Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability
Abstract
:1. Introduction
2. Essential Oils as Pharmaceuticals
2.1. Linalool Usage as a Pharmaceutical
2.2. α-Pinene Usage as a Pharmaceutical
2.3. Cineole Usage as Pharmaceutical
2.4. General Trends in Essential Oil Usage as Pharmaceuticals
3. Design of Novel Essential Oil Delivery Systems
Main Systems for Essential Oil Delivery
Type of DS | Advantages | Limitations | Examples |
---|---|---|---|
Emulsions | Emulsions can be water-in-oil (W/O) or oil-in-water (O/W), based on phase location. Micro and nanoemulsions of EOs show improved stability, controlled release, and enhanced antioxidant and antimicrobial properties [26,28]. The absence of surfactants in these systems minimizes environmental impact, making them ideal for utilizing the bioactivity of EOs [29]. | The main challenge lies in the poor biopolymer properties and potential flavor impacts from high concentrations of EO [30]. Nanoemulsions with low oil content face challenges in preparation and require fillers, binders, or emulsifiers to enhance viscosity [31]. | O/W cinnamon and black pepper emulsions [32], nanoemulsion of eucalyptus oil, Tween 80, and water [33], nanoemulsions of Cymbopogon flexuosus [34]. |
Capsules | Capsules exhibit improved antioxidant and antimicrobial activities, enhanced stability, and controlled release of entrapped EOs [26]. This DS increases bioavailability by adhering to mucous membranes, protects EOs from hydrolysis and oxidation, reduces toxicity and volatility, and enables the targeted delivery of therapeutic doses, improving patient compliance [5]. | The main limitations of capsules are volatility and degradation, low encapsulation efficiency, poor release control, and environmental sensitivity. | EO delivery systems based on capsules consisting of zeolites to improve chemical and physical EOs properties [35]. |
Liposomes | Liposomes offer low toxicity, biocompatibility, non-immunogenicity, enhanced antimicrobial and antioxidant activities, and targeted delivery [26,27]. | The use of liposomes is limited by high costs, low compound loading, and poor stability [26,27]. | Liposomes loaded with Barije (Ferula gummosa) EO were evaluated for their physical properties and antibacterial effects against Escherichia coli O157:H7 [36]. |
Hydrogels | Encapsulating EOs in hydrogels enhances their stability and biological activity [37]. | It heavily depends on the internal microenvironment [27]. In addition, there is limited data on stability, safety, long-term bioactivity, and in vivo studies [37]. | Semi-solid poly(vinyl alcohol) hydrogels with ginger EO encapsulated in chitosan NPs show promise for wound management applications [38]. Alginate–soy protein isolate complex beads encapsulating thyme EO are designed for targeted intestinal delivery [39]. |
Solid lipid NPs (SNLs) | SNLs offer better protection, controlled release, and cost-effective formation compared to liposomes and emulsions [26,40]. | SNLs exhibit poor stability, aggregation, low encapsulation load, and potential instability under acidic conditions and during storage [26,40,41]. | Zataria multiflora EO-loaded solid lipid NPs demonstrated antifungal activity under in vitro conditions [42]. Chitosan/polyvinyl alcohol hydrogels loaded with EOs of Origanum vulgare and Thymus vulgaris in solid lipid NPs effectively controlled the growth of Botrytis cinerea and Penicillium expansum [43]. |
Inorganic NPs | EOs and NPs affect gut processes like inflammation, oxidative stress, metabolite synthesis, and microbiota balance [44]. Inorganic NPs have good bioavailability and low toxic side effects tolerance [27] | Potential toxicity depending on dose and exposure, requiring consideration of synergistic and antagonistic interactions [44]. | Silver NPs and lavender oil for a synergistic antibacterial effect [45]. |
Nanostructured lipid carriers (NLCs) | NLCs were developed to overcome SNLs’ limitations, offering smaller size, higher loading capacity, and preventing crystal formation and expulsion [26,41]. | SLNs and NLCs require high temperatures for lipid melting, risking degradation of heat-sensitive EO components, and have low stability under acidic conditions and high production costs at an industrial scale [26,46]. | NLCs containing 10% w/v lipid and 10% w/v EOs (lavender, rosemary, peppermint) show potential for sustainable insect pest control [47]. Red sacaca EO-loaded nanostructured lipid carriers, optimized by factorial design, were evaluated for cytotoxicity and cellular reactive oxygen species levels [48]. |
