The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review
Abstract
1. Introduction
2. Orchid Breeding
2.1. The Classification of the Phalaenopsis Genus
2.2. The Breeding of Phalaenopsis
2.2.1. Innovation in New Horticultural Cultivars
2.2.2. Breeding Methods
Hybridization Breeding
Mutagenesis Breeding
Ploidy Breeding
Genetic Transformation and CRISPR/Cas9 Genome Editing Technology
3. Phalaenopsis Orchid Propagation and Cultivation Practices
3.1. The Propagation of Phalaenopsis
3.2. Cultivation Practices of Phalaenopsis Orchid
3.2.1. The Biological Characteristics of Phalaenopsis
3.2.2. Environmental Adaptability of Phalaenopsis Cultivars
3.2.3. Environmental Factors of Phalaenopsis Cultivation
Temperature
Water
Light
Fertilization
Cultivation Medium
Pests and Diseases
4. The Potential Applications of Phalaenopsis
5. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- The World Flora Online. Orchidaceae Family. 2024. Available online: https://www.worldfloraonline.org/search?query=+Orchidaceae&view=&limit=24&start=0&sort=&facet=taxon.taxonomic_status_s%3aAccepted&facet=taxon.taxon_rank_s%3aSPECIES (accessed on 24 October 2024).
- Wang, S.L.; An, H.R.; Tong, C.G.; Jang, S. Flowering and flowering genes: From model plants to orchids. Hortic. Environ. Biotechnol. 2021, 62, 135–148. [Google Scholar] [CrossRef]
- Tiwari, P.; Bose, S.K.; Gautam, A.; Chen, J.T. Emerging trends and insights into the cultivation strategies, ethnomedicinal uses, and socio-economic attributes of orchids. J. Hortic. Sci. Biotechnol. 2023, 98, 273–298. [Google Scholar] [CrossRef]
- Liang, C.Y.; Rengasamy, K.P.; Huang, L.M.; Hsu, C.C.; Jeng, M.F.; Chen, W.H.; Chen, H.H. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC Plant Biol. 2020, 20, 212. [Google Scholar] [CrossRef] [PubMed]
- Koh, K.W.; Lu, H.C.; Chan, M.T. Virus resistance in orchids. Plant Sci. 2014, 228, 26–38. [Google Scholar] [CrossRef]
- Wang, S.L.; Viswanath, K.K.; Tong, C.G.; An, H.R.; Jang, S.J.; Chen, F.C. Floral induction and flower development of orchids. Front. Plant Sci. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Wang, J.Y. Phylogenetic and Biogeographic Study of Phalaenopsis Blume. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2019. [Google Scholar]
- Hsing, H.X.; Lin, Y.J.; Tong, C.G.; Li, M.J.; Chen, Y.J.; Ko, S.S. Efficient and heritable transformation of Phalaenopsis orchids. Bot. Stud. 2016, 57, 30. [Google Scholar] [CrossRef]
- Liyama, C.M.; Vilcherrez-Atoche, J.A.; Germanà, M.A.; Vendrame, W.A.; Cardoso, J.C. Breeding of ornamental orchids with focus on Phalaenopsis: Current approaches, tools, and challenges for this century. Heredity 2024, 132, 163–178. [Google Scholar]
- Chase, M.W.; Cameron, K.M.; Freudenstein, J.V.; Pridgeon, A.M.; Salazar, G.; Berg, C.; Schuiteman, A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015, 177, 151–174. [Google Scholar] [CrossRef]
- Yusop, M.; Mohamed-Hussein, Z.; Ramzi, A.; Bunawan, H. Cymbidium mosaic virus infecting orchids: What, how, and what next. Iran. J. Biotechnol. 2022, 20, e3020. [Google Scholar]
- Vo, T.C.; Mun, J.H.; Yu, H.J.; Hwang, Y.J.; Chung, M.Y.; Kim, C.K.; Kim, H.Y.; Lim, K.B. Phenotypic analysis of parents and their reciprocal F1 hybrids in Phalaenopsis. Hortic. Environ. Biotechnol. 2015, 56, 612–617. [Google Scholar] [CrossRef]
- Yuan, S.C.; Bolaños-Villegas, P.; Chin, Y.T.; Chen, F.C. The breeding of Phalaenopsis hybrids. In The Orchid Genome; Chen, F.-C., Chin, S.-W., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021; pp. 29–40. [Google Scholar]
- RHS. UK’s Leading Gardening Charity. Available online: https://www.rhs.org.uk/ (accessed on 24 October 2024).
- Hsu, C.C.; Chung, Y.N.; Chen, T.C.; Lee, Y.L.; Kuo, Y.T.; Tsai, W.C.; Hsiao, Y.Y.; Chen, Y.W.; Wu, W.L.; Chen, H.H. An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol. 2011, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Teo, Z.W.N.; Zhou, W.; Shen, L. Dissecting the function of MADS-Box transcription factors in orchid reproductive development. Front. Plant Sci. 2019, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.T.; Huang, K.L.; Shen, R.S.; Miyajima, I.; Hsu, S.T. Using cut-column pollination method to overcome crossing barriers in Phalaenopsis sunrise goldmour ‘KHM637’. J. Fac. Agric. Kyushu Univ. 2014, 59, 265–271. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhao, X.W.; Li, Y.Y.; Ke, S.J.; Yin, W.L.; Lan, S.R.; Liu, Z.J. Advances and prospects of orchid research and industrialization. Hortic. Res. 2022, 9, uhac220. [Google Scholar] [CrossRef]
- Yuan, S.C.; Lekawatana, S.; Amore, T.D.; Chen, F.C.; Chin, S.W.; Vega, D.M.; Wang, Y.T. The Global Orchid Market. In The Orchid Genome; Chen, F.-C., Chin, S.-W., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021; pp. 1–28. [Google Scholar]
- Tsai, W.C.; Dievart, A.; Hsu, C.C.; Hsiao, Y.Y.; Chiou, S.Y.; Huang, H.; Chen, H.H. Post genomics era for orchid research. Bot. Stud. 2017, 58, 61. [Google Scholar] [CrossRef]
- Lu, H.C.; Liu, Z.J.; Lan, S.R. Genome sequencing reveals the role of MADS-box gene families in the floral morphology evolution of orchids. Hortic. Plant J. 2019, 5, 247–254. [Google Scholar] [CrossRef]
- Song, C.; Wang, Y.; Manzoor, M.A.; Mao, D.; Wei, P.; Cao, Y.; Zhu, F. In-depth analysis of genomes and functional genomics of orchid using cutting-edge high-throughput sequencing. Front. Plant Sci. 2022, 13, 1018029. [Google Scholar] [CrossRef]
- Freudenstein, J.V.; Chase, M.W. Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: Progressive specialization and diversification. Ann. Bot. 2015, 115, 665–681. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, Y.; Huang, M.; Huang, W.; Liu, D.; Zhang, D.; Hu, H.; Downing, J.L.; Liu, Z.; Ma, H. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. J. Integr. Plant Biol. 2023, 65, 1204–1225. [Google Scholar] [CrossRef]
- Goh, M.W.K.; Kumar, P.P.; Lim, S.H.; Tan, H.T.W. Random amplified polymorphic DNA analysis of the moth orchids, Phalaenopsis (Epidendroideae: Orchidaceae). Euphytica 2005, 141, 11–22. [Google Scholar] [CrossRef]
- Tsai, C.; Chou, C. Molecular phylogenetics of Phalaenopsis taxa: An updated review. Orchid Sci. Biotechnol. 2007, 1, 44–50. [Google Scholar]
- Tsai, C.C.; Huang, S.C.; Huang, P.L.; Chou, C.H. Phylogeny of the genus Phalaenopsis (Orchidaceae) with emphasis on the subgenus Phalaenopsis based on the sequences of the internal transcribed spacers 1 and 2 rDNA. J. Hortic. Sci. Biotechnol. 2003, 78, 879–887. [Google Scholar] [CrossRef]
- Ichihashi, S.; Mii, M. Practical Floral Horticulture Techniques: Cultivation and Production of Phalaenopsis Orchids; Seibundo Shinkosha Publishing Co., Ltd.: Tokyo, Japan, 2006. [Google Scholar]
- Li, M.; Gruss, O.; Liu, Z. Nomenclature changes in Phalaenopsis subgen. Hygrochilus (Orchidaceae; Epidendroideae; Vandeae) based on DNA evidence. Phytotaxa 2016, 275, 055–061. [Google Scholar]
- Cardoso, J.C.; Zanello, C.A.; Chen, J.T. An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int. J. Mol. Sci. 2020, 21, 985. [Google Scholar] [CrossRef]
- Mii, M. Ornamental plant breeding through interspecific hybridization, somatic hybridization and genetic transformation. Acta Hortic. 2012, 953, 43–54. [Google Scholar] [CrossRef]
- Vo, T.; Lee, H.; Deepo, D.; Hwang, Y.; Kim, H.; Lim, K. Comparisons of morphological and chromosomal characteristics of Phalaenopsis mini type cultivars. J. Agric. Life Sci. 2021, 55, 77–83. [Google Scholar] [CrossRef]
- Mursyanti, E.; Purwantoro, A.; Moeljopawiro, S.; Semiarti, E. Micropropagation of mini orchid hybrid Phalaenopsis “Sogo Vivien”. J. Trop. Biodivers. Biotechnol. 2016, 1, 45. [Google Scholar] [CrossRef]
- Been, C.; Hwang, J. Breeding of a fragrant, mini-multiflora Phalaenopsis hybrid orchid cultivar, ‘Brave Star’. Flower Res. J. 2019, 27, 211–215. [Google Scholar] [CrossRef]
- Xiao, W.; Li, Z.; Chen, H.; Lv, F. Visualization of micromorphology of petal epidermal features of waxy and velvety flowers in Phalaenopsis. ScienceAsia 2020, 46, 657–664. [Google Scholar] [CrossRef]
- Li, A.; Gong, Z.; Sun, J.; Zhang, Y.; Fang, Y.; Zhu, Z.; Liu, X. The correlation between leaf and flowering traits of Phalaenopsis Sogo Yukidian ‘V3’. Chin. Agric. Sci. Bull. 2018, 34, 75–80. [Google Scholar]
- Lu, J.; Su, J.; Cui, Y. Establishment of rapid propagation system with cluster shoots pathway of Phalaenopsis Sogo Yukidian ‘V3’. Molecular Plant Breeding. Available online: https://link.cnki.net/urlid/46.1068.S.20241115.1536.004 (accessed on 24 October 2024).
