Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (219)

Search Parameters:
Keywords = linear active disturbance rejection control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4629 KiB  
Article
Wind-Resistant UAV Landing Control Based on Drift Angle Control Strategy
by Haonan Chen, Zhengyou Wen, Yu Zhang, Guoqiang Su, Liaoni Wu and Kun Xie
Aerospace 2025, 12(8), 678; https://doi.org/10.3390/aerospace12080678 (registering DOI) - 29 Jul 2025
Viewed by 98
Abstract
Addressing lateral-directional control challenges during unmanned aerial vehicle (UAV) landing in complex wind fields, this study proposes a drift angle control strategy that integrates coordinated heading and trajectory regulation. An adaptive radius optimization method for the Dubins approach path is designed using wind [...] Read more.
Addressing lateral-directional control challenges during unmanned aerial vehicle (UAV) landing in complex wind fields, this study proposes a drift angle control strategy that integrates coordinated heading and trajectory regulation. An adaptive radius optimization method for the Dubins approach path is designed using wind speed estimation. By developing a wind-coupled flight dynamics model, we establish a roll angle control loop combining the L1 nonlinear guidance law with Linear Active Disturbance Rejection Control (LADRC). Simulation tests against conventional sideslip approach and crab approach, along with flight tests, confirm that the proposed autonomous landing system achieves smoother attitude transitions during landing while meeting all touchdown performance requirements. This solution provides a theoretically rigorous and practically viable approach for safe UAV landings in challenging wind conditions. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 12786 KiB  
Article
EMB System Design and Clamping Force Tracking Control Research
by Junyi Zou, Haojun Yan, Yunbing Yan and Xianping Huang
Modelling 2025, 6(3), 72; https://doi.org/10.3390/modelling6030072 - 25 Jul 2025
Viewed by 317
Abstract
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active [...] Read more.
The electromechanical braking (EMB) system is an important component of intelligent vehicles and is also the core actuator for longitudinal dynamic control in autonomous driving motion control. Therefore, we propose a new mechanism layout form for EMB and a feedforward second-order linear active disturbance rejection controller based on clamping force. This solves the problem of excessive axial distance in traditional EMB and reduces the axial distance by 30%, while concentrating the PCB control board for the wheels on the EMB housing. This enables the ABS and ESP functions to be integrated into the EMB system, further enhancing the integration of line control and active safety functions. A feedforward second-order linear active disturbance rejection controller (LADRC) based on the clamping force of the brake caliper is proposed. Compared with the traditional clamping force control methods three-loop PID and adaptive fuzzy PID, it improves the response speed, steady-state error, and anti-interference ability. Moreover, the LADRC has more advantages in parameter adjustment. Simulation results show that the response speed is increased by 130 ms, the overshoot is reduced by 9.85%, and the anti-interference ability is increased by 41.2%. Finally, the feasibility of this control algorithm was verified through the EMB hardware-in-the-loop test bench. Full article
Show Figures

Figure 1

28 pages, 42031 KiB  
Article
A Building Crack Detection UAV System Based on Deep Learning and Linear Active Disturbance Rejection Control Algorithm
by Lei Zhang, Lili Gong, Le Wang, Zhou Wang and Song Yan
Electronics 2025, 14(15), 2975; https://doi.org/10.3390/electronics14152975 - 25 Jul 2025
Viewed by 176
Abstract
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory [...] Read more.
This paper presents a UAV-based building crack real-time detection system that integrates an improved YOLOv8 algorithm with Linear Active Disturbance Rejection Control (LADRC). The system is equipped with a high-resolution camera and sensors to capture high-definition images and height information. First, a trajectory tracking controller based on LADRC was designed for the UAV, which uses a linear extended state observer to estimate and compensate for unknown disturbances such as wind interference, significantly enhancing the flight stability of the UAV in complex environments and ensuring stable crack image acquisition. Secondly, we integrated Convolutional Block Attention Module (CBAM) into the YOLOv8 model, dynamically enhancing crack feature extraction through both channel and spatial attention mechanisms, thereby improving recognition robustness in complex backgrounds. Lastly, a skeleton extraction algorithm was applied for the secondary processing of the segmented cracks, enabling precise calculations of crack length and average width and outputting the results to a user interface for visualization. The experimental results demonstrate that the system successfully identifies and extracts crack regions, accurately calculates crack dimensions, and enables real-time monitoring through high-speed data transmission to the ground station. Compared to traditional manual inspection methods, the system significantly improves detection efficiency while maintaining high accuracy and reliability. Full article
Show Figures

