Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (434)

Search Parameters:
Keywords = light-tissue interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3171 KiB  
Review
Environmentally Responsive Hydrogels and Composites Containing Hydrogels as Water-Based Lubricants
by Song Chen, Zumin Wu, Lei Wei, Xiuqin Bai, Chengqing Yuan, Zhiwei Guo and Ying Yang
Gels 2025, 11(7), 526; https://doi.org/10.3390/gels11070526 - 7 Jul 2025
Viewed by 364
Abstract
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such [...] Read more.
Both biosystems and engineering fields demand advanced friction-reducing and lubricating materials. Due to their hydrophilicity and tissue-mimicking properties, hydrogels are ideal candidates for use as lubricants in water-based environments. They are particularly well-suited for applications involving biocompatibility or interactions with intelligent devices such as soft robots. However, external environments, whether within the human body or in engineering applications, often present a wide range of dynamic conditions, including variations in shear stress, temperature, light, pH, and electric fields. Additionally, hydrogels inherently possess low mechanical strength, and their dimensional stability can be compromised by changes during hydration. This review focuses on recent advancements in using environmentally responsive hydrogels as lubricants. It explores strategies involving physical or structural modifications, as well as the incorporation of smart chemical functional groups into hydrogel polymer chains, which enable diverse responsive mechanisms. Drawing on both the existing literature and our own research, we also examine how composite friction materials where hydrogels serve as water-based lubricants offer promising solutions for demanding engineering environments, such as bearing systems in marine vessels. Full article
(This article belongs to the Special Issue Smart Hydrogels in Engineering and Biomedical Applications)
Show Figures

Figure 1

22 pages, 2464 KiB  
Article
Development and Characterization of LL37 Antimicrobial-Peptide-Loaded Chitosan Nanoparticles: An Antimicrobial Sustained Release System
by Fazilet Canatan Ergün, Meltem Demirel Kars and Gökhan Kars
Polymers 2025, 17(13), 1884; https://doi.org/10.3390/polym17131884 - 7 Jul 2025
Viewed by 450
Abstract
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded [...] Read more.
CSNPs synthesized via the ionic gelation method have emerged as a promising nanoplatform in diverse fields such as pharmaceuticals, nanotechnology, and polymer science due to their biocompatibility, ease of fabrication, and tunable properties. This study focuses on the development and characterization of LL37-loaded CSNPs, designed to enhance antibacterial efficacy while maintaining biocompatibility. This study pioneers a systematic loading optimization approach by evaluating the encapsulation efficiency (%EE) of antimicrobial peptide LL37 across multiple concentrations (7.5, 15, and 30 µg/mL), thereby identifying the formulation that maximizes peptide incorporation while preserving controlled release characteristics. The multi-concentration analysis establishes a new methodological benchmark for peptide delivery system development. To achieve this, CSNPs were optimized for size and stability by adjusting parameters such as the chitosan concentration, pH, and stabilizer. LL37, a potent antimicrobial peptide, was successfully encapsulated into CSNPs at concentrations of 7.5, 15, and 30 µg/mL, yielding formulations with favorable physicochemical properties. Dynamic light scattering (DLS) and Zeta sizer analyses revealed that blank CSNPs exhibited an average particle size of 180.40 ± 2.16 nm, a zeta potential (ZP) of +40.57 ± 1.82 mV, and a polydispersity index (PDI) of 0.289. In contrast, 15-LL37-CSNPs demonstrated an increased size of 210.9 ± 2.59 nm with an enhanced zeta potential of +51.21 ± 0.93 mV, indicating an improved stability and interaction potential. Field emission scanning electron microscopy (FE-SEM) analyses exhibited the round shaped morphology of nanoparticles. The release profile of LL37 exhibited a concentration-dependent rate and showed the best fit with the first-order kinetic model. Cytocompatibility assessments using the XTT assay confirmed that both blank and LL37-loaded CSNPs did not exhibit cytotoxicity on keratinocyte cells across a range of concentrations (150 µg/mL to 0.29 µg/mL). Notably, LL37-loaded CSNPs demonstrated significant antibacterial activity against E. coli and S. aureus, with the 15-LL37-CSNP formulation exhibiting superior efficacy. Overall, these findings highlight the potential of LL37-CSNPs as a versatile antibacterial delivery system with applications in drug delivery, wound healing, and tissue engineering. Full article
(This article belongs to the Special Issue Biocompatible and Biodegradable Polymer Materials)
Show Figures