- Li, Z.; Xiao, W.; Chen, H.; You, Y.; Lv, F. Characteristics separation of F1 offspring from Phalaenopsis ‘Frigdaas Oxford’ × Phal. 316. Chin. J. Trop. Crops 2014, 35, 854–861. [Google Scholar]
- Yuan, S.; Chin, S.; Chen, F. Current trends of Phalaenopsis orchid breeding and study on pollen storage. Acta Hortic. 2015, 1078, 19–23. [Google Scholar] [CrossRef]
- Wu, R.; Tsai, Y.; Dai, T. Breeding of Yapara Tariflor Pink Fairy ‘Tainung No. 2-Pink Fairy’ by intergeneric hybridization. Hortscience 2025, 60, 301–302. [Google Scholar] [CrossRef]
- Badriah, D.S.; Pramanik, D.; Kartikaningrum, S.; Dewanti, M.; Mawaddah; Suryawati; Fibrianty, E.; Muharam, A.; Budiarto, K. Progeny evaluation from the crossing of novelty-type Phalaenopsis I Hsin Bee × Phalaenopsis pulcherrima var. champorensis 2024, 53, 249–265. [Google Scholar] [CrossRef]
- Devi, K.S.; Sanabam, R.; Singh, N.S.; Devi, E.J.; Devi, H.S. Intergeneric hybridization of two endangered orchids, Vanda stangeana and Phalaenopsis hygrochila, and molecular confirmation of hybridity using SSR and SCoT markers. S. Afr. J. Bot. 2023, 161, 140–150. [Google Scholar] [CrossRef]
- Wu, J.; Hsieh, T.; Tsao, C.; Chuang, K. Breeding of an indigo Phalaenopsis by intergeneric hybridization: Rhynchonopsis Tariflor Blue Kid ‘1030-4’. Hortscience 2022, 57, 489–490. [Google Scholar] [CrossRef]
- Lee, Y.; Tseng, Y.; Lee, Y.; Chung, M. Chromosome constitution and nuclear DNA content of Phalaenopsis hybrids. Sci. Hortic. 2020, 262, 109089. [Google Scholar] [CrossRef]
- Meng, Y.; Li, W.; Guan, Y.X.; Song, Z.H.; He, G.R.; Peng, D.H.; Ming, F. Mechanism underlying the rapid growth of Phalaenopsis equestris induced by 60Co-γ-ray irradiation. Mol. Genet. Genom. 2024, 299, 13. [Google Scholar] [CrossRef]
- Hartati, S.; Samanhudi; Sukaya; Aji, T.A. Diversity induction with gamma-ray irradiation on Phalaenopsis amboinensis var. common natural orchid generation M1V0. IOP Conf. Ser. Earth Environ. Sci. 2024, 1317, 012001. [Google Scholar] [CrossRef]
- Putri, H.A.; Purwito, A.; Sudarsono, S.; Sukma, D. Morphological, molecular and resistance responses to soft-rot disease variability among plantlets of Phalaenopsis amabilis regenerated from irradiated protocorms. Biodiversitas 2021, 22, 1077–1090. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Li, J.; Wang, Z.N.; Zheng, C. Effect of fast neutron radiation on the proliferation and differentiation of protocorm-like bodies and seedlings stem segments of Phalaenopsis. J. Nucl. Agric. Sci. 2014, 28, 0440–0455. [Google Scholar]
- Widiarsih, S.; Dwimahyani, I. Gamma irradiation application for mutation breeding in early flowering moth orchid (Phalaenopsis amabilis Bl.). J. Ilm. Apl. Isot. Dan Radiasi 2013, 9, 59–66. [Google Scholar]
- Wu, T.; Zhao, X.; Yang, S.; Yang, J.; Zhu, J.; Kou, Y.; Yu, X.; Ge, H.; Jia, R. Induction of 2n pollen with colchicine during microsporogenesis in Phalaenopsis. Breed. Sci. 2022, 72, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhu, J.; Yang, J.; Ge, H.; Yang, S.; Zhao, X.; Yu, X.; Jia, R. Polyploid induction of Phalaenopsis protocorms via colchicine treatment. J. Nucl. Agric. Sci. 2021, 35, 2463–2469. [Google Scholar]
- Mohammadi, M.; Kaviani, B.; Sedaghathoor, S. In vivo polyploidy induction of Phalaenopsis amabilis in a bubble bioreactor system using colchicine. Ornam. Hortic. 2021, 27, 204–212. [Google Scholar] [CrossRef]
- Putri, A.A.; Sukma, D.; Aziz, S.A.; Syukur, M. Protocorm growth medium composition before colchicine treatment to increase polyploidy on Phalaenopsis amabilis (L.) Blume. J. Agron. Indones. 2018, 46, 306–313. [Google Scholar] [CrossRef]
- Azmi, T.K.K.; Sukma, D.; Aziz, S.A.; Syukur, M. Polyploidy induction of moth orchid (Phalaenopsis amabilis (L.) Blume) by colchicine treatment on pollinated flowers. J. Agric. Sci. 2016, 11, 62–130. [Google Scholar] [CrossRef]
- Primasiwi, D.H.; Purwestri, Y.A.; Semiarti, E. Improving transient gene expression and agroinfiltration-based transformation effectiveness in Indonesian orchid Phalaenopsis amabilis (L.) Blume. Indones. J. Biotechnol. 2024, 29, 111–120. [Google Scholar] [CrossRef]
- Hsieh, K.T.; Liu, S.H.; Wang, I.W.; Chen, L.J. Phalaenopsis orchid miniaturization by overexpression of OsGA2ox6, a rice GA2-oxidase gene. Bot. Stud. 2020, 61, 10. [Google Scholar]
- Chew, Y.; Abdullah, W.; Kok, A.; Abdullah, J.; Mahmood, M.; Lai, K. Development of an efficient particle bombardment transformation system for the endemic orchid, Phalaenopsis bellina. Sains Malays. 2019, 48, 1867–1877. [Google Scholar] [CrossRef]
- Mursyanti, E.; Purwantoro, A.; Moeljopawiro, S.; Semiarti, E. Induction of somatic embryogenesis through overexpression of ATRKD4 Genes in Phalaenopsis “Sogo Vivien”. Indones. J. Biotechnol. 2015, 20, 42–53. [Google Scholar] [CrossRef]
- Suputri, N.P.A.E.O.; Prasojo, I.S.; Prabowo, L.A.T.; Purwestri, Y.A.; Purnomo; Semiarti, E. Identification of early flowering mutant gene in Phalaenopsis amabilis (L.) Blume for sgRNA construction in CRISPR/Cas9 genome editing system. Braz. J. Biol. 2024, 84, e268133. [Google Scholar] [CrossRef] [PubMed]
- Xia, K.; Zhang, D.; Xu, X.; Li, G.; Yang, Y.; Chen, Z.; Wang, X.; Zhang, G.; Sun, H.; Gu, Y. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. Plant Sci. 2022, 322, 111368. [Google Scholar] [CrossRef] [PubMed]
- Nopitasari, S.; Setiawati, Y.; Lawrie, M.D.; Purwantoro, A.; Widada, J.; Sasongko, A.B.; Yoshioka, Y.; Matsumoto, S.; Ninomiya, K.; Asano, Y.; et al. Development of an Agrobacterium-delivered CRISPR/Cas9 for Phalaenopsis amabilis (L.) Blume genome editing system. AIP Conf. Proc. 2020, 2260, 1–10. [Google Scholar]
- Tong, C.; Wu, F.; Yuan, Y.; Chen, Y.; Lin, C. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnol. J. 2020, 18, 889–891. [Google Scholar] [CrossRef]
- Semiarti, E.; Nopitasari, S.; Setiawati, Y.; Lawrie, M.D.; Purwantoro, A.; Widada, J.; Ninomiya, K.; Asano, Y.; Matsumoto, S.; Yoshioka, Y. Application of CRISPR/Cas9 genome editing system for molecular breeding of orchids. Indones. J. Biotechnol. 2020, 25, 61–68. [Google Scholar] [CrossRef]
- Zhu, G. Progress in germplasm resources and crossbreeding of Phalaenopsis. Guangdong Agric. Sci. 2015, 2015, 31–38. [Google Scholar]
- Tsai, C.; Chiang, Y.; Huang, S.; Liu, W.; Chou, C. Intergeneric hybridization, embryo rescue and molecular detection for intergeneric hybrids between Ascocenda and Phalaenopsis. Acta Hortic. 2009, 829, 413–416. [Google Scholar] [CrossRef]
- Ding, P.; Guo, W.; Sun, J.; Zhang, J.; Liu, X. Research advance on cross breeding of Phalaenopsis spp. J. Anhui Agric. Sci. 2014, 42, 1954–1956. [Google Scholar]