4. Essential Oils as Penetration Enhancers
4.1. Limonene Usage as a Penetration Enhancer
4.2. Eugenol Usage as a Penetration Enhancer
4.3. Borneol Usage as a Penetration Enhancer
4.4. Menthol Usage as a Penetration Enhancer
4.5. Essential Oil Mixtures Usage as Penetration Enhancers
5. Release Mechanisms of Active Substances from Compound Delivery Systems
Compound Delivery Routes
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-fluorouracil |
CPE | chemical permeation enhancers |
DS | delivery system |
EOs | essential oils |
Eu-CaCit NPs | eugenol-loaded calcium citrate nanoparticles |
EβF | (E)-β-farnesene |
ISMs | in situ forming matrixes |
LPS | lipopolysaccharide |
MeSA | methyl salicylate |
NLC | nanostructured lipid carriers |
NPs | nanoparticles |
O/W | oil-in-water phase |
OB | Ocimum basilicum |
SC | stratum corneum |
SNL | solid lipid nanoparticles |
TA | triamcinolone acetonide |
THG | tetrahydrogeraniol |
TZN | trazodone hydrochloride |
W/O | water-in-oil phase |
References
- Scazzocchio, F.; Garzoli, S.; Conti, C.; Leone, C.; Renaioli, C.; Pepi, F.; Angiolella, L. Properties and Limits of Some Essential Oils: Chemical Characterisation, Antimicrobial Activity, Interaction with Antibiotics and Cytotoxicity. Nat. Prod. Res. 2016, 30, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Barros, A.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; dos Santos Fontenelle, R.O.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical Composition and Functional Properties of Essential Oils from Mentha Species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Cossetin, L.F.; Garlet, Q.I.; Velho, M.C.; Gündel, S.; Ourique, A.F.; Heinzmann, B.M.; Monteiro, S.G. Development of Nanoemulsions Containing Lavandula dentata or Myristica fragrans Essential Oils: Influence of Temperature and Storage Period on Physical-Chemical Properties and Chemical Stability. Ind. Crops Prod. 2021, 160, 113115. [Google Scholar] [CrossRef]
- Kaspute, G.; Arunagiri, B.D.; Alexander, R.; Ramanavicius, A.; Samukaite-Bubniene, U. Development of Essential Oil Delivery Systems by ‘Click Chemistry’ Methods: Possible Ways to Manage Duchenne Muscular Dystrophy. Materials 2023, 16, 6537. [Google Scholar] [CrossRef] [PubMed]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, D.; Singh, R.K. Chapter 13—Therapeutic Role of Essential Oils in Malignancies through Drug Delivery Mechanisms. In Drug-Delivery Systems of Phytochemicals and Therapeutic Strategies in Cancer Therapy; Srivastava, A.K., Singh, D., Singh, R.K., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 199–213. ISBN 978-0-443-15960-2. [Google Scholar]
- Mali, S.N.; Pandey, A.; de Oliveira, M.S.; Jawarkar, R.D. A Decade Review of Analysis of Essential Oils from Genus Artocarpus: Its Phytochemistry and Pharmacology. Pharmacol. Res.—Nat. Prod. 2024, 2, 100016. [Google Scholar] [CrossRef]
- Herman, A.; Herman, A.P. Essential Oils and Their Constituents as Skin Penetration Enhancer for Transdermal Drug Delivery: A Review. J. Pharm. Pharmacol. 2015, 67, 473–485. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. D-Limonene. In Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins; International Agency for Research on Cancer: Lyon, France, 1993. [Google Scholar]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool Bioactive Properties and Potential Applicability in Drug Delivery Systems. Colloids Surf. B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Santos, J.S.; Gonzatto, M.P.; Santos, J.S.; Gonzatto, M.P. Citrus Essential Oils and Nanosystems towards Skin Delivery. In Citrus Research—Horticultural and Human Health Aspects; IntechOpen: London, UK, 2023; ISBN 978-1-80355-805-9. [Google Scholar]
- Camargo, S.F.; Medeiros, C.F.; Santos, V.V.; Quintans-Júnior, L.J.; Azeredo, F.J.; Silva, D.F. Pharmacokinetics and Antihypertensive Effect of Linalool Is Improved after Incorporation in β-Cyclodextrin as a Drug Delivery System. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Waidyanatha, S.; Hackett, M.; Black, S.R.; Stout, M.D.; Fennell, T.R.; Silinski, M.R.; Watson, S.L.; Licause, J.; Robinson, V.G.; Sparrow, B.; et al. Toxicokinetic Evaluation of the Common Indoor Air Pollutant, α-Pinene, and Its Potential Reactive Metabolite, α-Pinene Oxide, Following Inhalation Exposure in Rodents. Toxicol. Appl. Pharmacol. 2021, 418, 115496. [Google Scholar] [CrossRef]
