Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning
Abstract
:1. Introduction
2. Deep Learning-Based Polarization-Resolved Restoration Model
2.1. Scattering Transmission Matrix for Vector Optical Fields
2.2. Trans-CNN Network Architecture
3. Experimental Results
3.1. Generation and Data Acquisition of Vector Optical Fields
- 0.5 mm thickness: absorption coefficient: 0.1∼0.3 , scattering coefficient: 50∼100 ;
- 1.0 mm thickness: absorption coefficient: 0.2∼0.5 , scattering coefficient: 80∼150 ;
- 1.5 mm thickness: absorption coefficient: 0.3∼0.7 , scattering coefficient: 100∼180 ;
- 2.0 mm thickness: absorption coefficient: 0.4∼1.0 , scattering coefficient: 120∼200 .
3.2. Adaptive Restoration of Dynamic Varying Speckle Patterns Through a Scattering Medium of Chicken Breast Tissue
3.3. Image Reconstruction Using Scalar and Vector Optical Fields Through Scattering Media of Chicken Breast Tissues
3.4. Reconstruction of Dual-Phase Images of Orthogonal Polarization Components Passing Through Chicken Breast Tissues with Various Thicknesses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meglinski, I.; Dunn, A.; Durduran, T.; Postnov, D.; Zhu, D. Dynamic Light Scattering in Biomedical Applications: Feature issue introduction. Biomed. Opt. Express 2024, 15, 2890–2897. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Wu, W.; Jiang, J.Y.; Zhu, B.; Boas, D.A. Dynamic light scattering optical coherence tomography. Opt. Express 2012, 20, 22262–22277. [Google Scholar] [CrossRef]
- Levitz, D.; Thrane, L.; Frosz, M.H.; Andersen, P.E.; Andersen, C.B.; Valanciunaite, J.; Swartling, J.; Andersson-Engels, S.; Hansen, P.R. Determination of optical scattering properties of highly-scattering media in optical coherence tomography images. Opt. Express 2004, 12, 249–259. [Google Scholar] [CrossRef]
- Karamata, B.; Laubscher, M.; Leutenegger, M.; Bourquin, S.; Lasser, T.; Lambelet, P. Multiple scattering in optical coherence tomography. I. Investigation and modeling. J. Opt. Soc. Am. A 2005, 22, 1369–1379. [Google Scholar] [CrossRef]
- Mosk, A.P.; Lagendijk, A.; Lerosey, G.; Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 2012, 6, 283–292. [Google Scholar] [CrossRef]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef]
- Jiang, D.; Zhu, L.; Tong, S.; Shen, Y.; Gao, F.; Gao, F. Photoacoustic imaging plus X: A review. J. Biomed. Opt. 2024, 29, S11513. [Google Scholar] [CrossRef]
- D’Este, E.; Lukinavičius, G.; Lincoln, R.; Opazo, F.; Fornasiero, E.F. Advancing cell biology with nanoscale fluorescence imaging: Essential practical considerations. Trends Cell Biol. 2024, 34, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Chen, Y.; Jiang, Z.; He, W.; Guo, Z. Fluorescent probes for biological species and microenvironments: From rational design to bioimaging applications. Accounts Chem. Res. 2023, 56, 258–269. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Maokun, L.; Rocca, P. A review of deep learning approaches for inverse scattering problems (invited review). Electromagn. Waves 2020, 167, 67–81. [Google Scholar] [CrossRef]
- Wang, J.; Chaney, E.J.; Aksamitiene, E.; Marjanovic, M.; Boppart, S.A. Computational adaptive optics for polarization-sensitive optical coherence tomography. Opt. Lett. 2021, 46, 2071–2074. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.M.; Bishop, K.W.; Zhang, H.; Xu, X.; Shmuylovich, L.; Conley, E.; Nwosu, K.; Duncan, K.; Mondal, S.B.; Sudlow, G.; et al. Quantitative tumor depth determination using dual wavelength excitation fluorescence. Biomed. Opt. Express 2022, 13, 5628–5642. [Google Scholar] [CrossRef] [PubMed]