Graphical abstract

14 pages, 2494 KiB  
Article
Colour Homogenisation and Photostability of Beech Wood (Fagus sylvatica L.) as Affected by Mild Steaming and Light-Induced Natural Ageing
by Zuzana Vidholdová, Gabriela Slabejová and Eva Výbohová
Forests 2025, 16(7), 1104; https://doi.org/10.3390/f16071104 - 4 Jul 2025
Viewed by 240
Abstract
This study investigates the impact of mild steaming (105 °C and 120 °C for 12 h) on the colour characteristics and chemical stability of beech wood (Fagus sylvatica L.) during natural indoor ageing. Untreated and steamed samples of mature wood and false [...] Read more.
This study investigates the impact of mild steaming (105 °C and 120 °C for 12 h) on the colour characteristics and chemical stability of beech wood (Fagus sylvatica L.) during natural indoor ageing. Untreated and steamed samples of mature wood and false heartwood were analysed for CIELAB and CIELCh colour parameters (L*, a*, b*, C*, h°) and chemical changes using ATR-FTIR spectroscopy. Steaming resulted in a significant decrease in lightness (L*) and increased a*, b*, and C* values, producing darker and more saturated reddish-brown tones. It also reduced the visual differences between mature wood and false heartwood, enhancing colour uniformity. During the light-induced ageing period, steamed wood—particularly at 105 °C—exhibited improved colour stability, maintaining chroma and hue more effectively than untreated samples. Statistically significant interaction effects between treatment, time, and tissue type revealed that the ageing-related colour changes were jointly influenced by thermal modification and the anatomical characteristics of the wood. In the FTIR spectra, the most pronounced changes were observed in the absorption bands of the aromatic skeleton and carbonyl groups (1504 and 1732 cm−1). These findings confirm that mild steaming alters the original aesthetic properties and colour of beech wood when exposed to an indoor environment. Full article
(This article belongs to the Special Issue Phenomenon of Wood Colour)
Show Figures

Figure 1

23 pages, 5263 KiB  
Article
Genome-Wide Characterization of the ANN Gene Family in Corydalis saxicola Bunting and the Role of CsANN1 in Dehydrocavidine Biosynthesis
by Han Liu, Jing Wang, Zhaodi Wen, Mei Qin, Ying Lu, Lirong Huang, Xialian Ou, Liang Kang, Cui Li, Ming Lei and Zhanjiang Zhang
Plants 2025, 14(13), 1974; https://doi.org/10.3390/plants14131974 - 27 Jun 2025
Viewed by 336
Abstract
Annexins (ANNs) are a family of calcium (Ca2+)-dependent and phospholipid-binding proteins, which are implicated in the regulation of plant growth and development as well as protection from biotic and abiotic stresses. Corydalis saxicola Bunting, an endangered benzylisoquinoline alkaloid (BIA)-rich herbaceous plant, [...] Read more.
Annexins (ANNs) are a family of calcium (Ca2+)-dependent and phospholipid-binding proteins, which are implicated in the regulation of plant growth and development as well as protection from biotic and abiotic stresses. Corydalis saxicola Bunting, an endangered benzylisoquinoline alkaloid (BIA)-rich herbaceous plant, widely used in traditional Chinese medicine, is endemic to the calciphilic karst region of China. However, whether and how ANNs are involved in the biosynthesis pathway of BIAs and/or help C. saxicola plants cope with abiotic properties, such as calcareous soils, are largely unknown. Here, nine CsANN genes were identified from C. saxicola, and they were divided into three subfamilies, namely subfamilies I, II, and IV, based on the phylogenetic tree. The CsANNs clustered into the same clade, sharing similar gene structures and conserved motifs. The nine CsANN genes were located on five chromosomes, and their expansions were mainly attributed to tandem and whole-genome duplications. The CsANN transcripts displayed organ-specific and Ca2+-responsive expression patterns across various tissues. In addition, transient overexpression assays showed that CsANN1 could positively regulate the accumulation of BIA compounds in C. saxicola leaves, probably by directly interacting with key BIA-biosynthetic-pathway enzymes or by interacting with BIA-biosynthetic regulatory factors, such as MYBs. This study sheds light on the profiles and functions of the CsANN gene family and paves the way for unraveling the molecular mechanism of BIA accumulation, which is regulated by Ca2+ through CsANNs. Full article
Show Figures

