Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BSA NPs
2.3. Determination of Encapsulation Efficiency (EE) and Drug-Loading (DL) Capacity
2.4. Size, Polydispersity Index, and Zeta Potential
2.4.1. Thermogravimetric Analysis (TGA)
2.4.2. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4.3. X-Ray Diffraction (XRD) Analysis
2.4.4. Transmission Electron Microscopy (TEM)
2.4.5. Stability Testing
2.5. In Vitro Release
2.6. Anticancer Activity: Cell Viability Assay (MTT)
2.7. Antibacterial Activity Assay
2.7.1. Bacterial Strains and Growth Conditions
2.7.2. Antibacterial Activity: Disk Diffusion Test
2.7.3. Antibacterial Activity: Minimum Inhibitory Concentrations (MICs)
3. Results and Discussion
3.1. Preparation of BSA NPs
3.2. Evaluation of the Prepared Nanoparticles
3.2.1. Thermogravimetric Analysis (TGA)
3.2.2. Fourier-Transform Infrared (FTIR) Spectroscopy
3.2.3. X-Ray Diffraction (XRD) Analysis
3.2.4. Stability Testing
3.3. In Vitro Release
3.4. Cell Viability Assay (MTT)
3.5. Antibacterial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singhal, M.; Agrawal, M.; Bhavna, K.; Gondkar, K.S.; Sethiya, N.K.; Joshi, K.; Kumar, R.; Rai, U.; Bhargava, S.; Rana, V.S. Macrolide antibiotics. In Antibiotics-Therapeutic Spectrum and Limitations; Elsevier: Amsterdam, The Netherlands, 2023; pp. 167–181. [Google Scholar]
- Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins 2021, 13, 347. [Google Scholar] [CrossRef]
- Mohammadi, G.; Nokhodchi, A.; Barzegar-Jalali, M.; Lotfipour, F.; Adibkia, K.; Ehyaei, N.; Valizadeh, H. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf. B Biointerfaces 2011, 88, 39–44. [Google Scholar] [CrossRef]
- Azhdarzadeh, M.; Lotfipour, F.; Zakeri-Milani, P.; Mohammadi, G.; Valizadeh, H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv. Pharm. Bull. 2012, 2, 17. [Google Scholar]
- Siraj, E.A.; Yayehrad, A.T.; Belete, A. How combined macrolide nanomaterials are effective against resistant pathogens? A comprehensive review of the literature. Int. J. Nanomed. 2023, 18, 5289–5307. [Google Scholar] [CrossRef]
- Kohno, Y. Chapter 6—Pharmacokinetics and Metabolism of Macrolides. In Macrolide Antibiotics, 2nd ed.; Ōmura, S., Ed.; Academic Press: San Diego, CA, USA, 2003; pp. 327–361. [Google Scholar]
- Ramaiah, B.; Nagaraja, S.H.; Kapanigowda, U.G.; Boggarapu, P.R.; Subramanian, R. High azithromycin concentration in lungs by way of bovine serum albumin microspheres as targeted drug delivery: Lung targeting efficiency in albino mice. DARU J. Pharm. Sci. 2016, 24, 14. [Google Scholar] [CrossRef]
- Gilhotra, R.M.; Nagpal, K.; Mishra, D.N. Azithromycin novel drug delivery system for ocular application. Int. J. Pharm. Investig. 2011, 1, 22–28. [Google Scholar] [CrossRef]
- Valizadeh, H.; Mohammadi, G.; Ehyaei, R.; Milani, M.; Azhdarzadeh, M.; Zakeri-Milani, P.; Lotfipour, F. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Die Pharm.-Int. J. Pharm. Sci. 2012, 67, 63–68. [Google Scholar]
- Aljihani, S.A.; Alehaideb, Z.; Alarfaj, R.E.; Alghoribi, M.F.; Akiel, M.A.; Alenazi, T.H.; Al-Fahad, A.J.; Al Tamimi, S.M.; Albakr, T.M.; Alshehri, A. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J. Biol. Sci. 2020, 27, 3065–3071. [Google Scholar] [CrossRef]
- Shunmugaperumal, T.; Kaur, V. In vitro anti-inflammatory and antimicrobial activities of azithromycin after loaded in chitosan-and tween 20-based oil-in-water macroemulsion for acne management. AAPS Pharmscitech 2016, 17, 700–709. [Google Scholar] [CrossRef]