- Lee, Y.; Chung, M. Chromosome analysis of Phalaenopsis yellow cultivars. In The Orchid Genome; Chen, F.-C., Chin, S.-W., Eds.; Compendium of Plant Genomes; Springer: Cham, Switzerland, 2021; pp. 67–72. [Google Scholar]
- Xu, S.; Zhang, T.; Liao, F.; Lian, F. A review on studies of Phalaenopsis germplasm resources and breeding. Chinese Hortic. Abstract 2010, 2010, 27–30. [Google Scholar]
- Zhu, G.F. Common parents for hybrid breeding of Phalaenopsis orchids. China Flowers Hortic. 2002, 2002, 24–25. [Google Scholar]
- Lu, S.C. Chinese and Exotic Orchids; Jindun Press: Beijing, China, 1994; pp. 97–104. [Google Scholar]
- Zhang, G.; Zhao, Y.; Liu, X.; Wang, R.; Jiang, S.; Yang, S. Research progress of Phalaenopsis breeding technology in China. Guizhou Agric. Sci. 2020, 48, 86–92. [Google Scholar]
- Melsen, K.; van de Wouw, M.; Contreras Ryan, N. Mutation breeding in ornamentals. Hortscience 2021, 56, 1154–1165. [Google Scholar] [CrossRef]
- Magdalita, P.M.; Alangelico, O.; San Pascual, R.L. Villareal. Evaluation of plant and flower characteristics of selected 15-Gy irradiated Phalaenopsis aphrodite. Mindanao J. Sci. Technol. 2022, 20, S1. [Google Scholar] [CrossRef]
- Farid, N.; Ulinnuha, Z.; Dinuriah, I. Evaluation of flower diversity of selected Phalaenopsis orchids mutant irradiated by gamma ray. Int. J. Agric. Biol. 2024, 31, 277–284. [Google Scholar]
- Magdalita, P.M.; Pascual, A.S.; Villareal, R. Characterization and flowering behavior of eleven philippine native Phalaenopsis species and gamma irradiation effects on Phalaenopsis aphrodite. Philipp. J. Sci. 2019, 149, 1–10. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, R.; Yang, S.; Feng, J.; Zhao, Y.; Wang, S.; Wang, J. Effect of 60Co-γrays on growth of Phalaenopsis. Shanxi J. Agric. Sci. 2024, 70, 12–18. [Google Scholar]
- Li, W. Germplasm Innovation and Mechanism Exploration of Phalaenopsis equestris in 60Co-γ-Ray Radiation. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2022. [Google Scholar]
- Li, Y.M.; Yin, L.J.; He, X.Y.; Hu, C.L.; Wu, R.H.; Long, Q.; Xiao, S.X.; Yuan, D.Y. Ploidy and fruit trait variation in oil-tea Camellia: Implications for ploidy breeding. J. Integr. Agric. 2024, 23, 2662–2673. [Google Scholar] [CrossRef]
- Tian, S.; Zhang, J.; Zhao, H.; Zong, M.; Li, M.; Gong, G.; Wang, J.; Zhang, J.; Ren, Y.; Zhang, H.; et al. Production of double haploid watermelon via maternal haploid induction. Plant Biotechnol. J. 2023, 21, 1308–1310. [Google Scholar] [CrossRef]
- Devaux, P.; Kilian, A.; Kleinhofs, A. Anther culture and Hordeum bulbosum-derived barley doubled haploids mutations and methylation. Mol. Genet. Genom. 1993, 241, 674–679. [Google Scholar] [CrossRef]
- Kazumitsu, M.; Mii, M.; Ken, T.; Hisashi, K. Research on haploid breeding in Orchidaceae plants 1 Induction of moth orchid haploids by pseudofertilized ovule culture. Horicultural Res. 2012, 11, 241. [Google Scholar]
- Silva, J.T.; Giang, D.T.T. Unsuccessful in vitro regeneration from Phalaenopsis (Orchidaceae) flowers. All-Results J. Biol. 2014, 5, 18–22. [Google Scholar]
- Marasek-Ciołakowska, A.; Xie, S.; Arens, P.; Van Tuyl, J.M. Ploidy manipulation and introgression breeding in Darwin hybrid tulips. Euphytica 2014, 198, 389–400. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Lim, K.B.; Ramanna, M.S. Interspecific hybridization and introgression. In Breeding for Ornamentals: Classical and Molecular Approaches; Vainstein, A., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherland, 2002; pp. 85–103. [Google Scholar]
- Wongprichachan, P.; Huang, K.L.; Hsu, S.T.; Chou, Y.M.; Liu, T.Y.; Okubo, H. Induction of polyploid Phalaenopsis amabilis by N2O treatment. J. Fac. Agric. Kyushu Univ. 2013, 58, 33–36. [Google Scholar]
- Bolaños -Villegas, P.; Chen, F.C. Advances and perspectives for polyploidy breeding in orchids. Plants 2022, 11, 1421. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, G.; Ye, Q.; Chen, H. Cytological observations on chromosome numbers in 50 hybrid cultivars and species of Phalaenopsis. Chin. J. Trop. Crops 2013, 34, 1871–1876. [Google Scholar]
- Zhuang, D.; Qu, Y.; Xu, D.; Li, J.; Chen, Z. Analysis on chromosome number and morphology of varieties in Phalaenopsis. Acta Hortic. Sin. 2007, 34, 1257–1262. [Google Scholar]
- Chen, W.H.; Tang, C.Y. Genome Size Variation in Species of the Genus Phalaenopsis Blume (Orchidaceae) and Its Application in Variety Improvement; Orchid Biotechnology Ⅱ; World Scientific: Singapore, 2017; p. 2. [Google Scholar]
- Wu, T.; Jia, R.; Yang, S.; Zhao, X.; Yu, X.; Guo, Y.; Ge, H. Research advances and prospects on Phalaenopsis polyploid breeding. Acta Hortic. Sin. 2022, 49, 448–462. [Google Scholar]
- Wongprichachan, P.; Shen, T.; Huang, K.; Okubo, H. Meiotic behavior, capsule setting and seed germination of diploid and polyploid Phalaenopsis amabilis. J. Fac. Agric. Kyushu Univ. 2012, 57, 405–409. [Google Scholar] [CrossRef]
- Rahayu, E.M.D.; Sukma, D.; Syukur, M.; Rawati. Induksi Poliploidi Phalaenopsis amabilis (L.) Blume dan Phalaenopsis amboinensis J. J. Smith dengan Kolkisin dalam Kultur In Vitro. J. Agron. Indones. 2016, 43, 219. [Google Scholar] [CrossRef]
- Griesbach, R.J. Colchicine-induced polyploidy in Phalaenopsis orchids. Plant Cell Tissue Organ Cult. 1981, 1, 103–107. [Google Scholar] [CrossRef]
- Miguel, T.P.; Leonhardt, K.W. In vitro polyploid induction of orchids using oryzalin. Sci. Hortic. 2011, 130, 314–319. [Google Scholar] [CrossRef]
- Chen, W.H.; Tang, C.Y. A Protocol for the Induction of Polyploids in Phalaenopsis orchids by In Vitro Method Without Using Anti-Microtubule Agents. Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols; Humana Press: New York, NY, USA, 2018. [Google Scholar]
- Hartati, S.; Samanhudi; Cahyono, O.; Wibowo, A.; Herviana, A. The Chromosome of Phalaenopsis spp. and Doritaenopsis sp. Hybrid Induced by Colchicine. IOP Conf. Ser. Earth Environ. Sci. 2023, 1133, 012064. [Google Scholar] [CrossRef]
- Liu, Y. Distinct Cross Incompatibility and Induction of Alloployploid in Phalaenopsis. Master’s Dissertation, South China Agricultural University, Guangzhou, China, 2012. [Google Scholar]
- Cao, Z. Study on Agrobacterium-Mediated Transgenic Technology of Orchid. Master’s Dissertation, South China Agricultural University, Guangzhou, China, 2000. [Google Scholar]
- Fan, S. Genetic engineering of ORSV-resistant Phalaenopsis. In Proceedings of the 4th International Conference on Biomedical Engineering and Informatics, Shanghai, China, 15–17 October 2011; pp. 1432–1435. [Google Scholar]
- Anzai, H.; Ishii, Y.; Shichinohe, M.; Nojiri, C.; Morikawa, H.; Tanaka, M. Transformation of Phalaenopsis by particle bombardment. Plant Tissue Cult. Lett. 1996, 13, 265–272. [Google Scholar] [CrossRef]
