Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = light propagation in tissue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 23667 KB  
Article
Full-Wave Optical Modeling of Leaf Internal Light Scattering for Early-Stage Fungal Disease Detection
by Da-Young Lee and Dong-Yeop Na
Agriculture 2026, 16(2), 286; https://doi.org/10.3390/agriculture16020286 - 22 Jan 2026
Viewed by 16
Abstract
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early [...] Read more.
Modifications in leaf architecture disrupt optical properties and internal light-scattering dynamics. Accurate modeling of leaf-scale light scattering is therefore essential not only for understanding how disease affects the availability of light for chlorophyll absorption, but also for evaluating its potential as an early optical marker for plant disease detection prior to visible symptom development. Conventional ray-tracing and radiative-transfer models rely on high-frequency approximations and thus fail to capture diffraction and coherent multiple-scattering effects when internal leaf structures are comparable to optical wavelengths. To overcome these limitations, we present a GPU-accelerated finite-difference time-domain (FDTD) framework for full-wave simulation of light propagation within plant leaves, using anatomically realistic dicot and monocot leaf cross-section geometries. Microscopic images acquired from publicly available sources were segmented into distinct tissue regions and assigned wavelength-dependent complex refractive indices to construct realistic electromagnetic models. The proposed FDTD framework successfully reproduced characteristic reflectance and transmittance spectra of healthy leaves across the visible and near-infrared (NIR) ranges. Quantitative agreement between the FDTD-computed spectral reflectance and transmittance and those predicted by the reference PROSPECT leaf optical model was evaluated using Lin’s concordance correlation coefficient. Higher concordance was observed for dicot leaves (Cb=0.90) than for monocot leaves (Cb=0.79), indicating a stronger agreement for anatomically complex dicot structures. Furthermore, simulations mimicking an early-stage fungal infection in a dicot leaf—modeled by the geometric introduction of melanized hyphae penetrating the cuticle and upper epidermis—revealed a pronounced reduction in visible green reflectance and a strong suppression of the NIR reflectance plateau. These trends are consistent with experimental observations reported in previous studies. Overall, this proof-of-concept study represents the first full-wave FDTD-based optical modeling of internal light scattering in plant leaves. The proposed framework enables direct electromagnetic analysis of pre- and post-penetration light-scattering dynamics during early fungal infection and establishes a foundation for exploiting leaf-scale light scattering as a next-generation, pre-symptomatic diagnostic indicator for plant fungal diseases. Full article
(This article belongs to the Special Issue Exploring Sustainable Strategies That Control Fungal Plant Diseases)
Show Figures

Figure 1

24 pages, 1513 KB  
Article
A Biophysical Framework for High-Intensity Laser Therapy Based on Photoacoustic Pressure Thresholds
by Damiano Fortuna, Fabrizio Margheri, Scott Parker and Francesca Rossi
Appl. Sci. 2026, 16(1), 487; https://doi.org/10.3390/app16010487 - 3 Jan 2026
Viewed by 248
Abstract
High-Intensity Laser Therapy (HILT) represents a mechanistic subset of High-Power Laser Therapy (HPLT), distinguished by the addition of a photoacoustic component to established photochemical and photothermal effects. High-peak (kW), short-pulse emission generates pressure waves exceeding 10 kPa in water (27 °C) and approximately [...] Read more.
High-Intensity Laser Therapy (HILT) represents a mechanistic subset of High-Power Laser Therapy (HPLT), distinguished by the addition of a photoacoustic component to established photochemical and photothermal effects. High-peak (kW), short-pulse emission generates pressure waves exceeding 10 kPa in water (27 °C) and approximately 100 kPa in vivo, levels that are compatible with the activation of mechanotransductive processes relevant to cellular differentiation. These pressure waves propagate several centimeters into biological tissues, extending beyond the optical penetration depth of light. We introduce Pulse Energy Dose (PED), a physically grounded and clinically oriented dose metric, to determine whether a laser system meets the photoacoustic threshold while remaining within the thermoelastic regime. Only systems combining kilowatt-range peak power, microsecond pulses, high pulse energy, and very low duty cycles (<1%) consistently induce pressure waves within the therapeutic thermoelastic regime. PED was validated against the Margheri equation, showing a strong linear correlation with calculated pressure wave amplitude (Pearson r > 0.9, p < 0.0001). Based on these results, we define operational bounds that identify high-power laser systems capable of producing reproducible photoacoustic effects within thermoelastic conditions. This framework shifts classification from average power to mechanism of action, providing guidance for safe parameter selection and supporting a mechanism-based clinical use of high-power lasers, particularly in musculoskeletal disorders, cartilage regeneration, bone healing, and deep-tissue repair. Full article
Show Figures