- Hammoud, Z.; Kayouka, M.; Trifan, A.; Sieniawska, E.; Jemâa, J.M.B.; Elaissari, A.; Greige-Gerges, H. Encapsulation of α-Pinene in Delivery Systems Based on Liposomes and Cyclodextrins. Molecules 2021, 26, 6840. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Choudhury, P.K.; Dev, S.K.; Rathore, V. Formulation and Evaluation of α-Pinene Loaded Self-Emulsifying Nanoformulation for In-Vivo Anti-Parkinson’s Activity. Recent Pat. Nanotechnol. 2022, 16, 139–159. [Google Scholar] [CrossRef] [PubMed]
- Dao, L.; Dong, Y.; Song, L.; Sa, C. The Fate of 1,8-Cineole as a Chemical Penetrant: A Review. Curr. Drug Deliv. 2024, 21, 697–708. [Google Scholar] [CrossRef]
- Jiang, F.; Wu, G.; Li, W.; Yang, J.; Yan, J.; Wang, Y.; Yao, W.; Zhou, X.; He, Z.; Wu, L.; et al. Preparation and Protective Effects of 1,8-Cineole-Loaded Self-Microemulsifying Drug Delivery System on Lipopolysaccharide-Induced Endothelial Injury in Mice. Eur. J. Pharm. Sci. 2019, 127, 14–23. [Google Scholar] [CrossRef]
- Rehman, A.; Iqbal, M.; Khan, B.A.; Khan, M.K.; Huwaimel, B.; Alshehri, S.; Alamri, A.H.; Alzhrani, R.M.; Bukhary, D.M.; Safhi, A.Y.; et al. Fabrication, In Vitro, and In Vivo Assessment of Eucalyptol-Loaded Nanoemulgel as a Novel Paradigm for Wound Healing. Pharmaceutics 2022, 14, 1971. [Google Scholar] [CrossRef]
- Abbad, I.; Soulaimani, B.; Abbad, A. Chemical Composition, Insecticidal and Allelopathic Properties of Essential Oils Obtained from Wild and Cultivated Moroccan Satureja calamintha (L.). J. Nat. Pestic. Res. 2023, 3, 100021. [Google Scholar] [CrossRef]
- Lim, X.-Y.; Li, J.; Yin, H.-M.; He, M.; Li, L.; Zhang, T. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept. Polymers 2023, 15, 3338. [Google Scholar] [CrossRef] [PubMed]
- Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective Use of Nanocarriers as Drug Delivery Systems for the Treatment of Selected Tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef]
- Hmingthansanga, V.; Singh, N.; Banerjee, S.; Manickam, S.; Velayutham, R.; Natesan, S. Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics 2022, 14, 2818. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Gravelle, A.J.; Saffarionpour, S.; Wright, A.J. Editorial: Novel Delivery Systems of Flavors and Essential Oils: Exploring Potential Health Applications in Foods. Front. Nutr. 2023, 10, 1183878. [Google Scholar] [CrossRef] [PubMed]
- Obeid, M.A.; Al Qaraghuli, M.M.; Alsaadi, M.; Alzahrani, A.R.; Niwasabutra, K.; Ferro, V.A. Delivering Natural Products and Biotherapeutics to Improve Drug Efficacy. Ther. Deliv. 2017, 8, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Yammine, J.; Chihib, N.-E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in Essential Oils Encapsulation: Development, Characterization and Release Mechanisms. Polym. Bull. 2024, 81, 3837–3882. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, Z.; Liu, H.; Man, J.; Oladejo, A.O.; Ibrahim, S.; Wang, S.; Hao, B. Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics 2024, 16, 674. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.R.; Malik, M.H.; Biswas, S.; Tam, V.H.; Rumbaugh, K.P.; Li, W.; Liu, X. Nanoemulsion Delivery Systems for Enhanced Efficacy of Antimicrobials and Essential Oils. Biomater. Sci. 2022, 10, 633–653. [Google Scholar] [CrossRef]
- Lucia, A.; Guzmán, E. Emulsions Containing Essential Oils, Their Components or Volatile Semiochemicals as Promising Tools for Insect Pest and Pathogen Management. Adv. Colloid Interface Sci. 2021, 287, 102330. [Google Scholar] [CrossRef] [PubMed]
- Hanan, E.; Dar, A.H.; Shams, R.; Goksen, G. New Insights into Essential Oil Nano Emulsions Loaded Natural Biopolymers Recent Development, Formulation, Characterization and Packaging Applications: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 280, 135751. [Google Scholar] [CrossRef]
- Mushtaq, A.; Mohd Wani, S.; Malik, A.R.; Gull, A.; Ramniwas, S.; Ahmad Nayik, G.; Ercisli, S.; Alina Marc, R.; Ullah, R.; Bari, A. Recent Insights into Nanoemulsions: Their Preparation, Properties and Applications. Food Chem. X 2023, 18, 100684. [Google Scholar] [CrossRef]
- Jiménez, M.; Domínguez, J.A.; Pascual-Pineda, L.A.; Azuara, E.; Beristain, C.I. Elaboration and Characterization of O/W Cinnamon (Cinnamomum zeylanicum) and Black Pepper (Piper nigrum) Emulsions. Food Hydrocoll. 2018, 77, 902–910. [Google Scholar] [CrossRef]