Figure 1

21 pages, 8715 KiB  
Article
DDPG-ADRC-Based Load Frequency Control for Multi-Region Power Systems with Renewable Energy Sources and Energy Storage Equipment
by Zhenlan Dou, Chunyan Zhang, Xichao Zhou, Dan Gao and Xinghua Liu
Energies 2025, 18(14), 3610; https://doi.org/10.3390/en18143610 - 8 Jul 2025
Viewed by 256
Abstract
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region [...] Read more.
A scheme of load frequency control (LFC) is proposed based on the deep deterministic policy gradient (DDPG) and active disturbance rejection control (ADRC) for multi-region interconnected power systems considering the renewable energy sources (RESs) and energy storage (ES). The dynamic models of multi-region interconnected power systems are analyzed, which provides a basis for the subsequent RES access. Superconducting magnetic energy storage (SMES) and capacitor energy storage (CES) are adopted due to their rapid response capabilities and fast charge–discharge characteristics. To stabilize the frequency fluctuation, a first-order ADRC is designed, utilizing the anti-perturbation estimation capability of the first-order ADRC to achieve effective control. In addition, the system states are estimated using a linear expansion state observer. Based on the output of the observer, the appropriate feedback control law is selected. The DDPG-ADRC parameter optimization model is constructed to adaptively adjust the control parameters of ADRC based on the target frequency deviation and power deviation. The actor and critic networks are continuously updated according to the actual system response to ensure stable system operation. Finally, the experiment demonstrated that the proposed method outperforms traditional methods across all performance indicators, particularly excelling in reducing adjustment time (45.8% decrease) and overshoot (60% reduction). Full article
Show Figures

Figure 1

19 pages, 910 KiB  
Article
Non-Fragile Observer-Based Dissipative Control of Active Suspensions for In-Wheel Drive EVs with Input Delays and Faults
by A. Srinidhi, R. Raja, J. Alzabut, S. Vimal Kumar and M. Niezabitowski
Automation 2025, 6(3), 28; https://doi.org/10.3390/automation6030028 - 30 Jun 2025
Viewed by 347
Abstract
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, [...] Read more.
This paper presents a non-fragile observer-based dissipative control strategy for the suspension systems of electric vehicles equipped with in-wheel motors, accounting for input delays, actuator faults, and observer gain uncertainty. Traditional control approaches—such as H, passive control, and robust feedback schemes, often address these challenges in isolation and with increased conservatism. In contrast, this work introduces a unified framework that integrates fault-tolerant control, delay compensation, and robust state estimation within a dissipativity-based setting. A novel dissipativity analysis tailored to Electric Vehicle Active Suspension Systems (EV-ASSs) is developed, with nonzero delay bounds explicitly incorporated into the stability conditions. The observer is designed to ensure accurate state estimation under gain perturbations, enabling robust full-state feedback control. Stability and performance criteria are formulated via Linear Matrix Inequalities (LMIs) using advanced integral inequalities to reduce conservatism. Numerical simulations validate the proposed method, demonstrating effective fault-tolerant performance, disturbance rejection, and precise state reconstruction, thereby extending beyond the capabilities of traditional control frameworks. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