Figure 1

28 pages, 819 KiB  
Review
Chrononutrition and Energy Balance: How Meal Timing and Circadian Rhythms Shape Weight Regulation and Metabolic Health
by Claudia Reytor-González, Daniel Simancas-Racines, Náthaly Mercedes Román-Galeano, Giuseppe Annunziata, Martina Galasso, Raynier Zambrano-Villacres, Ludovica Verde, Giovanna Muscogiuri, Evelyn Frias-Toral and Luigi Barrea
Nutrients 2025, 17(13), 2135; https://doi.org/10.3390/nu17132135 - 27 Jun 2025
Viewed by 1706
Abstract
Obesity and metabolic disorders remain major global health concerns, traditionally attributed to excessive caloric intake and poor diet quality. Recent studies emphasize that the timing of meals plays a crucial role in determining metabolic health. This review explores chrononutrition, a growing field that [...] Read more.
Obesity and metabolic disorders remain major global health concerns, traditionally attributed to excessive caloric intake and poor diet quality. Recent studies emphasize that the timing of meals plays a crucial role in determining metabolic health. This review explores chrononutrition, a growing field that examines how food intake patterns interact with endogenous circadian rhythms to influence energy balance, glucose and lipid metabolism, and cardiometabolic risk. The circadian system, which includes a central clock in the suprachiasmatic nucleus and peripheral clocks in metabolic tissues, regulates physiological functions on a 24 h cycle. While light entrains the central clock, feeding schedules act as key synchronizers for peripheral clocks. Disrupting this alignment—common in modern lifestyles involving shift work or late-night eating—can impair hormonal rhythms, reduce insulin sensitivity, and promote adiposity. Evidence from clinical and preclinical studies suggests that early time-restricted eating, where food intake is confined to the morning or early afternoon, offers significant benefits for weight control, glycemic regulation, lipid profiles, and mitochondrial efficiency, even in the absence of caloric restriction. These effects are particularly relevant for populations vulnerable to circadian disruption, such as adolescents, older adults, and night-shift workers. In conclusion, aligning food intake with circadian biology represents a promising, low-cost, and modifiable strategy to improve metabolic outcomes. Integrating chrononutrition into clinical and public health strategies may enhance dietary adherence and treatment efficacy. Future large-scale studies are needed to define optimal eating windows, assess long-term sustainability, and establish population-specific chrononutritional guidelines. Full article
Show Figures

Figure 1

15 pages, 2609 KiB  
Review
Evaluation of the Circadian Rhythm Component Cipc (Clock-Interacting Pacemaker) in Leukemogenesis: A Literature Review and Bioinformatics Approach
by Leidivan Sousa da Cunha, Beatriz Maria Dias Nogueira, Flávia Melo Cunha de Pinho Pessoa, Caio Bezerra Machado, Deivide de Sousa Oliveira, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat and Caroline Aquino Moreira-Nunes
Clocks & Sleep 2025, 7(3), 33; https://doi.org/10.3390/clockssleep7030033 - 25 Jun 2025
Viewed by 516
Abstract
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), [...] Read more.
Circadian rhythms (CRs) are a key biological system regulating physiological processes such as metabolism, cell growth, DNA repair, and immunity, adapting to environmental changes like the light/dark cycle. Governed by internal clocks, it modulates gene expression through feedback loops involving Clock Genes (CGs), with the cycle initiated by CLOCK–BMAL1 and NPAS2–BMAL1 heterodimers. Disruptions in circadian rhythms have been linked to diseases including metabolic disorders, neurodegeneration, and cancer. CIPC (CLOCK-interacting pacemaker) has been studied as a negative regulator of the CLOCK–BMAL1 complex, focusing on its role in cancer, particularly leukemias. Public datasets and bioinformatics tools were used to examine CIPC gene expression in healthy patients and acute myeloid leukemia (AML) samples. Our analysis revealed significant overexpression of CIPC in AML compared to healthy tissues (p < 0.0001 ****). Additionally, survival analysis indicated significant differences in overall survival based on CIPC expression, with a log-rank test p-value = 0.014, suggesting that CIPC expression may affect overall patient survival. Altered CIPC expression may contribute to leukemogenesis by inhibiting circadian genes, which are often disrupted in leukemia. Furthermore, CIPC interacts with oncogenic pathways, including the MAPK/ERK pathway, which is essential for cell proliferation. Additional studies are needed to validate these findings and explore the detailed role of CIPC in cancer development. Full article
(This article belongs to the Section Human Basic Research & Neuroimaging)
Show Figures

