A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometry and Dataset Generation
2.2. Data Preprocessing
2.3. Machine Learning (ML) Models and Performance
2.4. Model Interpretability
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CFD | Computational Fluid Dynamics |
CV | Cross Validation |
DT | Decision Trees |
kNN | k-Nearest Neighbors |
LightGBM | Light Gradient-Boosting Machine |
MAE | Mean Absolute Error |
ML | Machine learning |
MSE | Mean Squared Error |
OpenFOAM | Open Field Operation And Manipulation |
PHAs | Polyhydroxyalkanoates |
PLAs | Polylactides |
RF | Random Forest |
RMSE | Root Mean Squared Error |
SHAP | Shapley Additive exPlanations |
SVR | Support Vector Regression |
XAI | eXplainable Artificial Intelligence |
XGBoost | eXtreme Gradient Boosting |
References
- Mamidi, N.; García, R.G.; Martínez, J.D.H.; Briones, C.M.; Ramos, A.M.M.; Tamez, M.F.L.; Del Valle, B.G.; Segura, F.J.M. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater. Sci. Eng. 2022, 8, 3690–3716. [Google Scholar] [CrossRef]
- Ma, L.; Dong, W.; Lai, E.; Wang, J. Silk fibroin-based scaffolds for tissue engineering. Front. Bioeng. Biotechnol. 2024, 12, 1381838. [Google Scholar] [CrossRef]
- Gough, C.R.; Callaway, K.; Spencer, E.; Leisy, K.; Jiang, G.; Yang, S.; Hu, X. Biopolymer-based filtration materials. ACS Omega 2021, 6, 11804–11812. [Google Scholar] [CrossRef] [PubMed]
- Azimi, B.; Maleki, H.; Zavagna, L.; De la Ossa, J.G.; Linari, S.; Lazzeri, A.; Danti, S. Bio-based electrospun fibers for wound healing. J. Funct. Biomater. 2020, 11, 67. [Google Scholar] [CrossRef]
- Celikkin, N.; Rinoldi, C.; Constantini, M.; Trombetta, M.; Rainer, A.; Święszkowski, W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. Mater. Sci. Eng. C 2017, 78, 1277–1299. [Google Scholar] [CrossRef]
- Hamerman, D.; Rosenberg, L.C.; Schubert, M. Diarthrodial joints revisited. J. Bone Jt. Surg. 1970, 52, 725. [Google Scholar] [CrossRef]
- Hernandez, J.L.; Woodrow, K.A. Medical applications of porous biomaterials: Features of porosity and tissue-specific implications for biocompatibility. Adv. Healthc. Mater. 2022, 11, 2102087. [Google Scholar] [CrossRef]
- Babitha, S.; Rachita, L.; Karthikeyan, K.; Shoba, E.; Janani, I.; Poornima, B.; Sai, K.P. Electrospun protein nanofibers in healthcare: A review. Int. J. Pharm. 2017, 523, 52–90. [Google Scholar] [CrossRef]
- Karvelas, E.; Sofiadis, G.; Papathanasiou, T.; Sarris, I. Effect of micropolar fluid properties on the blood flow in a human carotid model. Fluids 2020, 5, 125. [Google Scholar] [CrossRef]
- Tandon, P.N.; Jaggi, S. A polar model for synovial fluid with reference to human joints. Int. J. Mech. Sci. 1979, 21, 161–169. [Google Scholar] [CrossRef]
- Benos, L.; Ninos, G.; Polychronopoulos, N.D.; Exomanidou, M.-A.; Sarris, I. Natural convection of blood-magnetic iron oxide bio-nanofluid in the context of hyperthermia treatment. Computation 2022, 10, 190. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of micropolar fluids. J. Math. Mech. 1966, 16, 1–18. [Google Scholar] [CrossRef]
- Aslani, K.-E.; Benos, L.; Tzirtzilakis, E.; Sarris, I.E. Micromagnetorotation of MHD micropolar flows. Symmetry 2020, 12, 148. [Google Scholar] [CrossRef]
- Aslani, K.-E.; Tzirtzilakis, E.; Sarris, I.E. On the mechanics of conducting micropolar fluids with magnetic particles: Vorticity-microrotation difference. Phys. Fluids 2024, 36, 102006. [Google Scholar] [CrossRef]
- Ferland, P.; Guittard, D.; Trochu, F. Concurrent methods for permeability measurement in resin transfer molding. Polym. Compos. 1996, 17, 149–158. [Google Scholar] [CrossRef]