- Ji, Q.; Zhu, H.; Qin, Y.; Zhang, R.; Wang, L.; Zhang, E.; Zhou, X.; Meng, R. GP60 and SPARC as albumin receptors: Key targeted sites for the delivery of antitumor drugs. Front. Pharmacol. 2024, 15, 1329636. [Google Scholar] [CrossRef]
- Abbas, M.; Gururani, M.A.; Ali, A.; Bajwa, S.; Hassan, R.; Batool, S.W.; Imam, M.; Wei, D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024, 29, 4914. [Google Scholar] [CrossRef]
- Pfab, C.; Schnobrich, L.; Eldnasoury, S.; Gessner, A.; El-Najjar, N. Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers 2021, 13, 3193. [Google Scholar] [CrossRef]
- Ishimatsu, Y.; Kadota, J.; Iwashita, T.; Nagata, T.; Ishii, H.; Shikuwa, C.; Kaida, H.; Mukae, H.; Kohno, S. Macrolide antibiotics induce apoptosis of human peripheral lymphocytes in vitro. Int. J. Antimicrob. Agents 2004, 24, 247–253. [Google Scholar] [CrossRef]
- Amani, N.; Shokrzadeh, M.; Shaki, F. Clarithromycin effectively enhances doxorubicin-induced cytotoxicity and apoptosis in MCF7 cells through dysregulation of autophagy. Adv. Med. Sci. 2020, 65, 235–243. [Google Scholar] [CrossRef]
- Kikuchi, T.; Hagiwara, K.; Honda, Y.; Gomi, K.; Kobayashi, T.; Takahashi, H.; Tokue, Y.; Watanabe, A.; Nukiwa, T. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J. Antimicrob. Chemother. 2002, 49, 745–755. [Google Scholar] [CrossRef]
- Yatsunami, J.; Turuta, N.; Wakamatsu, K.; Hara, N.; Hayashi, S. Clarithromycin is a potent inhibitor of tumor-induced angiogenesis. Res. Exp. Med. Z. Fur Die Gesamte Exp. Med. Einschl. Exp. Chir. 1997, 197, 189–197. [Google Scholar] [CrossRef]
- Hamada, K.; Mikasa, K.; Yunou, Y.; Kurioka, T.; Majima, T.; Narita, N.; Kita, E. Adjuvant effect of clarithromycin on chemotherapy for murine lung cancer. Chemotherapy 2000, 46, 49–61. [Google Scholar] [CrossRef]
- Lappin, G.; Shishikura, Y.; Jochemsen, R.; Weaver, R.J.; Gesson, C.; Houston, J.B.; Oosterhuis, B.; Bjerrum, O.J.; Grynkiewicz, G.; Alder, J. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur. J. Pharm. Sci. 2011, 43, 141–150. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, N.; Gupta, S. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety. RSC Adv. 2016, 6, 76621–76631. [Google Scholar] [CrossRef]
- Kouchakzadeh, H.; Shojaosadati, S.A.; Shokri, F. Efficient loading and entrapment of tamoxifen in human serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem. Eng. Res. Des. 2014, 92, 1681–1692. [Google Scholar] [CrossRef]
- Khan, N.W.; Hassan, F.; Naqvi, B.S.; Hasan, S.M.F. Antimicrobial activity of Erythromycin and Clarithromycin against clinical isolates of Escherichia coli, Staphylococcus aureus, Klebsiella and Proteus by disc diffusion method. Pak. J. Pharm. Sci 2011, 24, 25–29. [Google Scholar]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Schön, T.; Werngren, J.; Machado, D.; Borroni, E.; Wijkander, M.; Lina, G.; Mouton, J.; Matuschek, E.; Kahlmeter, G.; Giske, C. Antimicrobial susceptibility testing of Mycobacterium tuberculosis complex isolates–the EUCAST broth microdilution reference method for MIC determination. Clin. Microbiol. Infect. 2020, 26, 1488–1492. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-based nanoparticles as drug delivery systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Zhao, S.; Shao, T.; Cheng, Y. Human serum albumin (HSA) nanoparticles stabilized with intermolecular disulfide bonds. Chem. Commun. 2013, 49, 2234–2236. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Shojaosadati, S.A.; Morshedi, D.; Mirzazadeh, N.; Arpanaei, A. The effects of organic solvents on the physicochemical properties of human serum albumin nanoparticles. Iran. J. Biotechnol. 2016, 14, 45. [Google Scholar] [CrossRef]