- Belarmino, M.M.; Mii, M. Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep. 2000, 19, 435–442. [Google Scholar] [CrossRef]
- Semiarti, E.; Indrianto, A.; Purwantoro, A.; Isminingsih, S.; Suseno, N.; Ishikawa, T.; Yoshioka, Y.; Machida, Y.; Machida, C. Agrobacterium-mediated transformation of the wild orchid species Phalaenopsis amabilis. Plant Biotechnol. 2007, 24, 265–272. [Google Scholar] [CrossRef]
- Semiarti, E.; Indrianto, A.; Purwantoro, Y.H.; Martiwi, I.N.A.; Feroniasanti, Y.M.L.; Nadifah, F.; Mercuriana, I.S.; Dwiyani, R.; Iwakawa, H.; Yoshioka, Y.; et al. High-frequency genetic transformation of Phalaenopsis amabilis orchid using tomato extract-enriched medium for the pre-culture of protocorms. J. Hortic. Sci. Biotechnol. 2010, 85, 205–210. [Google Scholar] [CrossRef]
- Semiarti, E.; Purwantoro, A.; Mercuriani, I.S.; Anggriasari, A.M.; Jang, S.; Suhandono, S.; Machida, Y.; Machida, C. In planta transformation method for T-DNA transfer in orchids. AIP Conf. Proc. 2014, 1589, 303–307. [Google Scholar]
- Li, R. CRISPR/Cas9-Mediated Gene Editing of Fd and FNR in Oncidium. Master’s Dissertation, Fujian Agriculture and Forestry University, Fuzhou, China, 2019. [Google Scholar]
- Zhang, H.; He, D.; Li, X.; Dun, B.; Wu, D.; Huang, G. The establishment of rapid propagation system of ‘RED SUN’ Phalaenopsis aphrodite. Sustainability 2022, 14, 15305. [Google Scholar] [CrossRef]
- Zahara, M. A review: Micropropagation of Phalaenopsis sp. from leaf and flower stalk explants. J. Nat. 2017, 17, 91–95. [Google Scholar] [CrossRef]
- Roh, H.; Lee, S.; Lee, Y.; Baek, S.; Kim, J. Recent trends in tissue culture and genetic transformation of Phalaenopsis. J. Plant Biotechnol 2012, 39, 225–234. [Google Scholar] [CrossRef]
- Tokuhara, K.; Mii, M. Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cellular Developmental Biol.-Plant 2001, 37, 457–461. [Google Scholar] [CrossRef]
- Ghahremani, R.; Daylami, S.D.; Mirmasoumi, M.; Askari, N. Refining a protocol for somatic embryogenesis and plant regeneration of Phalaenopsis amabilis cv. Jinan from mature tissues. Turk. J. Agric. For. 2021, 45, 356–364. [Google Scholar] [CrossRef]
- Sarmah, D.; Mohapatra, P.P.; Seleiman, M.F.; Mandal, T.K.; Mandal, N.; Pramanik, K.; Jena, C.; Sow, S.; Alhammad, B.A.; Ali, N.; et al. Efficient regeneration of in vitro derived plants and genetic fidelity assessment of Phalaenopsis orchid. Front. Sustain. Food Syst. 2024, 8, 1359486. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, Z. Study on key technique of rapid propagation of Phalaenopsis amabilis. South. Hortic. 2011, 22, 3–5. [Google Scholar]
- Winarto, B.; Atmini, K.D.; Badriah, D.S.; Wegadara, M. In vitro embryogenesis derived from shoot tips in mass propagation of two selected-clones of Phalaenopsis. Not. Sci. Biol. 2016, 8, 317–325. [Google Scholar] [CrossRef]
- Preetha, L.; Shylaraj, K.S.; Rohini, P.C. An improved method for rapid propagation of Phalaenopsis hybrids via culture of longitudinally bisected shoot tips. J. Trop. Agric. 2017, 55, 45–51. [Google Scholar]
- Minh, T.V. Industrial propagation of Phalaenopsis sp. by bioreactor technique. Int. J. Res. Innov. Appl. Sci. 2023, 8, 29–39. [Google Scholar] [CrossRef]
- Li, J.; Liao, J.; Ke, L.; Cai, P. Tissue culture of the root segment of Phalaenopsis. Brief Commun. Plant Tissue Cult. 2000, 36, 37. [Google Scholar]
- Yang, H.; Huang, S.; Bao, Z.; Xin, J.; Wu, Z.; Huang, J. Tissue culture with Phalaenopsis root tip. J. For. Eng. 2009, 23, 120–123. [Google Scholar]
- Chen, C. Application of growth models to evaluate the microenvironmental conditions using tissue culture plantlets of Phalaenopsis Sogo Yukidian ‘V3’. Sci. Hortic. 2015, 191, 25–30. [Google Scholar] [CrossRef]
- Barough, A.M.; Daylami, S.D.; Fadavi, A.; Aliniaeifard, S.; Vahdati, K. Enhancing photosynthetic efficiency in Phalaenopsis amabilis through bioreactor innovations. BMC Plant Biol. 2024, 24, 1166. [Google Scholar]
- Ko, S.S. Phalaenopsis aphrodite (moth orchid): Functional genomics and biotechnology. J. Plant Biotechnol. Microbiol. 2020, 3, 28–33. [Google Scholar] [CrossRef]
- Christenson, E.A. Phalaenopsis: A monograph; International Phalaenopsis Allicance, Timber Press, Inc.: Portland, OR, USA, 2001; 330p. [Google Scholar]
- Yuan, X.; Liang, F.; Jiang, S.; Wan, M.; Ma, J.; Zhang, X.; Cui, B. Differential protein expression in Phalaenopsis under low temperature. Appl. Biochem. Biotechnol. 2014, 175, 909–924. [Google Scholar] [CrossRef]
- Lee, H.B.; Lee, J.H.; Jeong, S.J.; An, S.K.; Kang, B.C.; Kim, K.S. Intermittent high temperature reduces leaf sugar content and inhibits inflorescence initiation in Phalaenopsis hybrid. Environ. Exp. Botany 2021, 189, 104562. [Google Scholar] [CrossRef]
- South, K.A.; Thomas, P.A.; Iersel, M.W.; Young, C.; Jones, M.L. Ice cube irrigation of potted Phalaenopsis orchids in bark media does not decrease display life. Hortscience 2017, 52, 1271–1277. [Google Scholar] [CrossRef]
- Wen, Y.; Li, L.; Yu, X. Study on the production mode for flower forcing of Phalaenopsis via plant factory. J. Beijing Univ. Agric. 2017, 32, 68–72. [Google Scholar]
- Xiao, W.; Li, Z.; Chen, H.; Lv, F. Comparative measurement and evaluation of heat tolerance of different phalaenopsis varieties. Chin. J. Trop. Crops 2018, 38, 43–48. [Google Scholar]
- Wang, S.; Yang, S.; Jiang, S.; Zhang, G.; Wang, R.; Wang, J. Research progress of response to low temperature stress in Phalaenopsis. North. Hortic. 2023, 2023, 124–131. [Google Scholar]
- Feng, X.; Kong, Y.; Sun, Y.; Jiang, N.; Fang, Y.; Li, Y.; Niu, X. Cold tolerance of different Phalaenopsis cultivars: An evaluation. Chin. Agric. Sci. Bull. 2022, 38, 59–67. [Google Scholar]
- Xie, Z.; Liu, G.; Lu, Z.; Huang, X.; Qin, Q.; Luo, Q. Evaluation of cold resistance in 22 Phalaenopsis varieties under natural low temperature. North. Hotric. 2024, 2024, 58–65. [Google Scholar]
- Daems, S.; Ceusters, N.; Valcke, R.; Ceusters, J. Effects of chilling on the photosynthetic performance of the CAM orchid Phalaenopsis. Front. Plant Sci. 2022, 13, 981581. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.J.; Lee, H.B.; An, S.K.; Kim, K.S. High temperature stress prior to induction phase delays flowering initiation and inflorescence development in Phalaenopsis queen beer ‘Mantefon’. Sci. Hortic. 2020, 263, 109092. [Google Scholar] [CrossRef]
- Jeong, J.H.; Oh, W. Drought and darkness during long-term simulated shipping delay post-shipping flowering of Phalaenopsis Sogo Yukidian ‘V3’. Horticulture 2021, 7, 483. [Google Scholar] [CrossRef]