27 pages, 16207 KiB  
Article
Adaptive Linear Active Disturbance Rejection Cooperative Control of Multi-Point Hybrid Suspension System
by Shuai Yang, Jie Yang and Fazhu Zhou
Actuators 2025, 14(7), 312; https://doi.org/10.3390/act14070312 - 24 Jun 2025
Viewed by 219
Abstract
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability [...] Read more.
The hybrid maglev train exhibits advantages such as a large suspension gap, high load-to-weight ratio, and low suspension energy consumption. However, challenges, including unmodeled uncertainties and multi-point coupling interference in the suspension system, may degrade control performance. To enhance the global anti-interference capability of the multi-point hybrid suspension system, an adaptive linear active disturbance rejection cooperative control (ALADRCC) method is proposed. First, dynamic models of single-point and multi-point hybrid suspension systems are established, and coupling relationships among multiple suspension points are analyzed. Second, an adaptive linear extended state observer (ALESO) is designed to improve dynamic response performance and noise suppression capability. Subsequently, a coupling cooperative compensator (CCC) is designed and integrated into the linear error feedback control law of adaptive linear active disturbance rejection control (ALADRC), enabling cross-coupling compensation between the suspension gap and its variation rate to enhance multi-point synchronization. Then, the simulation models are constructed on MATLAB/Simulink to validate the effectiveness of ALESO and CCC. Finally, a multi-point hybrid suspension experimental platform is built. Comparative experiments with PID and conventional LADRC demonstrate that the proposed ALADRC achieves faster response speed and effective system noise suppression. Additional comparisons with PID and ALADRC confirm that ALADRCC significantly reduces synchronization errors between adjacent suspension points, exhibiting superior global anti-interference performance. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

17 pages, 2712 KiB  
Article
Height Control and Experimental Study of Linear Motor-Based Active Suspension Systems
by Chao Jiang and Jialing Yao
Electronics 2025, 14(12), 2482; https://doi.org/10.3390/electronics14122482 - 18 Jun 2025
Viewed by 277
Abstract
This study addresses the challenge of ride height control in linear motor-based active suspension systems by proposing a control strategy based on linear active disturbance rejection control (LADRC). The effectiveness of the proposed approach is experimentally validated using a high-precision test platform built [...] Read more.
This study addresses the challenge of ride height control in linear motor-based active suspension systems by proposing a control strategy based on linear active disturbance rejection control (LADRC). The effectiveness of the proposed approach is experimentally validated using a high-precision test platform built on the NI cRIO-9014 real-time controller. The platform integrates a permanent magnet synchronous linear motor, a motor driver, acceleration sensors, and a vibration control system to realize closed-loop control of vehicle body height. Experimental results demonstrate that, compared with conventional PID control, LADRC achieves superior performance in height regulation accuracy, dynamic responsiveness, vertical acceleration suppression, and steady-state stability. In step response experiments, LADRC reduces the regulation time by 53.8% (from 1.3 s to 0.6 s) and lowers the steady-state error from 0.502 mm to 0.05 mm. In sinusoidal trajectory tracking tests, the LADRC approach reduces peak and RMS tracking errors by 81.5% and 80.3%, respectively. Moreover, under random road excitation, LADRC effectively attenuates high-frequency body vibrations, with reductions of 29.58% in peak vertical acceleration and 12.23% in RMS acceleration. Full article
Show Figures

Figure 1

21 pages, 2438 KiB  
Article
Robust Load Frequency Control in Cyber-Vulnerable Smart Grids with Renewable Integration
by Rambaboo Singh, Ramesh Kumar, Utkarsh Raj and Ravi Shankar
Energies 2025, 18(11), 2899; https://doi.org/10.3390/en18112899 - 31 May 2025
Viewed by 474
Abstract
Frequency regulation (FR) constitutes a fundamental aspect of power system stability, particularly in the context of the growing integration of intermittent renewable energy sources (RES) and electric vehicles (EVs). The load frequency control (LFC) mechanism, essential for achieving FR, is increasingly reliant on [...] Read more.
Frequency regulation (FR) constitutes a fundamental aspect of power system stability, particularly in the context of the growing integration of intermittent renewable energy sources (RES) and electric vehicles (EVs). The load frequency control (LFC) mechanism, essential for achieving FR, is increasingly reliant on communication infrastructures that are inherently vulnerable to cyber threats. Cyberattacks targeting these communication links can severely compromise coordination among smart grid components, resulting in erroneous control actions that jeopardize the security and stability of the power system. In light of these concerns, this study proposes a cyber-physical LFC framework incorporating a fuzzy linear active disturbance rejection controller (F-LADRC), wherein the controller parameters are systematically optimized using the quasi-opposition-based reptile search algorithm (QORSA). Furthermore, the proposed approach integrates a comprehensive cyberattack detection and prevention scheme, employing Haar wavelet transforms for anomaly detection and long short-term memory (LSTM) networks for predictive mitigation. The effectiveness of the proposed methodology is validated through simulations conducted on a restructured power system integrating RES and EVs, as well as a modified IEEE 39-bus test system. The simulation outcomes substantiate the capability of the proposed framework to deliver robust and resilient frequency regulation, maintaining system frequency and tie-line power fluctuations within nominal operational thresholds, even under adverse cyberattack scenarios. Full article
Show Figures