Figure 1

38 pages, 2576 KB  
Review
Hormonal and Environmental Factors Influencing Secondary Somatic Embryogenesis
by Milica D. Bogdanović, Katarina B. Ćuković and Slađana I. Todorović
Agronomy 2026, 16(1), 70; https://doi.org/10.3390/agronomy16010070 - 25 Dec 2025
Viewed by 306
Abstract
Secondary somatic embryogenesis (SSE) represents a powerful tool for clonal propagation, efficient genetic modification, and plant conservation, enabling the continuous production of secondary somatic embryos (SSEs) from previously formed embryogenic tissues. The efficiency of SSE is determined both by external factors such as [...] Read more.
Secondary somatic embryogenesis (SSE) represents a powerful tool for clonal propagation, efficient genetic modification, and plant conservation, enabling the continuous production of secondary somatic embryos (SSEs) from previously formed embryogenic tissues. The efficiency of SSE is determined both by external factors such as exogenous hormonal and environmental conditions and internal cues such as explant type and genotype. Auxins, particularly synthetic 2,4-dichlorophenoxyacetic acid (2,4-D), represent key factors in inducing and maintaining embryogenic competence, while cytokinins often modulate the differentiation and proliferation of SSEs. The interplay of plant growth regulators (PGRs) not only affects the frequency of SSE induction, but also the morphology and proper development of the resulting embryos. Here, we provide a comprehensive review on hormonal treatments, especially the role of auxins and cytokinins and environmental factors such as temperature, light, and culture medium composition, that shape the embryogenic potential in SSE, with species-specific responses frequently being observed. The importance of primary explant selection, as well as the liquid phase and potential scale-up with bioreactors, are also discussed. Other challenges related to genotype recalcitrance, limited efficiency, maturation and conversion rates, and the lack of an advanced molecular approach are further addressed, providing a framework for improved regeneration and reliability across diverse species. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Somatic Embryogenesis–2nd Edition)
Show Figures

