Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,532)

Search Parameters:
Keywords = light polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3965 KiB  
Article
Mapping the Spatio-Temporal Heterogeneity and Trends of Global Catholic Development After WWII
by Xiaobiao Lin, Bowei Wu and Yifan Tang
Religions 2025, 16(8), 1056; https://doi.org/10.3390/rel16081056 - 15 Aug 2025
Abstract
Understanding the spatio-temporal dynamics of religion is crucial for explaining cultural and geopolitical transformations. Based on multi-source religious demographic data, this study analyzes the spatio-temporal dynamics of global Catholicism after WWII using gravity migration and standard deviational ellipse models, revealing spatial heterogeneity and [...] Read more.
Understanding the spatio-temporal dynamics of religion is crucial for explaining cultural and geopolitical transformations. Based on multi-source religious demographic data, this study analyzes the spatio-temporal dynamics of global Catholicism after WWII using gravity migration and standard deviational ellipse models, revealing spatial heterogeneity and tracing the migration of its developmental center. Spatial typology techniques are further employed to classify patterns of Catholic growth efficiency. Our findings reveal that: (1) The absolute number of global Catholics has steadily increased, exhibiting a west-heavy, east-light pattern, with particularly notable growth in the Americas and Sub-Saharan Africa. The proportion of Catholics has declined—especially in traditional strongholds such as Europe and the Americas—while rising in emerging missionary regions, notably in Africa. (2) The macro-trend of Catholic development demonstrates a continuous southward shift in its global center of gravity, transitioning from Europe to the Global South—particularly regions like Africa, Asia, and Latin America. The standard deviational ellipse reveals pronounced oscillation, with an increasing rotation angle and a southward tilt, suggesting an accelerating pace of change in the global distribution of Catholicism. (3) Post-WWII, Catholic growth outpaced population in 75.57% of countries, though modestly. Developmental efficiency temporally followed a trajectory of “broad weak positive—drastic polarization—weak equilibrium”, while spatially reflecting pronounced regional heterogeneity shaped by the combined effects of colonial legacies, social demands, political dynamics, and modernity shocks. Overall, our study provides empirical support for understanding the links between religious spatial patterns and social transformation. Full article
(This article belongs to the Special Issue Global Catholicism)
Show Figures

Figure 1

15 pages, 8766 KiB  
Article
Strong-Field Interaction of Molecules with Linearly Polarized Light: Pathway to Circularly Polarized Harmonic Generation
by Shushan Zhou, Hao Wang, Nan Xu, Dan Wu and Muhong Hu
Symmetry 2025, 17(8), 1329; https://doi.org/10.3390/sym17081329 - 15 Aug 2025
Abstract
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered [...] Read more.
In recent years, the generation of circularly polarized attosecond pulses has garnered significant attention due to their potential applications in ultrafast spectroscopy and, notably, in chiral-sensitive molecular detection. The traditional methods for generating such pulses often involve complex laser configurations or specially engineered targets, limiting their experimental feasibility. In this study, we present a streamlined and effective approach to producing circularly polarized attosecond pulses by employing a linearly polarized laser field in conjunction with a stereosymmetric linear molecule, 1-butyne (C4H6). The generation of high-order harmonics by this molecular system reveals a distinct plateau in the perpendicular polarization component, which facilitates the generation of isolated attosecond pulses with circular polarization. Through a detailed analysis of the time-dependent charge density dynamics across atomic sites, we identify the atoms primarily responsible for the emission of circularly polarized harmonics in the plane orthogonal to the driving field. Moreover, we explore the role of multi-orbital contributions in shaping the polarization properties of the harmonic spectra. Our findings underscore the importance of molecular symmetry and the electronic structure in tailoring the harmonic polarization, and they demonstrate a viable pathway for using circularly polarized attosecond pulses to probe molecular chirality. This method offers a balance between simplicity and performance, opening new avenues for practical applications in chiral recognition and ultrafast stereochemical analysis. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