Figure 1

22 pages, 21215 KiB  
Article
High-Performance Two-Stage DC/DC Converter Based on LADRC-PI Hybrid Control for PEM Electrolyzer Hydrogen Production
by Qingshuai Yu, Zhenao Sun, Yetong Han, Tuanlong Zhang, Rongxing Zhang and Muhua Lin
Micromachines 2025, 16(6), 665; https://doi.org/10.3390/mi16060665 - 31 May 2025
Viewed by 576
Abstract
While DC/DC converters for water electrolysis systems have been widely investigated, they inherently face a critical compromise between wide voltage regulation capabilities and dynamic response characteristics. This study is based on a two-stage hybrid topology (TSIB-TPLLC) that synergistically combines a two-phase interleaved buck [...] Read more.
While DC/DC converters for water electrolysis systems have been widely investigated, they inherently face a critical compromise between wide voltage regulation capabilities and dynamic response characteristics. This study is based on a two-stage hybrid topology (TSIB-TPLLC) that synergistically combines a two-phase interleaved buck converter with a three-phase LLC resonant converter to resolve this challenge. The first-stage interleaved buck converter enables wide-range voltage regulation while reducing input current ripple and minimizing intermediate bus capacitance through phase-interleaved operation. The subsequent three-phase LLC stage operates at a fixed resonant frequency, achieving inherent output current ripple suppression through multi-phase cancellation while maintaining high conversion efficiency. A dual-loop control architecture incorporating linear active disturbance rejection control (LADRC) with PI compensation is developed to improve transient response compared to conventional PI-based methods. Finally, a 1.2 kW experimental prototype with an input voltage of 250 V and an output voltage of 24 V demonstrates the converter’s operational feasibility and enhanced steady-state/transient performance, confirming its suitability for hydrogen production applications. Full article
Show Figures

Figure 1

15 pages, 4478 KiB  
Article
Fractional-Order Linear Active Disturbance Rejection Control Strategy for DC-DC BUCK Converters
by Jiahao Zhang and Shuqing Wang
Electronics 2025, 14(11), 2226; https://doi.org/10.3390/electronics14112226 - 30 May 2025
Viewed by 410
Abstract
This paper explores the problems of slow response speed, poor anti-interference performance, and low control accuracy that exist in traditional Active Disturbance Rejection Control methods in Buck-type DC/DC converters. To address these issues, a fractional-order Active Disturbance Rejection Control (FO-LADRC) controller is proposed [...] Read more.
This paper explores the problems of slow response speed, poor anti-interference performance, and low control accuracy that exist in traditional Active Disturbance Rejection Control methods in Buck-type DC/DC converters. To address these issues, a fractional-order Active Disturbance Rejection Control (FO-LADRC) controller is proposed to enhance the dynamic characteristics and anti-interference ability of Buck-type DC/DC converters, while expanding the control range and flexibility of traditional linear Active Disturbance Rejection Control (LADRC). Firstly, the mathematical model of the Buck-type DC/DC converter is established. Secondly, based on Active Disturbance Rejection Control, a fractional-order linear Extended State Observer (FO-LESO) is constructed to estimate the model error and external disturbance of the system. Then, the stability of the system is studied through transfer function and error analysis. Finally, the effectiveness of the FO-LADRC controller method is verified through simulation. The simulation and experiment results show that the proposed FO-LADRC method outperforms traditional PI and LADRC methods in terms of dynamic performance. It can effectively improve the dynamic characteristics of the system and enhance the anti-interference ability of the system. Full article
Show Figures