Figure 1

21 pages, 5920 KB  
Article
Effect of the Tracheal Optical Properties on the Spectral Assessment of the Level of Its Blood Supply In Vivo
by Anna Krivetskaya, Daniil Kustov, Tatiana Savelieva, Vladimir Parshin, Mikhail Ursov, Alexander Mariyko, Vladimir Levkin, Kirill Linkov, Sergey Kharnas, Mikhail Rusakov, Evgeny Sokolovich, Vladimir Makarov and Victor Loschenov
Diagnostics 2025, 15(24), 3170; https://doi.org/10.3390/diagnostics15243170 - 12 Dec 2025
Viewed by 502
Abstract
Background/Objectives: This work is devoted to the presentation of the intraoperative method for assessing the blood supply to the tracheal tissues in order to minimize the risk of tissue ischemia and necrosis by early diagnosis of bloodstream disorders during surgery. The vascular network [...] Read more.
Background/Objectives: This work is devoted to the presentation of the intraoperative method for assessing the blood supply to the tracheal tissues in order to minimize the risk of tissue ischemia and necrosis by early diagnosis of bloodstream disorders during surgery. The vascular network supplying the trachea is characterized by collateral blood circulation. However, after the surgical removal of a tracheal tumor, the created anastomosis may be untenable due to insufficient blood supply to the tissues. The consequence of such a disorder may require additional surgical interventions to restore the integrity of the trachea. Based on publicly available information, diffuse reflectance spectroscopy has not previously been used for blood supply assessment in tracheal surgeries. Methods: Light propagation in a four- or six-layer model of the tracheal wall (500–600 nm) was simulated using the Monte Carlo method; in the simulation, the layer thicknesses, levels of oxygen saturation (StO2) (0–100%), and blood filling (Hb% 0.5–2%) were varied. Intraoperative measurements using diffuse reflectance spectroscopy were performed in 12 patients at three stages of the operation. Results: The simulation showed that when the fiber is placed from the adventitial side, the differences in the diffuse scattered signal with changes in perichondrium saturation are 2.6 ± 1.7%, whereas when placed from the mucosa side, the changes are less than 1%, which means that deeper layers make a greater contribution to the signal with adventitial access. When testing the StO2 estimation algorithm, the simulation and experiment agree: the measured StO2 was 56 ± 7%, which is close to the specified level in the simulation. Clinical measurements demonstrated the possibility of recording saturation changes at the stages before and after the anastomosis. Conclusions: According to the results of this study, saturation estimation by diffuse reflectance spectroscopy shows the prospect for assessing the state of tracheal tissues by the level of their blood supply in clinical conditions in real time. Full article
Show Figures

Figure 1

8 pages, 1967 KB  
Communication
Storage of Plant Species with Desiccation-Sensitive Germplasm in a Compact Growth Chamber for Long-Term Space Missions
by Paulo Hercilio Viegas Rodrigues and Guilherme Bovi Ambrosano
Astronautics 2026, 1(1), 3; https://doi.org/10.3390/astronautics1010003 - 27 Nov 2025
Viewed by 283
Abstract
Plant species sensitive to desiccation or vegetatively propagation are difficult to store and transport in the germplasm for space travel. Applying plant tissue culture can help to create a Plant Germplasm Bank for this species. For this purpose, the Compact Growth Chamber (CGC) [...] Read more.
Plant species sensitive to desiccation or vegetatively propagation are difficult to store and transport in the germplasm for space travel. Applying plant tissue culture can help to create a Plant Germplasm Bank for this species. For this purpose, the Compact Growth Chamber (CGC) was created to store and transport in vitro explants, maintaining them for long periods in Slow-Grown Storage (SGS). Explants under SGS have reduced growth metabolism to complete space missions. This study aimed to evaluate the CGC efficacy in the long term of in vitro storage of explant of Taioba (Xanthosoma sagittifolium), a tropical species that vegetatively propagates and has high nutritional value. For this, three CGCs were connected, side by side, with different LED light spectra (CGC1: Red spectrum; CGC2: 50% Red + 50% Blue spectra-control; CGC3: Blue spectrum), each one containing nine test tubes with taioba explants (one per test tube), and LED lights intensity adjusted for 30 µmol m−2 s−1. The CGCs were maintained for 120 days in the darkroom, at 25 ± 2 °C temperature and 50–60% humidity, and, at the end, the growth and morphological parameters of taioba plantlets were evaluated. These results demonstrate that the explant storage in CGC3 showed lower root numbers and root lengths than in CGC1 and CGC2. In addition, the Blue spectrum in CGC3 reduced the root oxidation and browning, resulting in 100% live explants. This study provides that the CGC fulfilled its proposed function of transporting and storing the in vitro explants for space travel. Full article
Show Figures