Figure 1

14 pages, 1700 KiB  
Article
Delayed Viral Clearance Accompanied by Early Impaired Humoral and Virus-Specific T-Cell Response in Patients with Coronavirus Disease 2019 and Interstitial Lung Disease
by Jiaying Zhong, Juan Li, Rui Wei, Bingpeng Guo, Tingting Cui, Peiyu Huang, Zhongfang Wang, Qun Luo and Qian Han
Vaccines 2025, 13(6), 655; https://doi.org/10.3390/vaccines13060655 - 19 Jun 2025
Viewed by 462
Abstract
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence [...] Read more.
Objectives: Patients with interstitial lung disease (ILD) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are at high risk of severe coronavirus disease 2019. It is unclear whether anti-viral cellular and humoral immunity is impacted in patients with ILD in the presence of immune disorders and immunosuppressive therapy. This results in poor control of viral infections following SARS-CoV-2 infection. We aimed to highlight the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Methods: We compared viral clearance, antibody levels, and T-cell immune response between healthy controls and patients with connective tissue disease-related ILD (CTD-ILD) or interstitial pneumonia with autoimmune features (IPAF). Results: Patients with ILD exhibited a higher viral load than the control group (1.58 × 106 vs. 2.37 × 103 copies/mL, p = 0.018), as well as a significantly lower level of neutralizing antibodies against the wild-type (WT) virus (7.01 vs. 625.6, p < 0.0001) and Omicron BA.5 (7.19 vs. 128.4, p < 0.001). Similarly, a lower virus-specific T-cell (VST) immune response was observed 14 days post-symptom onset in the ILD group (CD4+ VSTs: 0.018 vs. 0.082, p = 0.005; CD8+ VSTs: 0.0008 vs. 0.047, p = 0.004). The ILD group had no other heightened inflammatory biomarkers compared with the control group. Conclusions: Our study provides novel evidence of the underlying interaction between virus clearance and host immune status and sheds light on the clinical management of patients with ILD with regard to the adjustment of anti-inflammatory therapy during SARS-CoV-2 infection. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
Show Figures

Figure 1

23 pages, 1742 KiB  
Review
Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability
by Greta Kaspute, Tatjana Ivaskiene, Arunas Ramanavicius, Simonas Ramanavicius and Urte Prentice
Pharmaceutics 2025, 17(6), 793; https://doi.org/10.3390/pharmaceutics17060793 - 18 Jun 2025
Viewed by 719
Abstract
This review examines the pharmaceutical applications of essential oils (EOs) and terpenes, highlighting their dual role as therapeutic agents and natural penetration enhancers. These volatile, hydrophobic compounds have well-documented antimicrobial, antioxidant, and anti-inflammatory properties. However, their clinical potential is limited by poor water [...] Read more.
This review examines the pharmaceutical applications of essential oils (EOs) and terpenes, highlighting their dual role as therapeutic agents and natural penetration enhancers. These volatile, hydrophobic compounds have well-documented antimicrobial, antioxidant, and anti-inflammatory properties. However, their clinical potential is limited by poor water solubility, high volatility, and sensitivity to environmental factors, including light, heat, and oxygen. To address these challenges, various advanced delivery systems have been developed to enhance stability, bioavailability, and controlled release. These systems not only protect chemical integrity but also exploit these compounds’ abilities to interact with lipid membranes, facilitating the transport of active compounds across biological barriers. Additionally, their inherent antimicrobial properties can contribute to the overall stability of formulations. The review critically examines the incorporation of terpenes and major essential oil (EO) components, such as limonene, linalool, eugenol, α-pinene, and menthol, into delivery systems, assessing their performance in enhancing drug permeability and targeting specific tissues. Current challenges and future directions in terpenes and EO-based delivery strategies are discussed, highlighting their promising role in developing multifunctional and efficient pharmaceutical formulations. Full article
Show Figures

