Red O staining), molecular assays (RT-qPCR, Western blotting), and mitochondrial structure/function evaluations (respiratory chain activity, transmission electron microscopy, and DHE staining). Results: HFD-fed zebrafish developed obesity, insulin resistance, and impaired glucose tolerance. Echocardiography revealed cardiac hypertrophy, reduced ejection fraction, and diastolic dysfunction. Excessive lipid accumulation, upregulated fibrosis/inflammatory markers, impaired mitochondrial respiration, elevated reactive oxygen species levels, and a disrupted redox balance were observed. Conclusions: We established a female zebrafish HFD model that recapitulates human DCM features, including hypertrophy, metabolic dysregulation, fibrosis, inflammation, and mitochondrial dysfunction. This model offers novel insights into DCM pathogenesis and serves as a valuable platform for mechanistic studies and targeted drug screening. Full article
(This article belongs to the Special Issue The Diabetes Diet: Making a Healthy Eating Plan)
Show Figures

Figure 1

23 pages, 1237 KiB  
Review
Resource Recovery from Green Tide Biomass: Sustainable Cascading Biorefinery Strategies for Ulva spp.
by Gianluca Ottolina, Federica Zaccheria and Jacopo Paini
Biomass 2025, 5(3), 41; https://doi.org/10.3390/biomass5030041 - 2 Jul 2025
Viewed by 536
Abstract
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within [...] Read more.
This review examines sustainable cascading biorefinery strategies for the green alga Ulva, which is globally prevalent in eutrophic marine waters and often forms extensive “green tides.” These blooms cause substantial environmental and economic damage to coastal communities. The primary target products within an Ulva biorefinery typically encompass salts, lipids, proteins, cellulose, and ulvan. Each of these components possesses unique properties and diverse applications, contributing to the economic robustness of the biorefinery. Salts can be repurposed for agricultural or even human consumption. Lipids offer high-value applications in nutraceuticals and animal feed. Proteins present significant potential as plant-based nutritional supplements. Cellulose can be transformed into various advanced materials. Finally, ulvan, a polyanionic oligosaccharide unique to Ulva, holds promise due to its distinct properties, particularly in the biomedical field. Furthermore, state-of-the-art chemical modifications of ulvan are presented with the aim of tailoring its properties and broadening its potential applications. Future research should prioritize optimizing these integrated extraction and fractionation processes. Furthermore, a multi-product biorefining approach, integrated with robust Life Cycle Assessment studies, is vital for transforming this environmental challenge into a significant opportunity for sustainable resource valorization and economic growth. Full article
Show Figures

Figure 1

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 411
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

15 pages, 2327 KiB  
Article
Metabolic Costs of Emerging Contaminants: Cellular Energy Allocation in Zebrafish Embryos
by Bárbara S. Diogo, Daniela Rebelo, Sara C. Antunes and Sara Rodrigues
J. Xenobiot. 2025, 15(4), 99; https://doi.org/10.3390/jox15040099 - 29 Jun 2025
Cited by 1 | Viewed by 347
Abstract
The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic [...] Read more.
The use of cellular energy allocation (CEA) as a physiological energetic biomarker is useful for detecting the sublethal effects of environmental contaminants. The CEA assesses the health and energy status of organisms, serving as a reliable indicator for monitoring the health of aquatic ecosystems. This study aimed to evaluate the impact of emerging contaminants already listed as a priority for monitoring in freshwater ecosystems, namely sulfamethoxazole (0.156–2.50 mg/L), trimethoprim (25.0–400 mg/L), 4-chloroaniline (5.21–20.0 mg/L), and 3,4-dichloroaniline (0.38–4.00 mg/L), on the CEA of D. rerio embryos. A standard fish embryo toxicity test was conducted, and an adaptation of the allometric scaling approach was developed through the relationship between the size and the fresh weight of the embryos. All the compounds affected the fractions of the energy reserves (total carbohydrate, lipid, and protein contents) differently, with carbohydrates being the predominant energy fraction and the most responsive indicator. Although the energy consumed showed no significant changes, the CEA was notably altered after exposure to all the contaminants, indicating a direct connection to shifts in the available energy. The CEA alterations may indicate a reallocation of energy toward detoxification, combating the stress of contaminant exposure. Energy allocation biomarkers provide a comprehensive assessment of an organism’s physiological state, which is essential for evaluating emerging contaminants’ impacts, safeguarding aquatic ecosystems, and shaping effective environmental policies. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

Back to TopTop