- Sugumar, S.; Nirmala, J.; Ghosh, V.; Anjali, H.; Mukherjee, A.; Chandrasekaran, N. Bio-Based Nanoemulsion Formulation, Characterization and Antibacterial Activity against Food-Borne Pathogens. J. Basic Microbiol. 2013, 53, 677–685. [Google Scholar] [CrossRef]
- Rossi, G.G.; Guterres, K.B.; Bonez, P.C.; da Silva Gundel, S.; Aggertt, V.A.; Siqueira, F.S.; Ourique, A.F.; Wagnerd, R.; Klein, B.; Santos, R.C.V.; et al. Antibiofilm Activity of Nanoemulsions of Cymbopogon flexuosus against Rapidly Growing Mycobacteria. Microb. Pathog. 2017, 113, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.P.; Almeida-Aguiar, C.; Costa, S.P.G.; Neves, I.C. Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. Molecules 2022, 27, 8525. [Google Scholar] [CrossRef]
- Najaf Najafi, M.; Arianmehr, A.; Sani, A.M. Preparation of Barije (Ferula Gummosa) Essential Oil–Loaded Liposomes and Evaluation of Physical and Antibacterial Effect on Escherichia coli O157:H7. J. Food Prot. 2020, 83, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Chelu, M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024, 10, 636. [Google Scholar] [CrossRef]
- Ngampunwetchakul, L.; Toonkaew, S.; Supaphol, P.; Suwantong, O. Semi-Solid Poly(Vinyl Alcohol) Hydrogels Containing Ginger Essential Oil Encapsulated in Chitosan Nanoparticles for Use in Wound Management. J. Polym. Res. 2019, 26, 224. [Google Scholar] [CrossRef]
- Volić, M.; Pajić-Lijaković, I.; Djordjević, V.; Knežević-Jugović, Z.; Pećinar, I.; Stevanović-Dajić, Z.; Veljović, Đ.; Hadnadjev, M.; Bugarski, B. Alginate/Soy Protein System for Essential Oil Encapsulation with Intestinal Delivery. Carbohydr. Polym. 2018, 200, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-Encapsulation of Bioactive Compounds Using Biopolymer and Lipid-Based Transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Katouzian, I.; Faridi Esfanjani, A.; Jafari, S.M.; Akhavan, S. Formulation and Application of a New Generation of Lipid Nano-Carriers for the Food Bioactive Ingredients. Trends Food Sci. Technol. 2017, 68, 14–25. [Google Scholar] [CrossRef]
- Nasseri, M.; Golmohammadzadeh, S.; Arouiee, H.; Jaafari, M.R.; Neamati, H. Antifungal Activity of Zataria Multiflora Essential Oil-Loaded Solid Lipid Nanoparticles in-Vitro Condition. Iran. J. Basic Med. Sci. 2016, 19, 1231–1237. [Google Scholar]
- Fincheira, P.; Espinoza, J.; Levío-Raimán, M.; Vera, J.; Tortella, G.; Brito, A.M.M.; Seabra, A.B.; Diez, M.C.; Quiroz, A.; Rubilar, O. Formulation of Essential Oils-Loaded Solid Lipid Nanoparticles-Based Chitosan/PVA Hydrogels to Control the Growth of Botrytis cinerea and Penicillium expansum. Int. J. Biol. Macromol. 2024, 270, 132218. [Google Scholar] [CrossRef]
- Lazar, V.; Holban, A.-M.; Curutiu, C.; Ditu, L.M. Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Front. Nutr. 2022, 9, 920413. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, D.-G.; Williams, G.R.; Bligh, S.W.A. Co-Loading of Inorganic Nanoparticles and Natural Oil in the Electrospun Janus Nanofibers for a Synergetic Antibacterial Effect. Pharmaceutics 2022, 14, 1208. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.; Vinceković, M.; Jurić, S.; Viskić, M.; Režek Jambrak, A.; Donsì, F. Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Rev. Int. 2019, 37, 1–45. [Google Scholar] [CrossRef]
- Tortorici, S.; Cimino, C.; Ricupero, M.; Musumeci, T.; Biondi, A.; Siscaro, G.; Carbone, C.; Zappalà, L. Nanostructured Lipid Carriers of Essential Oils as Potential Tools for the Sustainable Control of Insect Pests. Ind. Crops Prod. 2022, 181, 114766. [Google Scholar] [CrossRef]
- Chura, S.S.D.; Memória, K.A.S.; Lopes, A.T.; Pelissari, F.M.; Da Silveira, J.V.W.; Bezerra, J.d.A.; Chaves, F.C.M.; Rodrigues, A.P.; Faria, J.A.Q.A.; Carneiro, G. Red Sacaca Essential Oil-Loaded Nanostructured Lipid Carriers Optimized by Factorial Design: Cytotoxicity and Cellular Reactive Oxygen Species Levels. Front. Pharmacol. 2023, 14, 1176629. [Google Scholar] [CrossRef]
- Schafer, N.; Balwierz, R.; Biernat, P.; Ochędzan-Siodłak, W.; Lipok, J. Natural Ingredients of Transdermal Drug Delivery Systems as Permeation Enhancers of Active Substances through the Stratum Corneum. Mol. Pharm. 2023, 20, 3278–3297. [Google Scholar] [CrossRef] [PubMed]