- Parnas, R.S.; Flynn, K.M.; Dal-Favero, M.E. A permeability database for composites manufacturing. Polym. Compos. 1997, 18, 623–633. [Google Scholar] [CrossRef]
- Gebart, B.R.; Lidström, P. Measurement of in-plane permeability of anisotropic fiber reinforcements. Polym. Compos. 1996, 17, 43–51. [Google Scholar] [CrossRef]
- Happel, J. Viscous flow relative to arrays of cylinders. AIChE J. 1959, 5, 174–177. [Google Scholar] [CrossRef]
- Gebart, B.R. Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 1992, 26, 1100–1133. [Google Scholar] [CrossRef]
- Tamayol, A.; Bahrami, M. Analytical determination of viscous permeability of fibrous porous media. Int. J. Heat. Mass. Transf. 2009, 52, 2407–2414. [Google Scholar] [CrossRef]
- Papathanasiou, T.D. A structure-oriented micro mechanical model for viscous flow through square arrays of fibre clusters. Compos. Sci. Technol. 1996, 56, 1055–1069. [Google Scholar] [CrossRef]
- Chen, X.; Papathanasiou, T.D. On the variability of the Kozeny constant for saturated flow across unidirectional disordered fiber arrays. Compos. Part A Appl. Sci. Manuf. 2006, 37, 836–846. [Google Scholar] [CrossRef]
- Chen, X.; Papathanasiou, T.D. The transverse permeability of disordered fiber arrays: A statistical correlation in terms of the mean nearest interfiber spacing. Transp. Porous Media 2008, 71, 233–351. [Google Scholar] [CrossRef]
- Erisken, C.; Tsiantis, A.; Papathanasiou, T.D.; Karvelas, E.G. Collagen fibril diameter distribution affects permeability of ligament tissue: A computational study on healthy and injured tissues. Comput. Methods Programs Biomed. 2020, 196, 105554. [Google Scholar] [CrossRef]
- Karvelas, E.G.; Tsiantis, A.; Papathanasiou, T.D. Effect of micropolar fluid properties on the hydraulic permeability of fibrous biomaterials. Comput. Methods Programs Biomed. 2020, 185, 105135. [Google Scholar] [CrossRef]
- Zade, A.; Neogi, S.; Kuppusamy, R.R.P. Effect of process and material parameters on the permeabilities of reinforcement mats: Experimentations and machine learning techniques. Fibers Polym. 2024, 25, 2285–2302. [Google Scholar] [CrossRef]
- Caglar, B.; Broggi, G.; Ali, M.A.; Orgéas, L.; Michaud, V. Deep learning accelerated prediction of the permeability of fibrous microstructures. Compos. Part A Appl. Sci. Manuf. 2022, 158, 106973. [Google Scholar] [CrossRef]
- Froning, D.; Hoppe, E.; Peters, R. The applicability of machine learning methods to the characterization of fibrous gas diffusion layers. Appl. Sci. 2023, 13, 6981. [Google Scholar] [CrossRef]
- Schmidt, T.; Natarajan, D.K.; Duhovic, M.; Cassola, S.; Nuske, M.; May, D. Numerical data generation for building machine learning models for permeability estimation of fibrous structures. Polym. Compos. 2025. [Google Scholar] [CrossRef]
- Sarifuddin; Chakravarty, S.; Mandal, P.K. Heat transfer to micropolar fluid flowing through an irregular arterial constriction. Int. J. Heat Mass Transf. 2013, 56, 538–551. [Google Scholar] [CrossRef]
- Weller, H.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 2010, 12, 620–631. [Google Scholar] [CrossRef]
- Ansari, S.; Nassif, A.B.; Mahmoud, S.; Majzoub, S.; Almajali, E.; Jarndal, A.; Bonny, T.; Alnajjar, K.A.; Hussain, A. Impact of outliers on regression and classification models: An empirical analysis. In Proceedings of the International Conference Developments in eSystems Engineering (DeSE), Khorfakkan, United Arab Emirates, 6–8 November 2024. [Google Scholar]
- Mazarei, A.; Sousa, R.; Mendes-Moreira, J.; Molchanov, S.; Ferreira, H.M. Online boxplot derived outlier detection. Int. J. Data Sci. Anal. 2025, 19, 83–97. [Google Scholar] [CrossRef]
- Seaborn: Statistical Data Visualization. Available online: https://seaborn.pydata.org/ (accessed on 15 March 2025).