Figure 1

15 pages, 2425 KiB  
Article
Patterns of Intra-Order Variation in Shoot Traits Are Order-Specific Along the Branch Basal Height Gradient of Larix principis-rupprechtii
by Yang Yu, Huayong Zhang, Zhongyu Wang and Zhao Liu
Forests 2025, 16(6), 1016; https://doi.org/10.3390/f16061016 - 17 Jun 2025
Viewed by 275
Abstract
Intra-order trait variation is a key driver of aboveground shoot performance at different branch basal heights. Although the basic light exposure and nutrient supply to shoots vary with branch basal height, most studies have focused on inter-order variation in shoot traits. However, how [...] Read more.
Intra-order trait variation is a key driver of aboveground shoot performance at different branch basal heights. Although the basic light exposure and nutrient supply to shoots vary with branch basal height, most studies have focused on inter-order variation in shoot traits. However, how and to what extent shoot traits change with branch basal height, as well as whether a general intra-order pattern exists among different shoot orders, remain largely unclear. We compared intra-order variation in shoot diameter, length, specific stem length (SSL), and stem tissue density (STD) across four branching orders of Larix principis-rupprechtii along a vertical height gradient of 5.5–6.0 m. We tested (a) the degree of intra-order versus intra-order variation in shoot traits along the gradient and (b) whether intra-order trait patterns and their relationship with branch basal height were consistent across the four branching orders. Specifically, we hypothesized that within a branching order, shoot traits would undergo adjustments: shoots at higher positions would focus on growth (by increasing diameter and length), whereas shoots at lower positions would enhance resource acquisition (by increasing SSL) and protection (by increasing STD). Branching order explained most of the overall variation in shoot traits, including shoot diameter and length, but accounted for only a small portion of the variation in SSL and STD. Branch basal height explained only a small fraction of intra-order shoot trait variation, which was larger within than between basal heights. Moreover, the relationships between traits and branch basal height rarely aligned with our hypotheses and varied considerably across different shoot orders. Along the complex branch basal height gradient, where multiple traits change simultaneously, shoots of different shoot orders exhibit distinct patterns of variation, leading to specific intra-order trait variation. The lack of support for our hypothesis may result from the multifaceted interactions between light availability, spatial constraints, nutrient heterogeneity, and dynamic branch-order interactions. Our findings suggest that to better understand the impact of environmental variation on shoot performance, future research should integrate a more comprehensive analysis of shoot responses to change and measure a broader range of shoot traits and environmental variables. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 2341 KiB  
Article
A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid
by Nickolas D. Polychronopoulos, Evangelos Karvelas, Andrew Tsiantis and Thanasis D. Papathanasiou
Processes 2025, 13(6), 1840; https://doi.org/10.3390/pr13061840 - 11 Jun 2025
Viewed by 381
Abstract
Fibrous biomaterials are essential in biomedical engineering, tissue engineering, and filtration due to their specific transport and mechanical properties. Fluid flow through these materials is critical for their function. However, many biological fluids exhibit non-Newtonian behavior, characterized by micro-rotational effects, which traditional models [...] Read more.
Fibrous biomaterials are essential in biomedical engineering, tissue engineering, and filtration due to their specific transport and mechanical properties. Fluid flow through these materials is critical for their function. However, many biological fluids exhibit non-Newtonian behavior, characterized by micro-rotational effects, which traditional models often overlook. The current study presents a machine learning (ML) framework for the prediction and understanding of hydraulic permeability in fibrous biomaterials with a micropolar fluid. A dataset of 1000 numerical simulations was generated by varying the micropolar fluid properties and the fiber volume fraction in a periodic porous structure with nine parallel cylindrical fibers in a square lattice. Six powerful ML algorithms were deployed: Decision Trees (DT), Random Forests (RF), XGBoost, LightGBM, Support Vector Regression (SVR), and k-Nearest Neighbors (kNN). The balance of predictive capacity to unseen data values (tracking R2 values and error metrics) with computational efficiency for all algorithms was assessed. The best-performing ML algorithm was subsequently used to interpret the decisions made by the model using Shapley Additive exPlanations (SHAP) analysis and understand the role of feature importances. The SHAP findings highlight the potential of ML in capturing complex fluid interactions and guiding the design of advanced fibrous biomaterials with optimized hydraulic permeability. Full article
(This article belongs to the Special Issue Analysis and Integration of Micropolar Fluid Systems)
Show Figures