- Meryem, S.; Mohamed, D.; Nour-eddine, C.; Faouzi, E. Chemical Composition, Antibacterial and Antioxidant Properties of Three Moroccan Citrus Peel Essential Oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Guo, Y.; Liu, J.; Wu, L.; Lin, J. The Application of Pomelo Peel as a Carrier for Adsorption of Epigallocatechin-3-Gallate. J. Sci. Food Agric. 2018, 98, 4135–4141. [Google Scholar] [CrossRef]
- Saha, S.; Verma, R.J. Molecular Interactions of Active Constituents of Essential Oils in Zwitterionic Lipid Bilayers. Chem. Phys. Lipids 2018, 213, 76–87. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Andriotis, E.G.; Papi, R.M.; Paraskevopoulou, A.; Achilias, D.S. Synthesis of D-Limonene Loaded Polymeric Nanoparticles with Enhanced Antimicrobial Properties for Potential Application in Food Packaging. Nanomaterials 2021, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, L.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of Essential Oils on Properties of Film Forming Emulsions and Films Based on Hydroxypropylmethylcellulose and Chitosan. J. Food Eng. 2011, 105, 246–253. [Google Scholar] [CrossRef]
- Vol, A.; Gribova, O.; Shamir, O.; Levy, E.; Ben Ishai, P.; Gutina, A.G.; Feldman, Y. Dielectric Properties of a Novel Colloidal Oral Matrix Drug Carrier. Colloids Surf. B Biointerfaces 2017, 155, 223–228. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.-D.; Chai, Y.-P.; Zhang, H.; Peng, P.; Yang, X.-X. Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2016, 21, 1709. [Google Scholar] [CrossRef]
- Abla, K.K.; Domiati, S.; El Majzoub, R.; Mehanna, M.M. Propranolol-Loaded Limonene-Based Microemulsion Thermo-Responsive Mucoadhesive Nasal Nanogel: Design, In Vitro Assessment, Ex Vivo Permeation, and Brain Biodistribution. Gels 2023, 9, 491. [Google Scholar] [CrossRef]
- Chiu, C.-S.; Huang, P.-H.; Chan, Y.-J.; Li, P.-H.; Lu, W.-C. D-Limonene Nanoemulsion as Skin Permeation Enhancer for Curcumin Prepared by Ultrasonic Emulsification. J. Agric. Food Res. 2024, 15, 100932. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, W.; Zhang, J.; Liao, Y.; Firempong, C.K.; Adu-Frimpong, M.; Deng, W.; Zhang, H.; Yu, J.; Xu, X. Self-Microemulsifying Drug Delivery System for Improved Oral Delivery of Limonene: Preparation, Characterization, in Vitro and in Vivo Evaluation. AAPS PharmSciTech 2019, 20, 153. [Google Scholar] [CrossRef]
- Waheed, A.; Aqil, M.; Ahad, A.; Imam, S.S.; Moolakkadath, T.; Iqbal, Z.; Ali, A. Improved Bioavailability of Raloxifene Hydrochloride Using Limonene Containing Transdermal Nano-Sized Vesicles. J. Drug Deliv. Sci. Technol. 2019, 52, 468–476. [Google Scholar] [CrossRef]
- Esmaeili, F.; Rajabnejhad, S.; Partoazar, A.R.; Mehr, S.E.; Faridi-Majidi, R.; Sahebgharani, M.; Syedmoradi, L.; Rajabnejhad, M.R.; Amani, A. Anti-Inflammatory Effects of Eugenol Nanoemulsion as a Topical Delivery System. Pharm. Dev. Technol. 2016, 21, 887–893. [Google Scholar] [CrossRef]
- Cherdchom, S.; Keawsongsaeng, W.; Buasorn, W.; Rimsueb, N.; Pienpinijtham, P.; Sereemaspun, A.; Rojanathanes, R.; Aramwit, P. Development of Eugenol-Embedded Calcium Citrate Nanoparticles as a Local Anesthetic Agent. ACS Omega 2021, 6, 28880–28889. [Google Scholar] [CrossRef]
- El Khayat, N.W.; Donia, A.A.; Mady, O.Y.; El Maghraby, G.M. Optimization of Eugenol Microemulsion for Transdermal Delivery of Indomethacin. J. Drug Deliv. Sci. Technol. 2018, 48, 311–318. [Google Scholar] [CrossRef]
- Mishra, H.; Mishra, P.K.; Iqbal, Z.; Jaggi, M.; Madaan, A.; Bhuyan, K.; Gupta, N.; Gupta, N.; Vats, K.; Verma, R.; et al. Co-Delivery of Eugenol and Dacarbazine by Hyaluronic Acid-Coated Liposomes for Targeted Inhibition of Survivin in Treatment of Resistant Metastatic Melanoma. Pharmaceutics 2019, 11, 163. [Google Scholar] [CrossRef]
- Kulkarni, M.; Sawant, N.; Kolapkar, A.; Huprikar, A.; Desai, N. Borneol: A Promising Monoterpenoid in Enhancing Drug Delivery Across Various Physiological Barriers. AAPS PharmSciTech 2021, 22, 145. [Google Scholar] [CrossRef]
- Chen, N.; Wen, J.; Wang, Z.; Wang, J. Multiple Regulation and Targeting Effects of Borneol in the Neurovascular Unit in Neurodegenerative Diseases. Basic Clin. Pharmacol. Toxicol. 2022, 130, 5–19. [Google Scholar] [CrossRef]
- Lertsuphotvanit, N.; Santimaleeworagun, W.; Narakornwit, W.; Chuenbarn, T.; Mahadlek, J.; Chantadee, T.; Phaechamud, T. Borneol-Based Antisolvent-Induced in Situ Forming Matrix for Crevicular Pocket Delivery of Vancomycin Hydrochloride. Int. J. Pharm. 2022, 617, 121603. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Chen, L.; Ma, L.; Yang, S.; Wu, X.; Dai, X.; Wang, S.; Shi, X. A Multiscale Study of the Penetration-Enhancing Mechanism of Menthol. J. Tradit. Chin. Med. Sci. 2019, 6, 347–354. [Google Scholar] [CrossRef]