Figure 1

10 pages, 2198 KiB  
Proceeding Paper
Tuning and Performance Analysis of Second-Order Linear Active Disturbance Rejection Controller for Trajectory Tracking and Balancing the Rotary Inverted Pendulum
by Janeshwaran Gunasekaran and Ezhilarasi Deenadayalan
Eng. Proc. 2025, 95(1), 2; https://doi.org/10.3390/engproc2025095002 - 27 May 2025
Viewed by 267
Abstract
Second-order Linear Active Disturbance Rejection Controller (SLADRC) is a powerful control technique. Ongoing research is focused on simplifying tuning procedures, extending applicability to handle more complex systems, and ensuring efficient real-time implementation. In this proposed work, four different tuning approaches, using the Atomic [...] Read more.
Second-order Linear Active Disturbance Rejection Controller (SLADRC) is a powerful control technique. Ongoing research is focused on simplifying tuning procedures, extending applicability to handle more complex systems, and ensuring efficient real-time implementation. In this proposed work, four different tuning approaches, using the Atomic Orbital Search (AOS) optimization algorithm concerning the number of tuning parameters, are presented. The performance of each tuning method for stabilizing the rotary inverted pendulum in the upright position and tracking trajectory is analyzed and validated through simulation and experimentation. The results indicate that the reduced number of SLADRC controller parameters tuned using AOS optimization provides superior performance compared to the controller with more tuning parameters for the nonlinear rotary inverted pendulum. From the analysis method, II tuning, b0,  ωc,  and k provide the optimum results of settling time (Ts), 1.5 s, and maximum angle deviation of θ3.8°, α(3°). Full article
Show Figures

Figure 1

28 pages, 6935 KiB  
Article
A Hybrid Quadrotor Unmanned Aerial Vehicle Control Strategy Using Self-Adaptive Bald Eagle Search and Fuzzy Logic
by Yalei Bai, Kelin Li and Guangzhao Wang
Electronics 2025, 14(11), 2112; https://doi.org/10.3390/electronics14112112 - 22 May 2025
Cited by 1 | Viewed by 332
Abstract
In this study, we propose an innovative inner–outer loop control framework for a quadcopter unmanned aerial vehicle (UAV) that significantly enhances the trajectory-tracking speed and accuracy while enhancing robustness against external disturbances. The inner loop employs a Linear Active Disturbance Rejection Controller (LADRC) [...] Read more.
In this study, we propose an innovative inner–outer loop control framework for a quadcopter unmanned aerial vehicle (UAV) that significantly enhances the trajectory-tracking speed and accuracy while enhancing robustness against external disturbances. The inner loop employs a Linear Active Disturbance Rejection Controller (LADRC) and the outer loop a proportion integral differential (PID) controller, unified within a fuzzy control scheme. We introduce a Self-Adaptive Bald Eagle Search Optimization algorithm to optimize the initial controller settings, thereby accelerating convergence and improving parameter-tuning precision. Simulation results show that our proposed controller outperforms the conventional two-loop cascade PID configuration, as well as alternative strategies combining an outer-loop PID with a second-order inner-loop LADRC or a fuzzy-enhanced PID-LADRC approach. Moreover, the system maintains the desired position and attitude under external perturbations, underscoring its superior disturbance-rejection capability and stability. Full article
Show Figures

Figure 1

19 pages, 8000 KiB  
Article
Improved Bipolar Coordinate Control Strategy for 400 Hz Inverter in Aviation Ground Power Supply
by Xinwen Bi, Shuairan Yu, Pengfei Liu and Yanming Cheng
Symmetry 2025, 17(5), 716; https://doi.org/10.3390/sym17050716 - 7 May 2025
Viewed by 331
Abstract
This paper presents an enhanced bipolar control strategy for 400 Hz three-phase inverters in aviation ground power supplies, with a focus on maintaining symmetry in power output under unbalanced load conditions. The strategy integrates Linear Active Disturbance Rejection Control (LADRC) for robust positive [...] Read more.
This paper presents an enhanced bipolar control strategy for 400 Hz three-phase inverters in aviation ground power supplies, with a focus on maintaining symmetry in power output under unbalanced load conditions. The strategy integrates Linear Active Disturbance Rejection Control (LADRC) for robust positive sequence voltage regulation, Proportional Integral with repetitive control (PI + RC) for harmonic suppression in positive sequence currents, and a Quasi-Proportional Resonance (QPR) controller for negative sequence components in the static coordinate system. By doing so, it simplifies negative sequence control and combines PI + RC to improve the dynamic response and eliminate periodic errors. In the context of symmetry, the proposed strategy effectively reduces the total harmonic distortion (THD) and the three-phase current imbalance degree. Simulation results show significant improvements: under balanced loads, THD is reduced by 41.5% (from 1.95% to 1.14%) compared to traditional PI control; under single-phase and three-phase unbalanced loads, THD decreases by 52.7% (2.56% to 1.21%) and 48.1% (2.39% to 1.24%), respectively. The system’s settling time during load transients is shortened by over 30%, and the three-phase current imbalance degree is reduced by 60–70%, which validates the strategy’s effectiveness in enhancing power quality and system stability, thus restoring and maintaining the symmetry of the power output. Full article
(This article belongs to the Special Issue Applications of Symmetry Three-Phase Electrical Power Systems)
Show Figures