Figure 1

19 pages, 3346 KiB  
Article
Unraveling the Nectar Secretion Pathway and Floral-Specific Expression of SWEET and CWIV Genes in Five Dandelion Species Through RNA Sequencing
by Sivagami-Jean Claude, Sunmi Park, Seong-Jun Park and SeonJoo Park
Plants 2025, 14(11), 1718; https://doi.org/10.3390/plants14111718 - 5 Jun 2025
Viewed by 517
Abstract
Taraxacum, a genus in the Asteraceae family, is widely distributed across temperate regions and plays a vital ecological role by providing nectar and pollen to pollinators during the early flowering season. Floral nectar is a key reward that plants use to attract [...] Read more.
Taraxacum, a genus in the Asteraceae family, is widely distributed across temperate regions and plays a vital ecological role by providing nectar and pollen to pollinators during the early flowering season. Floral nectar is a key reward that plants use to attract pollinators, and its production is tightly regulated by genes such as SWEET sugar transporters and CELL WALL INVERTASE (CWIN), which govern sugar efflux and hydrolysis. Despite their ecological importance, the molecular mechanisms underlying nectar secretion in Taraxacum remain poorly understood. In this study, we performed RNA sequencing of flower tissues from five Taraxacum species—T. coreanum, T. monogolicum, T. ohwianum, T. hallaisanense, and T. officinale—to investigate the expression of nectar-related genes. De novo transcriptome assembly revealed that T. coreanum had the highest unigene count (74,689), followed by T. monogolicum (69,234), T. ohwianum (64,296), T. hallaisanense (59,599), and T. officinale (58,924). Functional annotation and phylogenetic analyses identified 17 putative SWEET and 18 CWIN genes across the five species. Differential gene expression analysis highlighted tarSWEET9 and tarCWIN4 as consistently up-regulated during the flowering stage. Quantitative PCR in T. officinale further validated that tarSWEET9, tarCWIN4, tarCWIN6, and tarSPAS2 show significant expression during floral development but are down-regulated after pollination. These genes are likely central to the regulation of nectar secretion in response to pollination cues. Our findings suggest that T. officinale may have evolved to have an efficient, pollinator-responsive nectar secretion system, contributing to its global adaptability. This study sheds light on how pollinator interactions influence gene expression patterns and may drive evolutionary divergence among Taraxacum species. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

54 pages, 2781 KiB  
Review
Do We Know Enough About the Safety Profile of Silver Nanoparticles in Oncology? A Focus on Novel Methods and Approaches
by Peter Takáč, Radka Michalková, Martina Čižmáriková, Zdenka Bedlovičová, Ľudmila Balážová, Štefánia Laca Megyesi, Zuzana Mačeková, Gabriela Takáčová, Almudena Moreno-Borrallo, Eduardo Ruiz-Hernandez, Luka Isakov and Peter Takáč
Int. J. Mol. Sci. 2025, 26(11), 5344; https://doi.org/10.3390/ijms26115344 - 2 Jun 2025
Viewed by 875
Abstract
Silver nanoparticles (AgNPs) have emerged as promising agents in cancer diagnostics and/or therapy, demonstrating a lot of possible pharmacological actions. However, understanding the pharmacokinetics and safety profiles of nanoparticles, which is crucial for their clinical application, still raises many questions. Studies indicate that [...] Read more.
Silver nanoparticles (AgNPs) have emerged as promising agents in cancer diagnostics and/or therapy, demonstrating a lot of possible pharmacological actions. However, understanding the pharmacokinetics and safety profiles of nanoparticles, which is crucial for their clinical application, still raises many questions. Studies indicate that AgNPs can accumulate in tumour tissues, improving drug delivery and specificity. However, their interaction with biological systems necessitates thorough safety evaluations. Classical methods for assessing AgNPs’ safety include cytotoxicity assays, genotoxicity tests, and histopathological examinations. However, novel techniques are emerging, such as advanced imaging and biomarker analysis, offering more precise toxicity assessments. Prediction models, including computational simulations and in silico analyses, are being developed to forecast AgNPs’ toxicity profiles. These models aim to reduce reliance on animal testing and expedite the evaluation process. To mitigate potential risks associated with nanoparticle-based therapies, strategies such as surface modification, controlled release systems, and targeted delivery are being explored. These methods aim to enhance therapeutic efficacy while minimizing adverse effects. The main aim of this review article is to describe AgNPs from the point of view of their pharmacokinetic/toxicokinetic profile in the light of modern knowledge. Special attention will be given to novel methods for assessing the safety and toxicity profiles of AgNPs, providing insights into their interactions with cancer therapies and their potential clinical applications. Full article
(This article belongs to the Special Issue Nanomaterials and Biomaterials in Biomedicine Application)
Show Figures