Figure 1

20 pages, 2399 KB  
Article
Exploring Novel Optical Soliton Molecule for the Time Fractional Cubic–Quintic Nonlinear Pulse Propagation Model
by Syed T. R. Rizvi, Atef F. Hashem, Azrar Ul Hassan, Sana Shabbir, A. S. Al-Moisheer and Aly R. Seadawy
Fractal Fract. 2025, 9(8), 497; https://doi.org/10.3390/fractalfract9080497 - 29 Jul 2025
Cited by 6 | Viewed by 1159
Abstract
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions [...] Read more.
This study focuses on the analysis of soliton solutions within the framework of the time-fractional cubic–quintic nonlinear Schrödinger equation (TFCQ-NLSE), a powerful model with broad applications in complex physical phenomena such as fiber optic communications, nonlinear optics, optical signal processing, and laser–tissue interactions in medical science. The nonlinear effects exhibited by the model—such as self-focusing, self-phase modulation, and wave mixing—are influenced by the combined impact of the cubic and quintic nonlinear terms. To explore the dynamics of this model, we apply a robust analytical technique known as the sub-ODE method, which reveals a diverse range of soliton structures and offers deep insight into laser pulse interactions. The investigation yields a rich set of explicit soliton solutions, including hyperbolic, rational, singular, bright, Jacobian elliptic, Weierstrass elliptic, and periodic solutions. These waveforms have significant real-world relevance: bright solitons are employed in fiber optic communications for distortion-free long-distance data transmission, while both bright and dark solitons are used in nonlinear optics to study light behavior in media with intensity-dependent refractive indices. Solitons also contribute to advancements in quantum technologies, precision measurement, and fiber laser systems, where hyperbolic and periodic solitons facilitate stable, high-intensity pulse generation. Additionally, in nonlinear acoustics, solitons describe wave propagation in media where amplitude influences wave speed. Overall, this work highlights the theoretical depth and practical utility of soliton dynamics in fractional nonlinear systems. Full article
Show Figures

Figure 1

17 pages, 2111 KB  
Article
Establishment of an Efficient Regeneration System of Rosa ‘Pompon Veranda’
by Qin Zhou, Yuexin Zhang, Ruijie Li, Miao Tian, Changlong Zhong, Xiongbo Jiang and Wei Zhang
Agronomy 2025, 15(8), 1834; https://doi.org/10.3390/agronomy15081834 - 29 Jul 2025
Viewed by 1342
Abstract
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and [...] Read more.
Roses are one of the most essential ornamental flowers in the world. At present, traditional techniques such as cross breeding are mainly used in rose breeding. The inefficiency of the in vitro regeneration system has become the limiting step for the innovation and genetic improvement of rose germplasm resources. A tissue culture rapid propagation system of Rosa ‘Pompon Veranda’ was established using the stem segments with shoots as the initial experimental material. The results showed that the best disinfection method was to soak the explants in 75% ethanol for 1 min, and then soak them in 15% sodium hypochlorite solution for 15 min. The contamination rate was only about 6%. The best rooting medium for tissue culture seedlings was 1/2MS with 0.1 mg∙L−1 NAA, and the rooting rate can reach around 95%. On this basis, calluses were induced by using leaflets of tissue-cultured seedlings as explants. The results showed that the optimal medium for inducing callus tissue was MS + 5.0 mg∙L−1 2,4-D, with an induction rate of 100%. The calluses were cultured in the medium of MS with 0.01 mg∙L−1 NAA, 1.5 mg∙L−1 TDZ and 0.1 mg∙L−1 GA3 for 12 days in the dark and then transferred to light conditions. The differentiation rate of callus was 10.87%. On the medium of MS with 0.5 mg∙L−1 6-BA, 0.004 mg∙L−1 NAA and 0.1 mg∙L−1 GA3, the shoots could regenerate into whole plants. This study has established an in vitro regeneration system of R. ‘Pompon Veranda’, which is a key perquisite for the subsequent establishment of its genetic transformation system. Moreover, this method will also be an important reference for studies on quality traits such as floral scent and prickles of Rosa plants. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