- Tanjung, Y.P.; Dewi, M.K.; Gatera, V.A.; Barliana, M.I.; Joni, I.M.; Chaerunisaa, A.Y. Factors affecting the synthesis of bovine serum albumin nanoparticles using the desolvation method. Nanotechnol. Sci. Appl. 2024, 17, 21–40. [Google Scholar] [CrossRef]
- Dachraoui, W.; Henninen, T.R.; Keller, D.; Erni, R. Multi-step atomic mechanism of platinum nanocrystals nucleation and growth revealed by in-situ liquid cell STEM. Sci. Rep. 2021, 11, 23965. [Google Scholar] [CrossRef]
- Amighi, F.; Emam-Djomeh, Z.; Labbafi-Mazraeh-Shahi, M. Effect of different cross-linking agents on the preparation of bovine serum albumin nanoparticles. J. Iran. Chem. Soc. 2020, 17, 1223–1235. [Google Scholar] [CrossRef]
- Mollazadeh, S.; Babaei, S.; Ostadhassan, M.; Yazdian-Robati, R. Concentration-dependent assembly of Bovine serum albumin molecules in the doxorubicin loading process: Molecular dynamics simulation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128429. [Google Scholar] [CrossRef]
- Lomis, N.; Westfall, S.; Farahdel, L.; Malhotra, M.; Shum-Tim, D.; Prakash, S. Human serum albumin nanoparticles for use in cancer drug delivery: Process optimization and in vitro characterization. Nanomaterials 2016, 6, 116. [Google Scholar] [CrossRef]
- Rahimnejad, M.; Najafpour, G.; Bakeri, G. Investigation and modeling effective parameters influencing the size of BSA protein nanoparticles as colloidal carrier. Colloids Surf. A Physicochem. Eng. Asp. 2012, 412, 96–100. [Google Scholar] [CrossRef]
- Galiyeva, A.; Daribay, A.; Zhumagaliyeva, T.; Zhaparova, L.; Sadyrbekov, D.; Tazhbayev, Y. Human serum albumin nanoparticles: Synthesis, optimization and immobilization with antituberculosis drugs. Polymers 2023, 15, 2774. [Google Scholar] [CrossRef]
- Wilson, B.; Ambika, T.V.; Patel, R.D.; Jenita, J.L.; Priyadarshini, S.R. Nanoparticles based on albumin: Preparation, characterization and the use for 5-flurouracil delivery. Int. J. Biol. Macromol. 2012, 51, 874–878. [Google Scholar] [CrossRef]
- Aljabali, A.A.A.; Bakshi, H.A.; Hakkim, F.L.; Haggag, Y.A.; Al-Batanyeh, K.M.; Al Zoubi, M.S.; Al-Trad, B.; Nasef, M.M.; Satija, S.; Mehta, M.; et al. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1alpha. Cancers 2020, 12, 113. [Google Scholar] [CrossRef]
- Olaitan, V.; Chaw, C.S. Desolvation Conditions for Production of Sulfasalazine Based Albumin Nanoparticles: Physical Properties. Pharm. Front. 2019, 1, e190006. [Google Scholar] [CrossRef]
- Du, J.; Shi, L.-L.; Jiang, W.-W.; Liu, X.-A.; Wu, X.-H.; Huang, X.-X.; Huo, M.-W.; Shi, L.-Z.; Dong, J.; Jiang, X. Crafting Docetaxel-Loaded Albumin Nanoparticles Through a Novel Thermal-Driven Self-Assembly/Microfluidic Combination Technology: Formulation, Process Optimization, Stability, and Bioavailability. Int. J. Nanomed. 2024, 19, 5071–5094. [Google Scholar] [CrossRef]
- Khan, I.U.; Shoukat, M.; Asif, M.; Khalid, S.H.; Asghar, S.; Munir, M.U.; Irfan, M.; Rasul, A.; Qari, S.H.; Qumsani, A.T. Assessing the synergistic activity of clarithromycin and therapeutic oils encapsulated in sodium alginate based floating microbeads. Microorganisms 2022, 10, 1171. [Google Scholar] [CrossRef]
- Ijaz, Q.A.; Latif, S.; Shoaib, Q.-u.-a.; Rashid, M.; Arshad, M.S.; Hussain, A.; Bukhari, N.I.; Riaz, S.; Abbas, N. Preparation and characterization of ph-independent sustained-release tablets containing hot melt extruded solid dispersions of clarithromycin: Tablets containing solid dispersions of clarithromycin. AAPS PharmSciTech 2021, 22, 275. [Google Scholar] [CrossRef]