- Ceusters, N.; Valcke, R.; Frans, M.; Claes, J.E.; Ende, W.V.; Ceusters, J. Performance index and PSII connectivity under drought and contrasting light regimes in the CAM orchid Phalaenopsis. Front. Plant Sci. 2019, 10, 1012. [Google Scholar] [CrossRef]
- Tay, S.; He, J.; Yam, T.W. CAM plasticity in epiphytic tropical orhid species responding to environmental stress. Bot. Stud. 2019, 60, 7. [Google Scholar] [CrossRef]
- Mubarok, S.; Yulianty, V.; Farida, F. Vegetative growth response of Phalaenopsis sp. hybrids (Moon Orchid) in response to light intensity and fertilizer concentration. Ornam. Hortic. 2024, 30, e242694. [Google Scholar] [CrossRef]
- Magar, Y.G.; Noguchi, A.; Furufuji, S.; Kato, H.; Amaki, W. Effects of light quality during supplemental lighting on Phalaenopsis flowering. Acta Hortic. 2019, 1262, 75–80. [Google Scholar] [CrossRef]
- Ko, S.S.; Jhong, C.M.; Shih, M.C. Blue light acclimation reduces the photoinhibition of Phalaenopsis aphrodite (Moth Orchid). Int. J. Mol. Sci. 2020, 21, 6167. [Google Scholar] [CrossRef]
- Ha, B.Y.; Kim, H.R.; Kim, D.H.; Woo, J.W.; Jo, Y.J.; Kwon, S. Growth effects of the application of new controlled-release fertilizers on Phalaenopsis spp. Appl. Biol. Chem. 2018, 61, 625–633. [Google Scholar] [CrossRef]
- Lin, J.A.; Susilo, H.; Lei, J.Y.; Chang, Y.C.A. Effects of fertilizer nitrogen shortly before forcing through flowering on carbon-nitrogen composition and flowering of Phalaenopsis. Sci. Hortic. 2019, 252, 61–70. [Google Scholar] [CrossRef]
- Novais, S.V.; Novais, R.F.; Alvarez, V.H.H.; Villani, E.M.D.; Zenero, M.D.O. Phosphorus-Zinc interaction and iron and manganese uptake in the growth and nutrition of Phalaenopsis (Orchidaceae). Rev. Bras. De Cienc. Do Solo 2016, 40, e0160054. [Google Scholar] [CrossRef]
- Kaveriamma, M.M.; Rajeevan, P.K.; Girija, D.; Nandini, K. Sphagnum moss as growing medium in Phalaenopsis Orchid. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2118–2123. [Google Scholar] [CrossRef]
- Hanik, N.R.; Harsono, S.; Nugroho, A.A. Selection of peanut skin as a growing medium for moon orchid (Phalaenopsis amabilis). J. Biol. Trop. 2020, 20, 237–244. [Google Scholar] [CrossRef]
- Ma, X.; Hu, Q.; Zhang, Q.; Qian, R.; Liu, H.; Zhang, X. Physiological response of cold stress on 2 cultivars of Phalaenopsis amabilis. J. Southwest For. Univ. 2021, 41, 72–78. [Google Scholar]
- Mu, X.; Liu, L.; Meng, P.; Jin, K. Physiological mechanism of exogenous nitric oxide on alleviating low temperature stress of Phalaenopsis spp. Acta Bot. Boreali-Occident. Sin. 2015, 35, 978–984. [Google Scholar]
- Chen, J.; Chen, C. The effect of temperature on the inflorescence formation model for Phalaenopsis. Plants 2024, 13, 1280. [Google Scholar] [CrossRef]
- Newton, L.; Runkle, E.S. High-temperature inhibition of flowering of Phalaenopsis and Doritaenopsis orchids. Hortscience 2009, 44, 1271–1276. [Google Scholar] [CrossRef]
- Lee, H.B.; An, S.K.; Kim, K.S. Inhibition of premature flowering by intermittent high temperature treatment to young Phalaenopsis plants. Hortic. Environ. Biotechnol. 2015, 56, 618–628. [Google Scholar] [CrossRef]
- Gu, L. Effects of exogenous chitosan on physiological characteristics of Phalaenopsis seedlings under drought stress. Southwest China J. Agric. Sci. 2011, 24, 90–93. [Google Scholar]
- Lee, N. Phalaenopsis orchid light requirements. Horttechnology 2000, 10, 430. [Google Scholar] [CrossRef]
- Magar, Y.G.; Noguchi, A.; Furufuji, S. Effects of far-red light irradiation and its timing on the flowering in Phalaenopsis amabilis. Acta Hortic. 2023, 1377, 405–410. [Google Scholar] [CrossRef]
- Poole, H.A.; Seeley, J.G. Nitrogen, potassium and magnesium nutrition of three orchid genera1. J. Am. Soc. Hortic. Sci. 1978, 103, 485–488. [Google Scholar] [CrossRef]
- Wang, Y.T.; Chang, Y.C.A. Effects of nitrogen and the various forms of nitrogen on Phalaenopsis orchid-A Review. HortTechnology 2017, 27, 144–149. [Google Scholar] [CrossRef]
- Alves, G.A.C.; Hoshino, R.T.; Tejo, D.P.; Pedro, S.; Takane, R.J.; Faria, R.T. Calcium fertilization on the Phalaenopsis ssp. cultivation (Orchidaceae). J. Plant Nutr. 2024, 47, 3860–3867. [Google Scholar] [CrossRef]
- Chang, K.H.; Dai, T.; Huang, S.C.; Tsao, C.Y.; Tsai, W.T.; Wang, F.N.; Chang, A.H.; How, F.W. Application of artifical textile fiber as growing medium for Phalaenopsis cultivation. In Proceedings of the Korean Society for Horticultural Science, 2006 Abstracts 27th International Horticultural Congress & Exhibition, Seoul, Republic of Korea, 13–19 August 2006; pp. 62–63. [Google Scholar]
- Min, S.Y.; Oh, W. Effects of nutrient solution application methods and rhizospheric ventilation on vegetative growth of young moth orchids without a potting medium in a closed-type plant factory. J. People Plants Environ. 2020, 23, 545–554. [Google Scholar] [CrossRef]
- Kim, D.H.; Cho, M.; Kang, T.J.; Yang, C.Y.; Kim, H.H.; Yoon, J.B. The status of pest occurrence on Phalaenopsis orchid in Korea. Korean J. Appl. Entomol. 2015, 54, 345–349. [Google Scholar] [CrossRef]
- Han, Q.X.; Cheng, D.; Luo, J.; Zhou, C.Z.; Lin, Q.S.; Xiang, M.M. First report of Bradysia difformis (Diptera: Sciaridae) damage to Phalaenopsis orchid in China. J. Asia-Pac. Entomol. 2015, 18, 77–81. [Google Scholar] [CrossRef]
- Masarovic, R.; Stefánik, M.; Zvaríková, M.; Sigmund, J.; Fedor, P. First record of a new alien economically important Thrips Dichromothrips corbetti (Priesner, 1936) (Thysanoptera: Thripidae) in Slovakia—Short Communication. Plant Prot. Sci. 2017, 53, 177–180. [Google Scholar] [CrossRef]
- Sun, A.; Wang, L.; Zhang, Y.; Yang, X.; Wu, Y.; Yan, D.; Li, W.; Wu, X. Establishment of a triplex TaqMan quantitative real-time PCR assay for simultaneous detection of Cymbidium mosaic virus, Odontoglossum ringspot virus and Cymbidium ringspot virus. Front. Microbiol. 2023, 14, 1129259. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.J.; Cho, I.S.; Jeong, R.D. Identification of viruses infecting Phalaenopsis orchids using nanopore sequencing and development of an RT-RPA-CRISPR/Cas12a for rapid visual detection of Nerine Latent Virus. Int. J. Mol. Sci. 2024, 25, 2666. [Google Scholar] [CrossRef] [PubMed]
- Pai, H.; Jean, W.; Lee, Y.; Chang, Y.; Lin, N. Genome-wide analysis of small RNAs from Odontoglossum ringspot virus and Cymbidium mosaic virus synergistically infecting Phalaenopsis. Mol. Plant Pathol. 2019, 21, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.Y.; Hu, C.C.; Huang, Y.W.; Lee, C.W.; Luo, M.J.; Tu, C.W.; Lee, C.; Lin, N.S.; Hsu, Y.H. Argonaute 5 family proteins play crucial roles in the defence against Cymbidium mosaic virus and Odontoglossum ringspot virus in Phalaenopsis aphrodite subsp. formosana. Mol. Plant Pathol. 2021, 22, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Mahfut, M. Identification and efforts to control infection Odontoglossum ringspot virus (ORSV) on Orchid. Int. J. Eng. Sci. Inf. Technol. 2021, 1, 25–29. [Google Scholar] [CrossRef]