15 pages, 4273 KB  
Article
Assessment of Optical Properties and Monte Carlo-Based Simulation of Light Propagation in Blackhearted Potatoes
by Yalin Guo, Yakai He, Xilong Li, Zhiming Guo, Mengyao Zhang, Xiaomei Huang, Zhiyou Zhu, Huabin Jian, Zhilong Du and Huangzhen Lv
Sensors 2025, 25(12), 3713; https://doi.org/10.3390/s25123713 - 13 Jun 2025
Cited by 1 | Viewed by 1168
Abstract
This study investigated the optical properties (OPs) and Monte Carlo (MC) simulations of light propagation in Healthy Group (HG) and Blackhearted Group (BG) potatoes. The MC simulation of light propagation indicated that both the photon packet weight and the penetration depth were significantly [...] Read more.
This study investigated the optical properties (OPs) and Monte Carlo (MC) simulations of light propagation in Healthy Group (HG) and Blackhearted Group (BG) potatoes. The MC simulation of light propagation indicated that both the photon packet weight and the penetration depth were significantly lower in blackhearted tissues than in healthy tissues. The simulation revealed deeper light penetration in healthy tissues than in the blackhearted tissues, approximately 6.73 mm at 805 nm, whereas the penetration depth in blackhearted tissues was much shallower (1.30 mm at 805 nm). Additionally, the simulated absorption energy at both 490 nm and 805 nm was higher in blackhearted tissues, suggesting that these wavelengths effectively detect blackheart in potatoes. The absorption (μa) and reduced scattering (μs) coefficients were obtained using Vis-NIR spectroscopy, which represented a notable increase in μa in BH tissues, particularly around 550–850 nm, and an increase in μs across the Vis-NIR region. Based on transmittance (Tt), μa and μs, Support Vector Machine Discriminant Analysis (SVM-DA) models demonstrated exceptional performance, achieving 95.83–100.00% accuracy in Cross-Validation sets, thereby confirming the robustness and reliability of the optical features for accurate blackheart detection. These findings provide valuable theoretical insights into the accuracy and robustness of predictive models for detecting blackhearted potatoes. Full article
(This article belongs to the Special Issue Perception and Imaging for Smart Agriculture)
Show Figures

Figure 1

26 pages, 5536 KB  
Review
The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review
by Chenjing Han, Fei Dong, Yu Qi, Yenan Wang, Jiao Zhu, Binghai Li, Lijuan Zhang, Xiaohui Lv and Jianghui Wang
Plants 2025, 14(11), 1689; https://doi.org/10.3390/plants14111689 - 31 May 2025
Cited by 2 | Viewed by 5084
Abstract
The Phalaenopsis genus, a horticulturally vital group within the Orchidaceae, dominates global floriculture markets through strategic cultivar innovation, scalable propagation, and data-driven cultivation. This review systematically examines the breeding, propagation, cultivation management, and potential applications of Phalaenopsis while providing insights into future [...] Read more.
The Phalaenopsis genus, a horticulturally vital group within the Orchidaceae, dominates global floriculture markets through strategic cultivar innovation, scalable propagation, and data-driven cultivation. This review systematically examines the breeding, propagation, cultivation management, and potential applications of Phalaenopsis while providing insights into future research directions. The main contents include the following: Breeding innovations—This review outlines the taxonomy of the Phalaenopsis genus and highlights its intergeneric hybridization potential, which offers vast opportunities for developing novel horticultural varieties. By establishing clear breeding objectives, researchers employ diverse breeding strategies, including conventional crossbreeding and biotechnological approaches (e.g., mutation breeding, ploidy manipulation, genetic transformation, and CRISPR/Cas9 editing). Propagation and cultivation management—Analyses of Phalaenopsis tissue culture protocols covering explant selection, media optimization, and regeneration systems are summarized. Key factors for efficient cultivation are discussed, including temperature, light, water, nutrient management, cultivation medium selection, and integrated pest/disease management. Scientific environmental control ensures robust plant growth, synchronized flowering, and high-quality flower production. Emerging applications—Phalaenopsis exhibits promising applications in functional bioactive compound extraction (e.g., antioxidants and antimicrobial agents). This review summarizes current advancements in Phalaenopsis breeding, cultivation, and potential applications. Based on technological progress and market demands, future research directions are proposed to support the sustainable development of the Phalaenopsis industry. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