- Xu, X.; Yu, N.; Bai, Z.; Xun, Y.; Jin, D.; Li, Z.; Cui, H. Effect of Menthol on Ocular Drug Delivery. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1503–1510. [Google Scholar] [CrossRef]
- Krishnaiah, Y.S.R.; Kumar, M.S.; Raju, V.; Lakshmi, M.; Rama, B. Penetration-Enhancing Effect of Ethanolic Solution of Menthol on Transdermal Permeation of Ondansetron Hydrochloride Across Rat Epidermis. Drug Deliv. 2008, 15, 227–234. [Google Scholar] [CrossRef]
- Vanoli, V.; Pietrowska, J.; de Araujo Lima e Souza, G.; Di Pietro, M.E.; Briatico Vangosa, F.; Mele, A.; Castiglione, F. Supramolecular Hydrophobic Eutectogels Based on Menthol-Thymol as Thermo- and pH-Responsive Drug Delivery Systems. ACS Appl. Eng. Mater. 2024, 2, 388–396. [Google Scholar] [CrossRef]
- Yingngam, B.; Chiangsom, A.; Pharikarn, P.; Vonganakasame, K.; Kanoknitthiran, V.; Rungseevijitprapa, W.; Prasitpuriprecha, C. Optimization of Menthol-Loaded Nanocapsules for Skin Application Using the Response Surface Methodology. J. Drug Deliv. Sci. Technol. 2019, 53, 101138. [Google Scholar] [CrossRef]
- Gao, S.; Singh, J. In Vitro Percutaneous Absorption Enhancement of a Lipophilic Drug Tamoxifen by Terpenes. J. Control. Release 1998, 51, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef]
- Godwin, D.A.; Michniak, B.B. Influence of Drug Lipophilicity on Terpenes as Transdermal Penetration Enhancers. Drug Dev. Ind. Pharm. 1999, 25, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-Y.; Leu, Y.-L.; Hwang, T.-L.; Cheng, H.-C.; Hung, C.-F. Development of Sesquiterpenes from Alpinia Oxyphylla as Novel Skin Permeation Enhancers. Eur. J. Pharm. Sci. 2003, 19, 253–262. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Terpenes and the Lipid-Protein-Partitioning Theory of Skin Penetration Enhancement. Pharm. Res. 1991, 8, 17–24. [Google Scholar] [CrossRef]
- Hanif, R.M.; Qineng, P.; Zhan, G. Penetration Enhancing Effect of Tetrahydrogeraniol on the Percutaneous Absorption of 5-Fluorouracil from Gels in Excised Rat Skin. J. Control. Release 1998, 55, 297–302. [Google Scholar] [CrossRef]
- Charoo, N.A.; Shamsher, A.A.A.; Kohli, K.; Pillai, K.; Rahman, Z. Improvement in Bioavailability of Transdermally Applied Flurbiprofen Using Tulsi (Ocimum sanctum) and Turpentine Oil. Colloids Surf. B Biointerfaces 2008, 65, 300–307. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Leu, Y.-L.; Hwang, T.-L.; Cheng, H.-C. Essential Oils from Sweet Basil (Ocimum basilicum) as Novel Enhancers to Accelerate Transdermal Drug Delivery. Biol. Pharm. Bull. 2004, 27, 1819–1825. [Google Scholar] [CrossRef]
- Rajan, R.; Vasudevan, D.T. Effect of Permeation Enhancers on the Penetration Mechanism of Transfersomal Gel of Ketoconazole. J. Adv. Pharm. Technol. Res. 2012, 3, 112–116. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Hatvate, N.T.; Naren, P.; Khan, S.; Chavda, V.P.; Balar, P.C.; Gandhi, J.; Khatri, D.K. Essential Oils for Clinical Aromatherapy: A Comprehensive Review. J. Ethnopharmacol. 2024, 330, 118180. [Google Scholar] [CrossRef] [PubMed]
- Joy, N.; Samavedi, S. Identifying Specific Combinations of Matrix Properties That Promote Controlled and Sustained Release of a Hydrophobic Drug from Electrospun Meshes. ACS Omega 2020, 5, 15865–15876. [Google Scholar] [CrossRef]
- Siafaka, P.I.; Özcan Bülbül, E.; Miliotou, A.N.; Karantas, I.D.; Okur, M.E.; Üstündağ Okur, N. Nano-Based Carriers for Pulmonary Drug Delivery: A Review on the Available Drug Delivery Applications and Toxicity Issues. J. Drug Deliv. Sci. Technol. 2024, 92, 105381. [Google Scholar] [CrossRef]
- Nainwal, N. Treatment of Respiratory Viral Infections through Inhalation Therapeutics: Challenges and Opportunities. Pulm. Pharmacol. Ther. 2022, 77, 102170. [Google Scholar] [CrossRef]
- Horváth, G.; Ács, K. Essential Oils in the Treatment of Respiratory Tract Diseases Highlighting Their Role in Bacterial Infections and Their Anti-inflammatory Action: A Review. Flavour Fragr. J. 2015, 30, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, M.; Wei, Y.; Li, H.; He, X.; Yang, Q.; Li, Z.; Duan, J.; Wu, Z.; Chen, Q.; et al. Inhalation Aromatherapy via Brain-Targeted Nasal Delivery: Natural Volatiles or Essential Oils on Mood Disorders. Front. Pharmacol. 2022, 13, 860043. [Google Scholar] [CrossRef]