- Campol, J.R.; Naing, A.H.; Aung, H.M.; Cho, S.B.; Kang, H.; Chung, M.Y.; Kim, C.K. Production of genetically stable and Odontoglossum ringspot virus-free Cymbidium orchid ‘New True’ plants via meristem-derived protocorm-like body (PLB) subcultures. Plant Methods 2024, 20, 145. [Google Scholar] [CrossRef]
- Chen, T.; Pai, H.; Hou, L.; Lee, S.; Lin, T.; Chang, C.; Hsu, F.; Hsu, Y.; Lin, N. Dual resistance of transgenic plants against Cymbidium mosaic virus and Odontoglossum ringspot virus. Sci. Rep. 2019, 9, 10230. [Google Scholar] [CrossRef]
- Minh, T.; Tuyen, P.; Khang, D.; Quan, N.; Ha, P.; Quan, N.; Andriana, Y.; Fan, X.; Van, T.; Khanh, T.; et al. Potential use of plant waste from the moth orchid (Phalaenopsis Sogo Yukidian “V3”) as an antioxidant source. Foods 2017, 6, 85. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Lin, K.H.; Huang, M.Y.; Yang, C.M.; Shih, T.H.; Hsiung, T.C.; Lin, Y.C.; Tsao, F.C. Antioxidant activities of the methanol extracts of various parts of Phalaenopsis orchids with white, yellow, and purple flowers. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 457–465. [Google Scholar] [CrossRef]
- Irimescu, L.S.; Olivares, C.G.; Preda, C.I.; Digu, C.F.; Lu, G.; Blan, D.; Matei, F. Characterisation of the antimicrobial and antioxidant profile of Phalaenopsis orchid wastes. AgroLife Sci. J. 2021, 10, 101–108. [Google Scholar] [CrossRef]
- Ho, B.L.; Chen, J.C.; Huang, T.P.; Fang, S.C. Protocorm-like-body extract of Phalaenopsis aphrodite combats watermelon fruit blotch disease. Front. Plant Sci. 2022, 13, 1054586. [Google Scholar] [CrossRef]
- Chiu, P.C.; Li, Y.J.; Lo, C.Y.; Lin, S.M.; Huang, C.; Chiou, R.Y.Y. Properties characterization and identification of saponarin and ribosnarin (apigenin-6-C-ribosyl -7-O-glucoside) extracted abundantly from the white-color moth orchid flowers (Phalaenopsis Hybrids). Food Nutr. J. 2024, 8, 314. [Google Scholar]
- Minh, N.; Khang, D.; Tuyen, P.; Minh, L.; Anh, L.; Quan, N.; Ha, P.; Quan, N.; Toan, N.; Elzaawely, A.; et al. Phenolic compounds and antioxidant activity of Phalaenopsis orchid hybrids. Antioxidants 2016, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Hasegawa, S.; Inoue, Y.; Kunita, M.; Ohsumi, K.; Sakaida, T.; Yashiro, Y.; Nakata, S. Inhibitory effect of Phalaenopsis orchid extract on WNT1-induced immature melanocyte precursor differentiation in a novel in vitro solar lentigo model. Biosci. Biotechnol. Biochem. 2016, 80, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.H.; Hung, H.Y.; Yang, M.L.; Chen, H.H.; Kuo, P.C.; Wu, T.S. Chemical constituents from Phalaenopsis hybrids and their bioactivities. Nat. Prod. Commun. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Tzou, D.; Lee, C.; Wu, Y.; Tang, Y.; Cheng, C. Glycolipids of monogalactosyldiacylglycerol in Phalaenopsis leaves during growth and spike induction periods form mixed liposomes that enhance the inhibition of Escherichia coli growth. J. Chin. Chem. Soc. 2023, 71, 232–239. [Google Scholar] [CrossRef]
- Giovannini, A.; Laurà, M.; Nesi, B.; Savona, M.; Cardi, T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Rep. 2021, 40, 461–478. [Google Scholar] [CrossRef]
- Hsu, S.T.; Chuang, H.T.; Shen, T.M. Breeding barriers in red Phalaenopsis orchids. Acta Hortic. 2010, 2010, 145–152. [Google Scholar] [CrossRef]
- An, H.R.; Kwon, O.K.; Lee, S.Y.; Park, P.H.; Park, P.M.; Choi, I.; Lee, H.; Yoo, J.H. Breeding of yellow small-type Phalaenopsis ‘Yellow Scent’ with fragrance. Hortic. Sci. Technol. 2019, 37, 304–310. [Google Scholar] [CrossRef]
- Chen, J.M.; Zhu, X.Y.; Zheng, R.Y.; Tong, Y.; Peng, Y.K.; Xie, K.; Su, Q.L.; Huang, R.L.; Zhan, S.Y.; Shen, M.L.; et al. Orchestrating of native Phalaenopsis flower scents lighted the way through artificial selective breeding partiality in the current resource utilization. Ind. Crops Prod. 2024, 217, 118850. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Ming, F.; Liu, M.; Wang, X.; Zhang, Y. Correlation between floral color attributes and volatile components among 10 fragrant Phalaenopsis cultivars. Phyton-Int. J. Exp. Bot. 2025, 94, 379–391. [Google Scholar] [CrossRef]
- Roberta, P.; Stefania, D.P. Effects of plant size, temperature, and light intensity on flowering of Phalaenopsis hybrids in mediterranean greenhouses. Sci. World J. 2014, 2014, 420807. [Google Scholar]
- Su, W.R.; Chen, W.S.; Koshioka, M.; Mander, L.N.; Hung, L.S.; Chen, W.H.; Fu, Y.M.; Huang, K.L. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 2001, 39, 45–50. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Wang, Y.; Li, J.; Luo, P.; Xin, J.; Cui, Y. Genome-wide identification of DREB transcription factor family and functional analysis of PaDREB1D associated with low-temperature stress in Phalaenopsis aphrodite. Horticulturae 2024, 10, 933. [Google Scholar] [CrossRef]
- Pramanik, D.; Spaans, M.; Kranenburg, T.; Bogarín, D.; Heijungs, R.; Lens, F.; Smets, E.; Gravendeel, B. Inflorescence lignification of natural species and horticultural hybrids of Phalaenopsis orchids. Sci. Hortic. 2022, 295, 110845. [Google Scholar] [CrossRef]
- Puspa, A.; Rahayu, T.; Jayanti, G.E. Analysis of nanobubbles (NBs) technology and foliar fertilization on the growth of Phalaenopsis sp. orchid. Berk. Sainstek 2024, 12, 37. [Google Scholar] [CrossRef]
- Syafitri, F.I.; Rahayu, T.; Jayanti, G.E. Potential of ecoenzymes and N2 nanobubbles on the growth of Phalaenopsis sp. orchid at the acclimatization stage. J. Ilmu Dasar 2024, 25, 41. [Google Scholar] [CrossRef]
- Rizky, W.H.; Nuraini, A.; Gunawan, R.H. Micropropagation of Phalaenopsis orchid by natural substances for unique-formed “orchid key-holder” on small bottle in order to agritourism development. Sci. Works—Univ. Agron. Sci. Vet. Med. Buchar. Ser. B Hortic. 2011, 2011, 236–241. [Google Scholar]
- Zhao, J.; Ishak, S.M.M.; Yahaya, M.F. Design factors influencing consumer acceptance in cultural and creative products: An integrated review. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 1405–1420. [Google Scholar]
- Chow, W.; Shieh, M.D. A study of the cultural and creative product design of Phalaenopsis in Taiwan. J. Interdiscip. Math. 2018, 21, 389–395. [Google Scholar] [CrossRef]
Method | Process Description | Results | Reference |
---|---|---|---|
Cross-hybridization | Hybridization between P. pulcherrima fma. coerulea and Van. Lilac Blossom, with resulting hybrids serving as bridge parents. | Successfully bred an intergeneric hybrid Yap. Tariflor Pink Fairy ‘Tainung No. 2-Pink Fairy’. | [40] |