34 pages, 4058 KB  
Review
Review of Artifacts and Related Processing in Ophthalmic Optical Coherence Tomography Angiography (OCTA)
by Zhefan Lin, Yitao Hu, Gongpu Lan, Jingjiang Xu, Jia Qin, Lin An and Yanping Huang
Photonics 2025, 12(6), 536; https://doi.org/10.3390/photonics12060536 - 25 May 2025
Cited by 1 | Viewed by 6422
Abstract
Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that can provide rich three-dimensional microvascular information of fundus in ophthalmic imaging. However, various imaging artifacts may be generated during OCTA data acquisition and processing, originating from a number of factors such as [...] Read more.
Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that can provide rich three-dimensional microvascular information of fundus in ophthalmic imaging. However, various imaging artifacts may be generated during OCTA data acquisition and processing, originating from a number of factors such as multiple light scattering, tissue motion, improper device operation and signal processing algorithms. Artifacts can detrimentally affect the qualitative interpretation of clinical pathologies and quantitative evaluation of vasculature parameters. This article firstly introduces the OCTA acquisition process and sources of artifacts, and then describes four different categories of artifacts in detail, mainly including light propagation and signal intensity-related artifacts, tissue motion artifacts, improper operation artifacts, and signal processing-related artifacts. Corresponding methods for the identification and processing of these artifacts are also presented. Furthermore, this article also details some recent progress in leveraging artificial intelligence (AI) technology in the identification and suppression of artifacts, showcasing its potential as a powerful tool in OCTA artifact processing. The development of artifact suppression techniques enables OCTA to reliably evaluate fundus diseases and monitor their progression. This development facilitates broader and deeper applications of OCTA in both research and clinics of ophthalmology. Full article
Show Figures

Figure 1

12 pages, 1136 KB  
Article
Hybrid Method for Solving the Radiative Transport Equation
by André Liemert, Dominik Reitzle and Alwin Kienle
Photonics 2025, 12(5), 409; https://doi.org/10.3390/photonics12050409 - 24 Apr 2025
Cited by 2 | Viewed by 894
Abstract
The spherical harmonics method (PN method) is often used for solving the radiative transport equation in terms of analytical functions. A severe and unsolved problem in this context was the evaluation of the angle-resolved radiance near sources and boundaries, which is [...] Read more.
The spherical harmonics method (PN method) is often used for solving the radiative transport equation in terms of analytical functions. A severe and unsolved problem in this context was the evaluation of the angle-resolved radiance near sources and boundaries, which is a serious limitation of this method in view of concrete applications, e.g., in biomedical optics for investigating the different types of optical microscopy, within NIR spectroscopy, such as for the determination of ingredients in foods or in pharmaceuticals, and within physics-based rendering. In this article, we report on a hybrid method that enables accurate evaluation of the angle-resolved radiance directly at the boundary of an anisotropically scattering medium, avoiding the problems of the traditional PN methods. The derived integral equation needed for the realization of the hybrid PN method is formally valid for an arbitrary convex bounded medium. The proposed approach can be evaluated with practically the same computational effort as the traditional PN method while being far more accurate. Full article
(This article belongs to the Special Issue Biomedical Photonics)
Show Figures