- Chung, D.; Song, Y.G.; Kang, I.-M.; Choi, W.; Park, C.; Song, Y. Development and characterization of clarithromycin-smectite hybrid for burst release at high pH condition. Mater. Res. Express 2018, 5, 115408. [Google Scholar] [CrossRef]
- Singh, P.; Singh, H.; Castro-Aceituno, V.; Ahn, S.; Kim, Y.J.; Yang, D.C. Bovine serum albumin as a nanocarrier for the efficient delivery of ginsenoside compound K: Preparation, physicochemical characterizations and in vitro biological studies. RSC Adv. 2017, 7, 15397–15407. [Google Scholar] [CrossRef]
- Singh, P.; Kim, Y.J.; Singh, H.; Ahn, S.; Castro-Aceituno, V.; Yang, D.C. In situ preparation of water-soluble ginsenoside Rh2-entrapped bovine serum albumin nanoparticles: In vitro cytocompatibility studies. Int. J. Nanomed. 2017, 12, 4073–4084. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.; Zheng, Q.; Wang, M.; Deng, W.; Li, Q.; Firempong, C.K.; Wang, S.; Tong, S.; Xu, X. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability. J. Sci. Food Agric. 2015, 95, 2678–2685. [Google Scholar] [CrossRef]
- Bronze-Uhle, E.; Costa, B.; Ximenes, V.; Lisboa-Filho, P. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol. Sci. Appl. 2016, 10, 11–21. [Google Scholar] [CrossRef]
- Noguchi, S.; Miura, K.; Fujiki, S.; Iwao, Y.; Itai, S. Clarithromycin form I determined by synchrotron X-ray powder diffraction. Cryst. Struct. Commun. 2012, 68, o41–o44. [Google Scholar] [CrossRef]
- Gaur, M.; Maurya, S.; Akhtar, M.S.; Yadav, A.B. Synthesis and Evaluation of BSA-Loaded PLGA-Chitosan Composite Nanoparticles for the Protein-Based Drug Delivery System. ACS Omega 2023, 8, 18751–18759. [Google Scholar] [CrossRef]
- Yadav, P.; Yadav, A.B. Preparation and characterization of BSA as a model protein loaded chitosan nanoparticles for the development of protein-/peptide-based drug delivery system. Future J. Pharm. Sci. 2021, 7, 200. [Google Scholar] [CrossRef]
- Dubey, R.D.; Alam, N.; Saneja, A.; Khare, V.; Kumar, A.; Vaidh, S.; Mahajan, G.; Sharma, P.R.; Singh, S.K.; Mondhe, D.M. Development and evaluation of folate functionalized albumin nanoparticles for targeted delivery of gemcitabine. Int. J. Pharm. 2015, 492, 80–91. [Google Scholar] [CrossRef]
- Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Abdul Samad, N.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 2020, 15, 2439–2483. [Google Scholar] [CrossRef]
- Saleh, T.; Soudi, T.; Shojaosadati, S.A. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int. J. Biol. Macromol. 2019, 130, 109–116. [Google Scholar] [CrossRef]
- Ye, M.; Kim, S.; Park, K. Issues in long-term protein delivery using biodegradable microparticles. J. Control. Release 2010, 146, 241–260. [Google Scholar] [CrossRef]
- Liu, W.; Kong, Y.; Tu, P.; Lu, J.; Liu, C.; Liu, W.; Han, J.; Liu, J. Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food Funct. 2017, 8, 1688–1697. [Google Scholar] [CrossRef]
- Rohiwal, S.; Tiwari, A.; Verma, G.; Pawar, S. Preparation and evaluation of bovine serum albumin nanoparticles for ex vivo colloidal stability in biological media. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 28–37. [Google Scholar] [CrossRef]
- Kudarha, R.R.; Sawant, K.K. Hyaluronic acid conjugated albumin nanoparticles for efficient receptor mediated brain targeted delivery of temozolomide. J. Drug Deliv. Sci. Technol. 2021, 61, 102129. [Google Scholar] [CrossRef]
- Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release 2011, 152, 2–12. [Google Scholar] [CrossRef]