Introducing harlequin type to P. pulcherrima through cross breeding between P. I Hsin Bee x P. pulcherrima var. champorensis. | 35% of offspring expressed both dark pigmentation and spotted patterning inherited from the maternal parent. | [41] | |
Using SSR and SCoT marker systems to investigate cross ability of V. stangeana and P. hygrochila. | Hybridization of two different genera can successfully produce an intergeneric hybrid. | [42] | |
Using P. Fire Cracker as female parent and Rhy. coelestis as male parent to breed blue Phalaenopsis hybrids. | Successfully bred deep and nonfading blue color Phalaenopsis hybrid: Rhy. Tariflor Blue Kid ‘1030-4’. | [43] | |
Analyzing chromosomal compositions of 60 representative Phalaenopsis cultivars. | Genome size of parent species varies, and gene infiltration of parent species are also different. | [44] | |
Using P. ‘KS Little Gem’ and P. ‘1747’ as parental lines to perform reciprocal crosses. | Selection of ‘KS Little Gem’ as female parent during hybridization can produce longer shelf-life Phalaenopsis. | [12] | |
Pollinating P. Sunrise Goldmour ‘KHM637’ by removing upper column section while preserving intact stigma cavity. | Overcame cross barriers by cut-column pollination method and successfully obtaining offsprings. | [17] | |
Mutagenesis breeding | Using 60Co-γ-ray with dose of 40 Gy to treat P. equestris. | Increased leaf growth, sugar content, and antioxidant ability. | [45] |
Observing morphological variations in M1V0 generation of P. amboinensis irradiated with gamma-rays at different doses. | Successfully induced morphological diversity in P. amboinensis var. | [46] | |
Using γ-ray ranging from 5 to 20 Gy to irradiate protocorms to develop soft-rot resistance Phalaenopsis mutants. | 75% disease-resistant Phalaenopsis regenerants were derived from protocorm explants subjected to 5 Gy γ-ray exposure. | [47] | |
Using fast neutron impulse pile to irradiate Phalaenopsis PLBs and seedling stem segments. | Enhanced multiplication and differentiation of PLBs and promoted seedling stem segment multiplication. | [48] | |
Using γ-ray ranging from 0 to 25 Gy to irradiate invitro plantlets of P. amabilis in order to cultivate early-flowering Phalaenopsis. | Early-flowering mutants emerged in 25 Gy treatment group, achieving blooming within 13 months post acclimatization. | [49] | |
Ploidy breeding | Using colchicine concentrations of 0, 0.01%, 0.05%, and 0.10% to treat Phalaenopsis flower buds at meiotic stage for 3 d. | 0.05% colchicine applied during leptotene–zygotene stage for 3 d, increasing 2n pollen frequency to 10.04%. | [50] |
Using colchicine concentrations of 0.05%, 0.10%, and 0.2% to treat PLBs of Phalaenopsis H-03 (2n = 2x = 38) and co-culture for 5, 10, 15 d. | Applyied 0.05% colchicine for 15 d, resulting in approximately 30% plant survival and 50% mutation rates. | [51] | |
Complete plantlets developed from PLB cultures underwent 72 h immersion in an oxygenated bioreactor with colchicine. | Highest tetraploid induction success rate was achieved with 0.15% colchicine, but only 50% survived. | [52] | |
Phalaenopsis protocorms were cultured in 5 pre-treatment media for 8 weeks. They were then soaked in 50 mg L−1 colchicine for 10 d. | Optimal pre-treatment is the combination of 15% CW and TDZ. | [53] | |
Using colchicine concentrations ranging from 0 to 2000 mg L−1 to treat Phalaenopsis flowers and development pods (fruit) for 3–5 d. | Application of 50 mg L−1 and 500 mg L−1 resulted in 60% and 100% tetraploid seedlings, respectively. | [54] | |
Genetic transformation | Investigating the influence of varying injection sites, acetosyringone concentrations, and injection volumes on P. amabilis. | Optimal conditions: abaxial side of leaf, 200 µM acetosyringone, and injection volume of 500 µL. | [55] |
Using Agrobacterium-mediated transformation, P. Sogo Yukidian ‘SPM313’ cultivar was genetically modified. | Transgenic lines exhibited distinct phenotypic modifications including darker-green, wider and shorter leaves, etc. | [56] | |
Using PLBs from P. bellina as target tissues, particle bombardment parameters and biological parameters were optimized. | Optimal distance of 6 cm, helium pressure of 1100 psi, gold particle size of 1.0 μm, vacuum pressure of 27 mmHg. | [57] | |
T-DNA vector containing an eGFP marker was introduced via Agrobacterium tumefaciens EHA105-mediated transformation. | Stable transformation system for Phalaenopsis was established. Transformation efficiency reached approximately 1.2–5.2%. | [8] | |
T-DNA containing 35S::GAL4::AtRKD4::GR construct was inserted into P. ‘Sogo Vivien’ PLBs. | 17 transgenic plants carrying AtRKD4 and HPT genes were successfully obtained, with transformation efficiency of 0.63%. | [58] | |
CRISPR/Cas9 genome editing | Analyzing protein domain of GAI (Gibberellic Acid Insensitive) in P. amabilis, and designing a single guide RNA. | GAI gene possesses unique amino acid sequences and domains, making it ideal target for CRISPR/Cas9 gene editing. | [59] |
Developing two multiplex genome editing tools for Phalaenopsis genome editing. | Both PTG-Cas9-HPG and RMC-Cpf1-HPG multiplex genome editing systems are functional in Phalaenopsis orchids. | [60] | |
Vector containing the CRISPR/Cas9 system and hygromycin phosphotransferase (HygR) was delivered into P. amabilis PLBs. | Leaf color of transformed plants changed from green to yellowish-green or yellow. | [61] | |
2 strategies were employed for multi-gene mutagenesis in Phalaenopsis equestris: 3sg1C strategy and 3X1sg strategy. | 3sg1C strategy: high editing efficiency, 97.9%. 3X1sg strategy: single-gene editing, most transformants carried only one sgRNA. | [62] | |
Vector containing HygR and the Cas9-sgRNA system was employed to target two sites (PDS3T1 and PDS3T2) of PDS3 gene. | Transformation efficiencies of PDS3T1 and PDS3T2 were 0.9% and 0.96%, respectively. Leaves exhibit albino phenotype. | [63] |
Factors | Treatments | Results | References |
---|---|---|---|
Temperature | P. ‘Edessa’ was exposed to a low temperature at 10 °C for 3 weeks. Photosynthetic performance and metabolic responses were evaluated. | The electron transport chain from PSII to PSI was impaired. Rubisco activity declined significantly. Carbon metabolism was imbalanced. | [130] |
Four Phalaenopsis cultivars were exposed to intermittent high-temperature. Vegetative growth and flowering parameters were measured. | Intermittent high-temperature treatment reduced the flowering rate by 40–60%. | [123] | |