Figure 1

16 pages, 3209 KB  
Article
Side-Illuminating Optical Fiber for High-Power-Density-Mediated Intraluminal Photoacoustic Imaging
by Nidhi Singh, Carlos-Felipe Roa, Emmanuel Chérin, Lothar Lilge and Christine E. M. Demore
Appl. Sci. 2025, 15(7), 3639; https://doi.org/10.3390/app15073639 - 26 Mar 2025
Viewed by 2911
Abstract
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we [...] Read more.
Intraluminal photoacoustic (PA) imaging has the potential for providing physiological and functional information in wide-ranging clinical applications. Along with endoluminal ultrasound transducers, these applications require compact light delivery devices which can deliver high-energy ns-pulsed laser to the target region. In this work, we describe the design, method of fabrication and characterization of a new compact, side-fire optical fiber that can deliver high-energy laser pulses for PA imaging. Side-fire illuminators were fabricated using UV laser ablation to create windows on the side of a 1.5 mm diameter single core, multi-mode optical fiber with a reflective silver coating and a beveled end. Devices with 10 mm, 20 mm, and 30 mm window lengths were fabricated and their beam profiles characterized. Elongated side-fire fibers with −6 dB beam size up to 30.79 mm × 5.5 mm were developed. A side-fire to total output ratio of up to 0.69 and a side fire efficiency of up to 40%, relative to a standard front-fire fiber, were achieved. We evaluated the effects of high-energy ns-pulsed light propagation on the fiber by coupling the fiber to 18 mJ or 100 MW/cm2 (at 750 nm) beam from a Q-switched laser. The PA imaging with the fiber was demonstrated by detecting India ink targets embedded in chicken breast tissue over the full length of a 20 mm illumination window and over a 100° angle and by visualizing in vivo the rat ear vasculature. Full article
(This article belongs to the Special Issue Advanced Optical-Fiber-Related Technologies)
Show Figures

Figure 1

13 pages, 6468 KB  
Article
Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning
by Yu-Chen Chen, Shi-Xuan Mi, Ya-Ping Tian, Xiao-Bo Hu, Qi-Yao Yuan, Khian-Hooi Chew and Rui-Pin Chen
Sensors 2025, 25(6), 1803; https://doi.org/10.3390/s25061803 - 14 Mar 2025
Cited by 5 | Viewed by 1438
Abstract
Imaging technologies based on vector optical fields hold significant potential in the biomedical field, particularly for non-invasive scattering imaging of anisotropic biological tissues. However, the dynamic and anisotropic nature of biological tissues poses severe challenges to the propagation and reconstruction of vector optical [...] Read more.
Imaging technologies based on vector optical fields hold significant potential in the biomedical field, particularly for non-invasive scattering imaging of anisotropic biological tissues. However, the dynamic and anisotropic nature of biological tissues poses severe challenges to the propagation and reconstruction of vector optical fields due to light scattering. To address this, we propose a deep learning-based polarization-resolved restoration method aimed at achieving the efficient and accurate imaging reconstruction from speckle patterns generated after passing through anisotropic and dynamic time-varying biological scattering media. By innovatively leveraging the two orthogonal polarization components of vector optical fields, our approach significantly enhances the robustness of imaging reconstruction in dynamic and anisotropic biological scattering media, benefiting from the additional information dimension of vectorial optical fields and the powerful learning capacity of a deep neural network. For the first time, a hybrid network model is designed that integrates convolutional neural networks (CNN) with a Transformer architecture for capturing local and global features of a speckle image, enabling adaptive vectorial restoration of dynamically time-varying speckle patterns. The experimental results demonstrate that the model exhibits excellent robustness and generalization capabilities in reconstructing the two orthogonal polarization components from dynamic speckle patterns behind anisotropic biological media. This study not only provides an efficient solution for scattering imaging of dynamic anisotropic biological tissues but also advances the application of vector optical fields in dynamic scattering environments through the integration of deep learning and optical technologies. Full article
(This article belongs to the Special Issue Computational Optical Sensing and Imaging)
Show Figures