- Ali, T.; Onyelowe, K.C.; Mahmood, M.S.; Qureshi, M.Z.; Kahla, N.B.; Rezzoug, A.; Deifalla, A. Advanced and hybrid machine learning techniques for predicting compressive strength in palm oil fuel ash-modified concrete with SHAP analysis. Sci. Rep. 2025, 15, 4997. [Google Scholar] [CrossRef] [PubMed]
- Drobnič, F.; Kos, A.; Pustišek, M. On the interpretability of machine learning models and experimental feature selection in case of multicollinear data. Electronics 2020, 9, 761. [Google Scholar] [CrossRef]
- Karakasidis, T.E.; Sofos, F.; Tsonos, C. The electrical conductivity of ionic liquids: Numerical and analytical machine learning approaches. Fluids 2022, 7, 321. [Google Scholar] [CrossRef]
- Sofos, F.; Papakonstantinou, C.G.; Valasaki, M.; Karakasidis, T.E. Fiber-reinforced polymer confined concrete: Data-driven predictions of compressive strength utilizing machine learning techniques. Appl. Sci. 2023, 13, 567. [Google Scholar] [CrossRef]
- Kumar, A.; Arora, H.C.; Kappor, N.R.; Mohammed, M.A.; Kumar, K.; Majumdar, A.; Thinnukool, O. Compressive strength prediction of lightweight concrete: Machine learning models. Sustainability 2022, 14, 2404. [Google Scholar] [CrossRef]
- Hemdan, E.E.-D.; Alshathri, S.; Elwahsh, H.; Ghoneim, O.A.; Sayed, A. MAL-XSEL: Enhancing industrial web malware detection with an explainable stacking ensemble model. Processes 2025, 13, 1329. [Google Scholar] [CrossRef]
- Polychronopoulos, N.D.; Moustris, K.; Karakasidis, T.; Sikora, J.; Krasinskyi, V.; Sarris, I.E.; Vlachopoulos, J. Machine learning for screw design in single-screw extrusion. Polym. Eng. Sci. 2025, 65, 2607–2623. [Google Scholar] [CrossRef]
- Polychronopoulos, N.D.; Sarris, I.; Vlachopoulos, J. Implementation of machine learning in flat die extrusion of polymers. Molecules 2025, 30, 1879. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn:machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- DMLC XGBoost Scalable and Flexible Gradient Boosting. Available online: https://xgboost.ai/ (accessed on 18 March 2025).
- LightGBM. Available online: https://lightgbm.readthedocs.io/en/stable/ (accessed on 18 March 2025).
- Antoniadi, A.M.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.A.; Mooney, C. Current challenges and future opportunities for XAI in machine learning-based clinical decision support systems: A systematic review. Appl. Sci. 2021, 11, 5088. [Google Scholar] [CrossRef]
- Štrumbelj, E.; Kononenko, I. An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 2010, 11, 1–18. [Google Scholar]
- Feng, D.-C.; Wang, W.-J.; Mangalathu, S.; Taciroglu, E. Interpretable XGBoost-SHAP machine-learning model for shear strength prediction of squat RC walls. J. Struct. Eng. 2021, 147, 04021173. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning. 2020. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 12 April 2025).
- Wong, W.K.M.; Thorat, V.; Joglekar, M.V.; Dong, C.X.; Lee, H.; Chew, Y.V.; Bhave, A.; Hawthorne, W.J.; Engin, F.; Pant, A.; et al. Analysis of half a billion datapoints across ten machine-learning algorithms identifies key elements associated with insulin transcription in human pancreatic islet cells. Front. Endocrinol. 2022, 13, 853863. [Google Scholar] [CrossRef] [PubMed]
- Mu, N.; Rezaeitaleshmahalleh, M.; Lyu, Z.; Wang, M.; Tang, J.; Strother, C.M.; Gemmete, J.J.; Pandey, A.S.; Jiang, J. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms? Biomed. Phys. Eng. Express 2023, 9, 037001. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Bagchi, P. Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks. J. R. Soc. Interface 2022, 19, 20220306. [Google Scholar] [CrossRef] [PubMed]
- Yazdchi, K.; Srivastava, S.; Luding, S. Micro-macro relations for flow through random arrays of cylinders. Compos. Part A Appl. Sci. Manuf. 2012, 43, 2007–2020. [Google Scholar] [CrossRef]
- Antoine, E.E.; Vlachos, P.P.; Rylander, M.N. Review of collagen I hydrogels for bioengineered tissue microenvironments: Characterization of mechanics, structures and transport. Tissue Eng. Part B Rev. 2014, 20, 683–696. [Google Scholar] [CrossRef]