P. Queen Beer ‘Mantefon’ were exposed to 28 °C (control), 31 and 34 °C for 15/30 d prior to the induction phase at 20 °C. | Under 34 °C, 30 d, visible inflorescence emergence was prolonged by 22 d (54%), and the total flowering period extended up to 191.7 d. | [131] | |
Water | P. Sogo Yukidian ‘V3’ were treated in simulated shipping conditions with light (LSS) and dark (DSS) treatments without irrigation. | DSS without irrigation for 40 d resulted in a sharp increase in leaf-yellowing rate (16.9%) and failed to recover to the normal. | [132] |
Treatment group, complete water cessation (drought stress simulation); control group, twice-weekly irrigation. | The performance index significantly decreased, accompanied by imbalance between light energy absorption and utilization. | [133] | |
Physiological responses of P. cornu-cervi under varying light and water conditions were measured. | After 7 weeks of drought treatment, Fv/Fm and leaf RWC significantly decreased, and proline increased. | [134] | |
Light | Phalaenopsis were treated with two shading intensities (60% and 70%) and four fertilizer concentrations (1, 2, 3, and 4 g L−1). | For 60% shade, 2 g L−1 promotes leaf expansion and root elongation, while 70% shade requires 4 g L−1 to compensate for light limitations. | [135] |
P. amabilis and P. Sogo Yukidian ‘V3’ were treated with a supplemental light. | Supplemental lighting significantly promoted flowering and flower scape growth. | [136] | |
P. aphrodite subsp. Formosana seedlings and mature plants were pre-treated with blue light for 12 days. | After blue light acclimation, Phalaenopsis exposed to high light exhibited a higher Fv/Fm and electron transport rate. | [137] | |
Fertilization | The effects of four new controlled-release fertilizers (NCRFs) with different release rates on Phalaenopsis growth were tested. | When NCRFs were 1.5 g/pot, the highest values for leaf length, leaf width, fresh weight, and root weight were obtained. | [138] |
Four nitrogen concentration treatments (0 × N, 0.1 × N, 1 × N, and 2 × N) were applied from the late vegetative stage through the reproductive stage. | High nitrogen (28.6 mM) caused an 8.9 d spiking delay in P. ‘F2510’. Low nitrogen (1.4 mM) or 0 × N advanced spiking by 1–2 d. | [139] | |
The phosphorus–zinc interaction effects on dry matter accumulation and P, Zn, Fe, and Mn uptake in Phalaenopsis orchids were explored. | Increasing P rates reduced root dry weight. High P significantly suppressed Zn translocation. | [140] | |
Cultivation medium | The effects of sphagnum moss versus coconut husk chips and cocopeat on growth parameters of P. ‘Magic Kiss’ were compared. | Plants in sphagnum moss exhibited earlier inflorescences, a longer inflorescence length, and an extended flowering duration. | [141] |
Comparing the effects of peanut shell medium, mixed medium (fern + peanut shell), and pure fern medium on Phalaenopsis orchid growth. | No significant differences were found in Phalaenopsis orchid growth. The peanut shell can effectively replace fern medium. | [142] |
Materials | Extraction | Antioxidant Substances and Potential Applications | References |
---|---|---|---|
Leaves, stems, and roots of P. Sogo Yukidian ‘V3’ | Samples were extracted with ethanol and solvents of varying polarities through stepwise extraction to obtain free phenolics. | Extracts from Phalaenopsis orchid roots (especially ethyl acetate) are a highly effective natural antioxidant source, with potential to replace synthetic antioxidants. | [166] |
Roots, pedicels, leaves, and flowers of white (‘City More’), yellow (‘Sogo Meili’), and purple (‘Queen Beer’) Phalaenopsis orchids | In total, 0.25 g of dry powder of each plant part was immersed in 5 mL methanol at room temperature. The liquid phase was then separated from the cell debris through filtration under a vacuum using filter paper to obtain the crude orchid extract. | Extracts of white orchids showed the strongest activity in reducing power assays, while those of yellow and purple orchids exhibited the highest effectiveness in ferrous ion-chelating ability tests. These extracts serve as potential antioxidant sources with medicinal value and stress resistance. | [167] |
Leaves, stems, and roots of Phalaenopsis orchid | The material was dried, ground, and extracted with 70% ethanol and methanol using a maceration method and then filtered to obtain crude extract. | Extracts significantly inhibit MRSA and Pseudomonas aeruginosa, and against Bacillus cereus. They can serve as natural alternatives against drug-resistant bacteria and be used in anti-aging skincare products or functional foods. | [168] |
PLBs of Phalaenopsis orchid | The PLB extract was prepared through liquid nitrogen grinding, ethyl acetate ultrasonic extraction, and C18 column chromatography fractionation. | The PLB extract significantly reduced the growth rate of A. citrulli. Treated watermelon seeds showed reduced bacterial counts on their surfaces. The PLB extract could serve as a novel biopesticide for seed treatment or field disease control. | [169] |
Flower components, including petals, sepals, and lip of Phalaenopsis orchid | Petals, sepals, and lips were separately cut into pieces and weighed. They were homogenized with 10 volumes of 60% methanol using a homogenizer and ultrasonicated for 10 min. The homogenate was centrifuged at 9000× g for 3 min. The supernatant was membrane-filtered (0.45 μm). | White Phalaenopsis orchid petals and sepals showed the highest content of saponarin and ribosnarin. They could serve as antioxidants or functional food additives. These compounds provide lead candidates for developing anti-inflammatory or anti-diabetic drugs. | [170] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Dong, F.; Qi, Y.; Wang, Y.; Zhu, J.; Li, B.; Zhang, L.; Lv, X.; Wang, J. The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review. Plants 2025, 14, 1689. https://doi.org/10.3390/plants14111689
Han C, Dong F, Qi Y, Wang Y, Zhu J, Li B, Zhang L, Lv X, Wang J. The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review. Plants. 2025; 14(11):1689. https://doi.org/10.3390/plants14111689
Chicago/Turabian StyleHan, Chenjing, Fei Dong, Yu Qi, Yenan Wang, Jiao Zhu, Binghai Li, Lijuan Zhang, Xiaohui Lv, and Jianghui Wang. 2025. "The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review" Plants 14, no. 11: 1689. https://doi.org/10.3390/plants14111689
APA StyleHan, C., Dong, F., Qi, Y., Wang, Y., Zhu, J., Li, B., Zhang, L., Lv, X., & Wang, J. (2025). The Breeding, Cultivation, and Potential Applications of Ornamental Orchids with a Focus on Phalaenopsis—A Brief Review. Plants, 14(11), 1689. https://doi.org/10.3390/plants14111689