- Hassanin, I.; Elzoghby, A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug resistance 2020, 3, 930–946. [Google Scholar] [CrossRef]
- Wada, T.; Sata, M.; Sato, J.; Tokairin, Y.; Machiya, J.; Hirama, N.; Arao, T.; Inoue, S.; Takabatake, N.; Shibata, Y.; et al. Clarithromycin suppresses invasiveness of human lung adenocarcinoma cells. Chemotherapy 2007, 53, 77–84. [Google Scholar] [CrossRef]
- Mikasa, K.; Sawaki, M.; Kita, E.; Hamada, K.; Teramoto, S.; Sakamoto, M.; Maeda, K.; Konishi, M.; Narita, N. Significant survival benefit to patients with advanced non-small-cell lung cancer from treatment with clarithromycin. Chemotherapy 1997, 43, 288–296. [Google Scholar] [CrossRef]
- Sakamoto, M.; Mikasa, K.; Majima, T.; Hamada, K.; Konishi, M.; Maeda, K.; Kita, E.; Narita, N. Anti-cachectic effect of clarithromycin for patients with unresectable non-small cell lung cancer. Chemotherapy 2001, 47, 444–451. [Google Scholar] [CrossRef]
- Komatsu, S.; Miyazawa, K.; Moriya, S.; Takase, A.; Naito, M.; Inazu, M.; Kohno, N.; Itoh, M.; Tomoda, A. Clarithromycin enhances bortezomib-induced cytotoxicity via endoplasmic reticulum stress-mediated CHOP (GADD153) induction and autophagy in breast cancer cells. Int. J. Oncol. 2012, 40, 1029–1039. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
Before Lyophilization | After Lyophilization | |||
---|---|---|---|---|
Nanoparticle Type | BSA NPs | CLA-BSA NPs | BSA NPs | CLA-BSA NPs |
Water/Et Ratio | 1:2 | 1:2 | 1:2 | 1:2 |
BSA Concentration (mg/mL) | 40 | 40 | 40 | 40 |
Drug Amount (mg/mL) | - | 1 | - | 1 |
Size (nm) | 99.4 ± 0.68 | 140.5 ± 2.97 | 87.9 ± 2.27 | 129.4 ± 2.25 |
PDI | 0.083 ± 0.02 | 0.058 ± 0.005 | 0.19 ± 0.01 | 0.086 ± 0.006 |
Charge (mV) | 2.01 ± 1.02 | 5.24 ± 0.28 | −17.0 ± 0.62 | −20.1 ± 1.84 |
EE% | - | 65.9 ± 1.63 | - | 65.9 ± 1.63 |
LE% | - | 1.64 ± 0.74 | - | 1.64 ± 0.74 |
IC50 Against Cancer Cell Lines | ||||
---|---|---|---|---|
Treatments | MCF7 | MDA-MB-231 | A549 | HDF |
BSA NPs | >100 μM | >100 μM | >100 μM | >100 μM |
CLA | >100 μM | >100 μM | 66.1 ± 11.3 | >100 μM |
CLA-BSA NPs | >100 μM | >100 μM | 47.5 ± 9.6 | >100 μM |
Tested Bacterial Strain | Treatment | MIC (µg/mL) |
---|---|---|
Bacillus cereus | CLA | 0.053 |
CLA-BSA nanoparticles | 0.032 | |
Staphylococcus aureus | CLA | 0.05 |
CLA-BSA nanoparticles | 0.12 | |
Streptococcus pyogenes | CLA | >32 |
CLA-BSA nanoparticles | >32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshaer, W.; Alsotari, S.; Aladaileh, N.; Rifai, A.; Khalaf, A.; AlQuaissi, B.; Sabbah, B.; Nsairat, H.; Odeh, F. Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance. Pharmaceutics 2025, 17, 729. https://doi.org/10.3390/pharmaceutics17060729
Alshaer W, Alsotari S, Aladaileh N, Rifai A, Khalaf A, AlQuaissi B, Sabbah B, Nsairat H, Odeh F. Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance. Pharmaceutics. 2025; 17(6):729. https://doi.org/10.3390/pharmaceutics17060729
Chicago/Turabian StyleAlshaer, Walhan, Shrouq Alsotari, Nour Aladaileh, Alaa Rifai, Aya Khalaf, Baidaa AlQuaissi, Bushra Sabbah, Hamdi Nsairat, and Fadwa Odeh. 2025. "Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance" Pharmaceutics 17, no. 6: 729. https://doi.org/10.3390/pharmaceutics17060729
APA StyleAlshaer, W., Alsotari, S., Aladaileh, N., Rifai, A., Khalaf, A., AlQuaissi, B., Sabbah, B., Nsairat, H., & Odeh, F. (2025). Clarithromycin-Loaded Albumin-Based Nanoparticles for Improved Antibacterial and Anticancer Performance. Pharmaceutics, 17(6), 729. https://doi.org/10.3390/pharmaceutics17060729