- Bruschi, M.L. (Ed.) Main Mechanisms to Control the Drug Release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Woodhead Publishing: Cambridge, UK, 2015; pp. 37–62. ISBN 978-0-08-100092-2. [Google Scholar]
- Lu, J.X.; Tupper, C.; Murray, J. Biochemistry, Dissolution and Solubility. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- El-Hawary, S.S.; Ezzat, S.M.; Eid, G.E.; Abd-El Rhman, S.K. Effect of Certain Essential Oils on Dissolution of Three Commercial Gutta-Percha Brands. J. Essent. Oil Bear. Plants 2015, 18, 1126–1137. [Google Scholar] [CrossRef]
- Judy, E.; Pagariya, D.; Kishore, N. Drug Partitioning in Micellar Media and Its Implications in Rational Drug Design: Insights with Streptomycin. Langmuir 2018, 34, 3467–3484. [Google Scholar] [CrossRef]
- Das, M.K.; Bhattacharya, A.; Ghosal, S.K. Effect of Different Terpene-Containing Essential Oils on Percutaneous Absorption of Trazodone Hydrochloride Through Mouse Epidermis. Drug Deliv. 2006, 13, 425–431. [Google Scholar] [CrossRef]
- Sanopoulou, M.; Papadokostaki, K.G. Controlled Drug Release Systems: Mechanisms and Kinetics. In Biomedical Membranes and (Bio)Artificial Organs; World Scientific: Singapore, 2018; pp. 1–33. ISBN 978-981-322-175-8. [Google Scholar]
- Carreño, H.; Stashenko, E.E.; Escobar, P. Essential Oils Distilled from Colombian Aromatic Plants and Their Constituents as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2023, 28, 2872. [Google Scholar] [CrossRef]
- Herrlich, S.; Spieth, S.; Messner, S.; Zengerle, R. Osmotic Micropumps for Drug Delivery. Adv. Drug Deliv. Rev. 2012, 64, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Hamamura, K.; Katsuyama, S.; Komatsu, T.; Scuteri, D.; Bagetta, G.; Aritake, K.; Sakurada, T. Behavioral Effects of Continuously Administered Bergamot Essential Oil on Mice With Partial Sciatic Nerve Ligation. Front. Pharmacol. 2020, 11, 1310. [Google Scholar] [CrossRef]
- Adrover, A.; Venditti, C.; Giona, M. Swelling and Drug Release in Polymers through the Theory of Poisson–Kac Stochastic Processes. Gels 2021, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Pătraşcu, L.; Cantaragiu, A.; Alexe, P.; Dima, Ş. The Kinetics of the Swelling Process and the Release Mechanisms of Coriandrum sativum L. Essential Oil from Chitosan/Alginate/Inulin Microcapsules. Food Chem. 2016, 195, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Choonara, B.F.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Tomar, L.K.; Tyagi, C.; Pillay, V. A Menthol-Based Solid Dispersion Technique for Enhanced Solubility and Dissolution of Sulfamethoxazole from an Oral Tablet Matrix. AAPS PharmSciTech 2014, 16, 771–786. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Xia, G.; Adilijiang, N.; Li, Y.; Hou, Z.; Fan, Z.; Li, J. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy. Pharmaceutics 2023, 15, 2233. [Google Scholar] [CrossRef]
- Jampilek, J.; Kralova, K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022, 14, 2681. [Google Scholar] [CrossRef]
- Sartori Tamburlin, I.; Roux, E.; Feuillée, M.; Labbé, J.; Aussaguès, Y.; El Fadle, F.E.; Fraboul, F.; Bouvier, G. Toxicological Safety Assessment of Essential Oils Used as Food Supplements to Establish Safe Oral Recommended Doses. Food Chem. Toxicol. 2021, 157, 112603. [Google Scholar] [CrossRef]
- Kang, H.; Mintri, S.; Menon, A.V.; Lee, H.Y.; Choi, H.S.; Kim, J. Pharmacokinetics, Pharmacodynamics and Toxicology of Theranostic Nanoparticles. Nanoscale 2015, 7, 18848–18862. [Google Scholar] [CrossRef]
- El-Gebaly, A.S.; Sofy, A.R.; Hmed, A.A.; Youssef, A.M. Combination of Nanoparticles (NPs) and Essential Oils (EOs) as Promising Alternatives to Non-Effective Antibacterial, Antifungal and Antiviral Agents: A Review. Biocatal. Agric. Biotechnol. 2024, 57, 103067. [Google Scholar] [CrossRef]
Process | Definition | Example |
---|---|---|
Dissolution | Process in which a substance (gas, liquid, or solid) becomes uniformly dispersed within a solvent to create a solution [91]. | Origanum syriacum L. and Lavandula hybrida L. EOs have high dissolution rates, which correlate to their effectiveness in dissolving gutta-percha [92]. |