- Seekell III, R.P.; Dever, R.; Zhu, Y. Control hydrogel-hyaluronic acid aggregation toward the design of biomimetic superlubricants. Biomacromolecules 2014, 15, 2760–2768. [Google Scholar] [CrossRef]
- Rademakers, T.; Horvath, J.M.; van Blitterswijk, C.A.; LaPointe, V.L.S. Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. J. Tissue Eng. Regen. Med. 2019, 13, 1815–1829. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Miri, Z.; Haugen, H.J.; Moghanian, A.; Loca, D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J. Tissue Eng. 2023, 14, 20417314231172573. [Google Scholar] [CrossRef] [PubMed]
- Polychronopoulos, N.D.; Sarris, I.E.; Vlachopoulos, J. A viscous sintering model for pore shrinkage in packing of cylinders. Rheol. Acta 2021, 60, 397–408. [Google Scholar] [CrossRef]
- Kerr-Phillips, T.E.; Woehling, V.; Agniel, R.; Nguyen, G.T.M.; Vidal, F.; Kilmartin, P.; Plesse, C.; Travas-Sejdic, J. Electrospun rubber fibre mats with electrochemically controllable pore sizes. J. Mater. Chem. B 2015, 3, 4249. [Google Scholar] [CrossRef]
Feature/Target | Description | Notation | Min–Max Value Range |
---|---|---|---|
Feature | Solid volume fraction | 0.1~0.6 | |
Feature | Dimensionless spin-gradient viscosity | 0.5~100 | |
Feature | Dimensionless micro inertia | 1~100 | |
Feature | Dimensionless vortex viscosity | 0.5~100 | |
Target | Hydraulic permeability percentage difference | −0.672~20.14 |
Machine Learning Mode | Description |
---|---|
Decision Trees (DT) | Tree-based model. Predictions are carried out based on feature values that are split into branches. Good interpretability but susceptible to overfitting. |
k-Nearest Neighbors (kNN) | A non-parametric model. Predictions are made by considering the number of nearest neighbors using distances. Relatively slow on larger datasets. Works generally well with datasets of low dimensionality and good distribution. |
Light Gradient Boosting Machine (LightGBM) | Builds upon decision trees by sequential tree addition. Can handle large datasets and missing values. Needs careful tuning to avoid overfitting with small datasets. |
Random Forest (RF) | Combined predictions are based on many decision trees in parallel. Generalizes well to unseen data and can remedy overfitting. Easy to use and may handle non-linear interactions between features. |
Support Vector Regression (SVR) | Extension of Support Vector Machines (SVM). The model fits a line within a margin tolerance (epsilon-insensitive zone). Can capture non-linear relationships using kernel functions. |
eXtreme Gradient Boosting (XGBoost) | Combines multiple decision trees in a sequential manner to build a more accurate and robust model. Automatic handling of missing values. Highly efficient for structured data. |
ML Model | MAE | MSE | RMSE | |
---|---|---|---|---|
DT | 0.993 | 0.0488 | 0.0255 | 0.1597 |
RF | 0.999 | 0.0412 | 0.0132 | 0.1152 |
XGBoost | 0.991 | 0.1682 | 0.0554 | 0.2366 |
LightGBM | 0.990 | 0.1735 | 0.0975 | 0.3234 |
SVR | 0.998 | 0.0563 | 0.0164 | 0.1356 |
kNN | 0.982 | 0.3362 | 0.2556 | 0.5599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polychronopoulos, N.D.; Karvelas, E.; Tsiantis, A.; Papathanasiou, T.D. A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid. Processes 2025, 13, 1840. https://doi.org/10.3390/pr13061840
Polychronopoulos ND, Karvelas E, Tsiantis A, Papathanasiou TD. A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid. Processes. 2025; 13(6):1840. https://doi.org/10.3390/pr13061840
Chicago/Turabian StylePolychronopoulos, Nickolas D., Evangelos Karvelas, Andrew Tsiantis, and Thanasis D. Papathanasiou. 2025. "A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid" Processes 13, no. 6: 1840. https://doi.org/10.3390/pr13061840
APA StylePolychronopoulos, N. D., Karvelas, E., Tsiantis, A., & Papathanasiou, T. D. (2025). A Machine Learning Framework for the Hydraulic Permeability of Fibrous Biomaterials with a Micropolar Bio-Fluid. Processes, 13(6), 1840. https://doi.org/10.3390/pr13061840