- Ishimaru, A.; Zhang, C.; Kuga, Y. Statistical Maxwell’s Electromagnetic Theories Applied to Imaging of Objects in Geophysical and Biological Media. Prog. Electromagn. Res. 2015, 151, 17–31. [Google Scholar] [CrossRef]
- Ghosh, N.; Vitkin, I.A. Tissue polarimetry: Concepts, challenges, applications, and outlook. J. Biomed. Opt. 2011, 16, 110801. [Google Scholar] [CrossRef] [PubMed]
- Mourant, J.R.; Freyer, J.P.; Hielscher, A.H.; Eick, A.A.; Shen, D.; Johnson, T.M. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 1998, 37, 3586–3593. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Hulbert, C. Automatic detection of methane emissions in multispectral satellite imagery using a vision transformer. Nat. Commun. 2024, 15, 3801. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, X.; Zheng, Y.; Fan, J.; Zeng, G. Scalable non-invasive imaging through dynamic scattering media at low photon flux. Opt. Lasers Eng. 2021, 144, 106641. [Google Scholar] [CrossRef]
- Zhu, S.; Guo, E.; Gu, J.; Bai, L.; Han, J. Imaging through unknown scattering media based on physics-informed learning. Photon. Res. 2021, 9, B210–B219. [Google Scholar] [CrossRef]
- Lyu, M.; Wang, H.; Li, G.; Zheng, S.; Situ, G. Learning-based lensless imaging through optically thick scattering media. Adv. Photon. 2019, 1, 036002. [Google Scholar] [CrossRef]
- Wang, B.; Shi, Y.; Sheng, W.; Zhang, M.; Liu, Y. Imaging through thick scattering media based on envelope-informed learning with a simulated training dataset. Appl. Opt. 2024, 63, 4049–4056. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, J.; Zhang, Y.; Lai, X.; Chen, Z.; Pu, J. Imaging reconstruction through strongly scattering media by using convolutional neural networks. Opt. Commun. 2020, 477, 126341. [Google Scholar] [CrossRef]
- Turpin, A.; Vishniakou, I.; Seelig, J.D. Light scattering control with neural networks in transmission and reflection. arXiv 2018, arXiv:1805.05602. [Google Scholar] [CrossRef] [PubMed]
- Barbastathis, G.; Ozcan, A.; Situ, G. On the use of deep learning for computational imaging. Optica 2019, 6, 921–943. [Google Scholar] [CrossRef]
- Chen, Y.C.; Shen, L.H.; Qi, B.; Li, Y.H.; Hu, X.B.; Chew, K.H.; Chen, R.P.; He, S. Learning-Based Vectorial Reconstruction of Orthogonal Polarization Components in a Structured Vector Optical Field Passing Through Scattering Media. Adv. Phys. Res. 2024, 4, 2400023. [Google Scholar] [CrossRef]
- Mahoro, E.; Akhloufi, M.A. Breast cancer classification on thermograms using deep CNN and transformers. Quant. InfraRed Thermogr. J. 2024, 21, 30–49. [Google Scholar] [CrossRef]
- Madan, S.; Lentzen, M.; Brandt, J.; Rueckert, D.; Hofmann-Apitius, M.; Fröhlich, H. Transformer models in biomedicine. BMC Med. Inform. Decis. Mak. 2024, 24, 214. [Google Scholar] [CrossRef] [PubMed]
- Cotter, N.; Preist, T.; Sambles, J. Scattering-matrix approach to multilayer diffraction. J. Opt. Soc. Am. A 1995, 12, 1097–1103. [Google Scholar] [CrossRef]
- Popoff, S.M.; Lerosey, G.; Carminati, R.; Fink, M.; Boccara, A.C.; Gigan, S. Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Phys. Rev. Lett. 2010, 104, 100601. [Google Scholar] [CrossRef]
- Tripathi, S.; Paxman, R.; Bifano, T.; Toussaint, K.C., Jr. Vector transmission matrix for the polarization behavior of light propagation in highly scattering media. Opt. Express 2012, 20, 16067–16076. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Li, S.; Deng, M.; Lee, J.; Sinha, A.; Barbastathis, G. Imaging through glass diffusers using densely connected convolutional networks. Optica 2018, 5, 803–813. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, R37. [Google Scholar] [CrossRef]
- MNIST Dataset|Papers with Code. Available online: https://paperswithcode.com/dataset/mnist (accessed on 1 May 2024).