Figure 1

28 pages, 5870 KB  
Article
Integrative Analysis of Transcriptome and Metabolome Reveals Light Quality-Mediated Regulation of Adventitious Shoot Proliferation in Chinese Fir
by Meixiang Chen, Shanshan Xu, Yiquan Ye, Kaimin Lin, Weili Lan and Guangqiu Cao
Forests 2025, 16(3), 486; https://doi.org/10.3390/f16030486 - 10 Mar 2025
Viewed by 996
Abstract
Chinese fir (Cunninghamia lanceolata) is an important fast-growing tree species for timber production and ecological protection in China. Yet, its tissue culture for seedling propagation is hampered by low proliferation and poor quality. Light quality is vital for seedling proliferation and [...] Read more.
Chinese fir (Cunninghamia lanceolata) is an important fast-growing tree species for timber production and ecological protection in China. Yet, its tissue culture for seedling propagation is hampered by low proliferation and poor quality. Light quality is vital for seedling proliferation and growth, but the regulatory mechanisms remain poorly understood. In this study, a transcriptome and metabolome were integrated to explore light quality’s effects on adventitious shoot proliferation of tissue-cultured Chinese fir seedlings. The seedlings were grown under red, green, blue, and composite light-emitting diode conditions, with white light as the control. Results showed that blue and blue-dominant composite light enhanced proliferation by promoting auxin and cytokinin and increased biomass. Red light promoted shoot height, leaf area, and carotenoid content due to elevated gibberellin and reduced auxins and cytokinin levels but inhibited proliferation due to hormonal imbalances. Green light increased abscisic acid levels and suppressed growth. Transcriptome and metabolome analyses identified key pathways including plant hormone signal transduction, photosynthesis, and flavonoid and carotenoid biosynthesis. Weighted gene co-expression network analysis (WGCNA) identified four key genes regulated by light quality that further modulated hormone biosynthesis and signaling transduction. This research provided insights for optimizing Chinese fir seedling proliferation and growth, contributing to sustainable plantation management. Full article
(This article belongs to the Special Issue Advances in Forest Tree Seedling Cultivation Technology—2nd Edition)
Show Figures

Figure 1

49 pages, 14633 KB  
Article
Transmission, Spread, Longevity and Management of Hop Latent Viroid, a Widespread and Destructive Pathogen Affecting Cannabis (Cannabis sativa L.) Plants in North America
by Zamir K. Punja, Cameron Scott, Heather H. Tso, Jack Munz and Liam Buirs
Plants 2025, 14(5), 830; https://doi.org/10.3390/plants14050830 - 6 Mar 2025
Cited by 4 | Viewed by 7187
Abstract
Hop latent viroid (HLVd), a 256-nucleotide RNA strand with complementary base-pairing and internal stem loop structures, forms circular or rod-shaped molecules within diseased plants. RT-PCR/RT-qPCR was used to assess HLVd transmission, spread and longevity. The viroid was detected in asymptomatic stock plants and [...] Read more.
Hop latent viroid (HLVd), a 256-nucleotide RNA strand with complementary base-pairing and internal stem loop structures, forms circular or rod-shaped molecules within diseased plants. RT-PCR/RT-qPCR was used to assess HLVd transmission, spread and longevity. The viroid was detected in asymptomatic stock plants and in rooted vegetative cuttings, as well as in recirculated nutrient solution sampled from propagation tables and nozzles. Plant-to-plant spread through root infection in hydroponic cultivation was demonstrated. The viroid survived for 7 days and 4 weeks, respectively, in crushed leaf extracts (sap) or dried leaves/roots at room temperature. Following stem inoculation with infectious sap, HLVd was detected in root tissues within 2–3 weeks and in the foliage within 4–6 weeks. Plants grown under a 12:12 h photoperiod to induce inflorescence development showed more rapid spread of HLVd compared to 24 h lighting. The viroid was subsequently detected in inflorescence tissues, in trichome glands, in dried cannabis flowers and in crude resinous oil extracts. Anthers and pollen from infected male plants and seeds from infected female plants contained HLVd, giving rise to up to 100% infected seedlings. Artificially inoculated tomato and tobacco plants supported viroid replication in roots and leaves. Infected cannabis leaf and root tissues treated with UV-C for 3–5 min or temperatures of 70–90 °C for 30 min contained amplifiable HLVd-RNA. Infectious plant extract treated with 5–10% bleach (0.825% NaOCl) or 1000 ppm hypochlorous acid yielded no RT-PCR bands, suggesting the RNA was degraded. Meristem tip culture from HLVd-infected plants yielded a high frequency of pathogen-free plants, depending on the genotype. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation—2nd Edition)
Show Figures

Figure 1

Back to TopTop