Figure 1

22 pages, 3674 KiB  
Article
A Dual-Loop Modified Active Disturbance Rejection Control Scheme for a High-Purity Distillation Column
by Xudong Song, Yuedong Zhao, Zihao Li, Jingchao Song, Zhenlong Wu, Jingzhong Guo and Jian Zhang
Processes 2025, 13(5), 1359; https://doi.org/10.3390/pr13051359 - 29 Apr 2025
Viewed by 348
Abstract
High-purity distillation columns typically give rise to multi-variable, strongly coupled nonlinear systems with substantial time delay and significant inertia. The control performance of high-purity distillation columns crucially influences the purity of the final product. Taking into account the process of a high-purity distillation [...] Read more.
High-purity distillation columns typically give rise to multi-variable, strongly coupled nonlinear systems with substantial time delay and significant inertia. The control performance of high-purity distillation columns crucially influences the purity of the final product. Taking into account the process of a high-purity distillation column, this article puts forward a dual-loop modified active disturbance rejection control (MADRC) scheme to improve the control of product purity. During the stable operation of the distillation process, the structures of two control loops are, respectively, approximated by two linear transfer function models via open-loop experiments. Subsequently, the compensation part of the MADRC scheme is designed, respectively, for each approximate model. Furthermore, this paper employs singular perturbation theory to prove the stability of MADRC. The performance of the dual-loop MADRC scheme (MADRC) is compared with that of a proportional–integral–derivative (PID) control scheme, a cascade PID control scheme (CPID), and a regular ADRC scheme (ADRC). The simulations demonstrate that the dual-loop MADRC scheme is capable of efficiently tracking the reference value and exhibits optimal disturbance rejection capabilities. Additionally, the superiority of the dual-loop MADRC scheme is validated through Monte Carlo trials. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control of Industrial Processes)
Show Figures

Figure 1

11 pages, 3172 KiB  
Article
Self-Coupling PID Control with Adaptive Transition Function for Enhanced Electronic Throttle Position Tracking
by Cheng Liu, Peilin Liu and Yanming Cheng
Symmetry 2025, 17(5), 673; https://doi.org/10.3390/sym17050673 - 28 Apr 2025
Viewed by 366
Abstract
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the [...] Read more.
The objective of this study was to enhance the tracking effectiveness of the position adjustment for the electronic throttle in electric vehicles, as well as boost fuel efficiency and the dynamic performance of the vehicles. Firstly, a mathematical model, which pertains to the electronic throttle system, is established, and subsequently, the nonlinear uncertain system is made into a linear uncertain system. Subsequently, a self-coupling PID control law is designed, and an analysis is conducted on the system’s stability and its capacity to reject disturbances. Secondly, taking into consideration that the parameters of the PID controller with self-coupling mechanism are related to the system’s response speed, disturbance rejection capability, and overshoot, a self-adjusting speed factor transition function is put forward to address the conflict between speed and overshoot. Finally, numerical simulations and experimental tests are carried out. The results verify that, compared with the conventional PID controller, ADRC (Active Disturbance Rejection Control), and fuzzy PID, the proposed controller has a faster response speed, higher control accuracy, and better robustness. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry of Applications in Automation and Control Systems)
Show Figures

Figure 1

Back to TopTop