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Sun, L.; Shi, J.; Wu, X.; Sun, Y.; Zeng, G. Photon-limited imaging through scattering medium based on deep learning. Opt. Express 2019, 27, 33120–33134. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Li, Q.; Chen, Z.; Shao, X.; Pu, J. Reconstructing images of two adjacent objects passing through scattering medium via deep learning. Opt. Express 2021, 29, 43280–43291. [Google Scholar] [CrossRef]
- Yaqoob, Z.; Psaltis, D.; Feld, M.S.; Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2008, 2, 110–115. [Google Scholar] [CrossRef]
- Jacquot, P. Speckle interferometry: A review of the principal methods in use for experimental mechanics applications. Strain 2008, 44, 57–69. [Google Scholar] [CrossRef]
- Fried, D.L. Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am. 1966, 56, 1372–1379. [Google Scholar] [CrossRef]
PCC | 0.9824 | 0.9876 | 0.9835 | 0.9805 |
SSIM | 0.8497 | 0.8523 | 0.8477 | 0.8461 |
PSNR (dB) | 33.1721 | 33.5794 | 33.0961 | 33.2767 |
(a) | Trans-CNN and CNN Networks Reconstruction | (b) | Single-Phase Image Reconstruction | Dual-Phase Image Reconstruction | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PCC | SSIM | PSNR (dB) | PCC | SSIM | PSNR (dB) | PCC | SSIM | PSNR (dB) | |||
Scalar | Trans-CNN | 0.9728 | 0.6715 | 32.5661 | 0.5 mm | 0.9626 | 0.8768 | 34.3944 | 0.9719 | 0.8608 | 35.5563 |
CNN | 0.4196 | 0.5876 | 28.6154 | 1.0 mm | 0.9886 | 0.8529 | 33.1625 | 0.9424 | 0.7112 | 34.5598 | |
Vector | Trans-CNN | 0.9886 | 0.8529 | 33.1625 | 1.5 mm | 0.6422 | 0.6149 | 30.5346 | 0.5129 | 0.6644 | 34.1004 |
CNN | 0.7073 | 0.6282 | 29.3095 | 2.0 mm | 0.6498 | 0.5598 | 30.4740 | 0.5272 | 0.6285 | 33.6649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Mi, S.-X.; Tian, Y.-P.; Hu, X.-B.; Yuan, Q.-Y.; Chew, K.-H.; Chen, R.-P. Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning. Sensors 2025, 25, 1803. https://doi.org/10.3390/s25061803
Chen Y-C, Mi S-X, Tian Y-P, Hu X-B, Yuan Q-Y, Chew K-H, Chen R-P. Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning. Sensors. 2025; 25(6):1803. https://doi.org/10.3390/s25061803
Chicago/Turabian StyleChen, Yu-Chen, Shi-Xuan Mi, Ya-Ping Tian, Xiao-Bo Hu, Qi-Yao Yuan, Khian-Hooi Chew, and Rui-Pin Chen. 2025. "Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning" Sensors 25, no. 6: 1803. https://doi.org/10.3390/s25061803
APA StyleChen, Y.-C., Mi, S.-X., Tian, Y.-P., Hu, X.-B., Yuan, Q.-Y., Chew, K.-H., & Chen, R.-P. (2025). Adaptive Vectorial Restoration from Dynamic Speckle Patterns Through Biological Scattering Media Based on Deep Learning. Sensors, 25(6), 1803. https://doi.org/10.3390/s25061803