Figure 1

24 pages, 1249 KiB  
Review
Bridging Immune Evasion and Vascular Dynamics for Novel Therapeutic Frontiers in Hepatocellular Carcinoma
by Sulin Wu, Namrata Anand, Zhoubo Guo, Mingyang Li, Marcos Santiago Figueroa, Lauren Jung, Sarah Kelly and Joseph W. Franses
Cancers 2025, 17(11), 1860; https://doi.org/10.3390/cancers17111860 - 31 May 2025
Viewed by 765
Abstract
Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally, driven by chronic liver disease and a complex tumor microenvironment (TME). Recent advances in spatial omics, single-cell analyses, and AI-driven digital pathology have shed light on the intricate heterogeneity of HCC, highlighting [...] Read more.
Hepatocellular carcinoma (HCC) remains one of the most lethal cancers globally, driven by chronic liver disease and a complex tumor microenvironment (TME). Recent advances in spatial omics, single-cell analyses, and AI-driven digital pathology have shed light on the intricate heterogeneity of HCC, highlighting key roles for immune suppression, angiogenesis, and fibrosis in tumor progression. This review synthesizes current epidemiological trends, noting a shift from viral hepatitis to metabolic syndrome as a primary etiology in Western populations, and elucidates how TME components—such as tumor-associated macrophages, cancer-associated fibroblasts, vascular endothelial cells, and immunosuppressive cytokines—contribute to resistance against conventional therapies. We detail the evolution of immunotherapeutic strategies from monotherapy to combination regimens, including dual immune checkpoint blockade and the integration of antiangiogenic agents. Emerging circulating and tissue-based biomarkers offer promise for enhanced patient stratification and real-time monitoring of treatment responses. Collectively, these innovations herald a paradigm shift toward TME-directed precision oncology in HCC, emphasizing the need for multi-targeted approaches to synergistically modulate interacting cellular constituents and ultimately improve clinical outcomes. Full article
(This article belongs to the Special Issue The Tumor Microenvironment: Interplay Between Immune Cells)
Show Figures