Partitioning | Drug (compound) solubilization within surfactants is driven by the partitioning of drugs into various regions of micelles, determined by the drug’s hydrophobicity, solubility, dissolution properties, partitioning area, and the ratio of sink condition [93]. | Adding eucalyptus and mentha oils at a 15% concentration in DSs might retard the migration of trazodone hydrochloride (TZN) from the transdermal film into the SC, potentially elevating the drug’s saturation solubility within the polymer matrix and consequently reducing TZN flux. Adding EOs to the transdermal systems resulted in decreased flux values with nearly identical enhancement factors, while flux values following skin pretreatment showed a significant increase [94]. |
Diffusion | The movement of molecules from areas of higher concentration to lower concentration. For drug molecules (compounds) to diffuse through a polymeric medium, they must be in a dissolved, or mobile, state [95]. | Franz diffusion cells experiment on mice with full-thickness skin revealed that Lippia origanoides, Turnera diffusa, eugenol, carvacrol, and limonene resulted in increased caffeine permeation, suggesting their potential efficacy as penetration enhancers in transdermal DSs [96]. |
Osmosis | Osmotic pumps offer advantages such as simplicity in operation without the need for electrical energy, leading to robust and easily miniaturized designs. Drugs within these pumps can be stored in either liquid or solid form, with the latter allowing efficient storage in a concentrated manner, occupying minimal space, and dissolution by water when needed for delivery as a liquid solution [97]. | In vivo study on mice showed continuous administration of bergamot essential oil via an osmotic pump significantly mitigated neuropathic pain behaviors in mice, suggesting a sustained analgesic effect mediated by opioid receptors [98]. |
Swelling | Swelling occurs when the solvent penetrates the polymer [99]. | Release of coriander EO containing microcapsules (chitosan, alginate, and inulin) followed a swelling-diffusion controlled process, depending on temperature and pH. Inulin reduces both encapsulation efficiency and the release ratio, while the release of coriander EO depends on a swelling–diffusion controlled process [100]. |
Erosion | Erosion can occur from the surface or the bulk of the polymer, or a combination of both, with control mechanisms including water and drug diffusion, swelling, chemical degradation, or dissolution of the polymer, potentially leading to zero-order release kinetics due to the interplay between these processes [95]. | Menthol-based solid dispersion technique plays a critical role in controlling various physicomechanical properties for drug release, including swelling, erosion, and matrix stability. A study indicates that even though swelling decreased after 4 h, there was a corresponding increase in sulfamethoxazole release from the oral tablet matrix, suggesting that drug release in the later phase was controlled by erosion [101]. |
Targeting | The “targeting fraction” specifically binds with certain moieties or receptors at the target site, enabling personalized therapy with low drug dosage, high efficacy, and minimal side effects. Targeted nanocarriers are recognized for their ability to enhance drug bioavailability and efficacy through diverse targeting mechanisms, offering significant advantages in therapeutic outcomes [102]. | The EOs exhibit cancer cell-targeting activity, enhancing the effectiveness of conventional chemotherapy drugs, and also demonstrate pro-immune functions when administered to cancer patients [103]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaspute, G.; Ivaskiene, T.; Ramanavicius, A.; Ramanavicius, S.; Prentice, U. Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability. Pharmaceutics 2025, 17, 793. https://doi.org/10.3390/pharmaceutics17060793
Kaspute G, Ivaskiene T, Ramanavicius A, Ramanavicius S, Prentice U. Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability. Pharmaceutics. 2025; 17(6):793. https://doi.org/10.3390/pharmaceutics17060793
Chicago/Turabian StyleKaspute, Greta, Tatjana Ivaskiene, Arunas Ramanavicius, Simonas Ramanavicius, and Urte Prentice. 2025. "Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability" Pharmaceutics 17, no. 6: 793. https://doi.org/10.3390/pharmaceutics17060793
APA StyleKaspute, G., Ivaskiene, T., Ramanavicius, A., Ramanavicius, S., & Prentice, U. (2025). Terpenes and Essential Oils in Pharmaceutics: Applications as Therapeutic Agents and Penetration Enhancers with Advanced Delivery Systems for Improved Stability and Bioavailability. Pharmaceutics, 17(6), 793. https://doi.org/10.3390/pharmaceutics17060793