Figure 1

21 pages, 5231 KiB  
Article
Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance
by Walhan Alshaer, Shrouq Alsotari, Nour Aladaileh, Alaa Rifai, Aya Khalaf, Baidaa AlQuaissi, Bushra Sabbah, Hamdi Nsairat and Fadwa Odeh
Pharmaceutics 2025, 17(6), 729; https://doi.org/10.3390/pharmaceutics17060729 - 31 May 2025
Viewed by 1450
Abstract
Background/Objectives: Clarithromycin (CLA) is a widely used antibiotic effective against a variety of bacterial strains, making it a common treatment for respiratory, skin, and soft tissue infections. Moreover, extensive studies have confirmed the anticancer activity of CLA against different cancers, particularly when combined [...] Read more.
Background/Objectives: Clarithromycin (CLA) is a widely used antibiotic effective against a variety of bacterial strains, making it a common treatment for respiratory, skin, and soft tissue infections. Moreover, extensive studies have confirmed the anticancer activity of CLA against different cancers, particularly when combined with conventional therapies. This study investigates the potential anticancer and antibacterial activities of developed CLA-loaded bovine serum albumin nanoparticles (CLA-BSA NPs), designed with optimized physicochemical properties to enhance drug delivery. Methods: The CLA-BSA NPs were synthesized using the desolvation method, followed by drug loading. Characterization techniques, including Dynamic Light Scattering (DLS), Fourier-Transform Infrared (FTIR) Spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Thermogravimetric Analysis (TGA). Results: The results confirmed that CLA interacts with BSA NPs through van der Waals forces. The performance of drug–nanocarrier interaction was further assessed through in vitro drug release studies. The release studies demonstrated that CLA had a robust release profile in reductive media, with a cumulative release of 50.9% in acetate buffer (pH 5.0) supplemented with 10 mM glutathione (GSH). Further biological activity assays were also conducted, including cell viability assays (MTT) and antibacterial activity tests. CLA-BSA NPs demonstrated anticancer activity against the lung cancer (A549) cell line, while showing minimal cytotoxicity on normal human dermal fibroblast (HDF) cells. The antibacterial activity was assessed against Streptococcus pyogenes, Bacillus cereus, and Staphylococcus aureus. Among the tested strains, Bacillus cereus exhibited the highest sensitivity, with a minimum inhibitory concentration (MIC) of 0.032 µg/mL, compared to 0.12 µg/mL for Staphylococcus aureus and >32 µg/mL for Streptococcus pyogenes. Conclusions: In conclusion, these findings highlight CLA-BSA NPs as a promising drug delivery system that enhances the anticancer and antibacterial efficacy of CLA. Full article
(This article belongs to the Special Issue Advances in Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

13 pages, 5126 KiB  
Article
Ultrastructure Analysis and Molecular Characterization of Trichomitus batrachorum (Parabasalia; Hypotrichomonadida) Isolated from Liver of Ameiva ameiva (Reptilia: Squamata)
by Lina Maria Pelaez Cortes, Júlia de Castro Ascenção, Rhagner Bonono dos Reis, Gabriela Peixoto, Gabriel Gazzoni Araújo Gonçalves, Jana Messias Sandes, Fábio André Brayner dos Santos, Luiz Carlos Alves, Felipe Arley Costa Pessoa, Claudia María Ríos Velásquez and Helena Lúcia Carneiro Santos
Microorganisms 2025, 13(6), 1286; https://doi.org/10.3390/microorganisms13061286 - 31 May 2025
Viewed by 526
Abstract
Trichomitus batrachorum is a species of trichomonad that has gained attention due to its ecological importance and potential interactions with various hosts, such as amphibians (anurans) and reptiles (lizards and chelonians), where it has been recorded in the gastrointestinal tract of these vertebrates, [...] Read more.
Trichomitus batrachorum is a species of trichomonad that has gained attention due to its ecological importance and potential interactions with various hosts, such as amphibians (anurans) and reptiles (lizards and chelonians), where it has been recorded in the gastrointestinal tract of these vertebrates, specifically in their feces. Molecular studies have placed this flagellated protist within the Metamonada clade. Unlike parabasalids that inhabit endothermic mammals in relatively stable temperature conditions, protists associated with ectothermic reptiles are subject to significant temperature fluctuations. The ability of T. batrachorum to thrive in the variable temperatures encountered by reptiles suggests that its parasitism may remain largely unaffected by climate change. In our study, we detected and characterized T. batrachorum from the liver tissue of the lizard species Ameiva ameiva, collected in Presidente Figueiredo Municipality, Amazonas State, Brazil. The identification of T. batrachorum was confirmed by cultivation technique, light microscopy, scanning electron microscopy and transmission electron microscopy for ultrastructural analyses, and sequencing the 5.8S rDNA (region ITS1- ITS2) and 18S rRNA (ribosomal RNA) genes. One potential interpretation for this finding is that the flagellates may have migrated from the intestine to the bile duct, ultimately reaching the liver. This is the first successful characterization of T. batrachorum in the liver of a lizard, and provides a solid foundation for further research to elucidate the potential pathogenicity of this flagellate and the role of A. ameiva in the epidemiology of parabasalids in other animal species. Full article
(This article belongs to the Topic Advances in Infectious and Parasitic Diseases of Animals)
Show Figures

Figure 1

Back to TopTop