12 pages, 11986 KiB  
Article
Design of Long-Wave Fully Polarized HgCdTe Photodetector Based on Silicon Metasurface
by Bo Cheng, Xiaoming Wang, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Xiaojun Wang
Micromachines 2025, 16(8), 937; https://doi.org/10.3390/mi16080937 - 14 Aug 2025
Abstract
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves [...] Read more.
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves both CP and LP signals through a single ultrathin platform. The device deciphers LP states via four orientation-specific linear gratings for differential detection, while chiral symmetric silicon nanostructures enable direct CP discrimination with an exceptional extinction ratio of 30 dB. The proposed architecture combines two breakthroughs: (1) superior polarization reconstruction capability, achieved via the synergy of grating-induced polarization selectivity and chiral near-field enhancement, and (2) a fabrication-simplified process that eliminates multilayer stacking or complex alignment steps. This work establishes a new paradigm for miniaturized, high-performance polarization optics, with potential applications in polarization imaging, quantum communication, and hyperspectral sensing. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

11 pages, 1072 KiB  
Article
Design and Characteristic Simulation of Polarization-Maintaining Anti-Resonant Hollow-Core Fiber for 2.79 μm Er, Cr: YSGG Laser Transmission
by Lei Huang and Yinze Wang
Optics 2025, 6(3), 37; https://doi.org/10.3390/opt6030037 - 14 Aug 2025
Abstract
Anti-resonant hollow-core fibers have exhibited excellent performance in applications such as high-power pulse transmission, network communication, space exploration, and precise sensing. Employing anti-resonant hollow-core fibers instead of light guiding arms for transmitting laser energy at the 2.79 μm band can significantly enhance the [...] Read more.
Anti-resonant hollow-core fibers have exhibited excellent performance in applications such as high-power pulse transmission, network communication, space exploration, and precise sensing. Employing anti-resonant hollow-core fibers instead of light guiding arms for transmitting laser energy at the 2.79 μm band can significantly enhance the flexibility of medical laser handles, reduce system complexity, and increase laser transmission efficiency. Nevertheless, common anti-resonant hollow-core fibers do not have the ability to maintain the polarization state of light during laser transmission, which greatly affects their practical applications. In this paper, we propose a polarization-maintaining anti-resonant hollow-core fiber applicable for transmission at the mid-infrared 2.79 μm band. This fiber features a symmetrical geometric structure and an asymmetric refractive index cladding composed of quartz and a type of mid-infrared glass with a higher refractive index. Through optimizing the fiber structure at the wavelength scale, single-polarization transmission can be achieved at the 2.79 μm wavelength, with a polarization extinction ratio exceeding 1.01 × 105, indicating its stable polarization-maintaining performance. Simultaneously, it possesses low-loss transmission characteristics, with the loss in the x-polarized fundamental mode being less than 9.8 × 10−3 dB/m at the 2.79 µm wavelength. This polarization-maintaining anti-resonant hollow-core fiber provides a more reliable option for the light guiding system of the 2.79 μm Er; Cr: YSGG laser therapy device. Full article
Show Figures

Figure 1

16 pages, 492 KiB  
Article
Comparison of Physical Activity Intensity During Virtual Reality Gaming: Omnidirectional Treadmill Versus Traditional Controllers—A Physiological Assessment
by Jacek Polechoński and Agnieszka Nawrocka
Appl. Sci. 2025, 15(16), 8914; https://doi.org/10.3390/app15168914 - 13 Aug 2025
Viewed by 101
Abstract
Background: Virtual reality (VR) technology has emerged as a promising tool for promoting physical activity through immersive gaming experiences. This study aimed to compare the physiological responses and perceived exertion during VR gaming using two different locomotion interfaces: omnidirectional treadmill and traditional controllers. [...] Read more.
Background: Virtual reality (VR) technology has emerged as a promising tool for promoting physical activity through immersive gaming experiences. This study aimed to compare the physiological responses and perceived exertion during VR gaming using two different locomotion interfaces: omnidirectional treadmill and traditional controllers. Methods: Twenty-one university students (7 women, 14 men; age 23.5 ± 1.4 years) participated in a crossover study comparing physical activity intensity during VR gaming using traditional controllers versus an omnidirectional treadmill (Virtuix Omni). Participants played VRZ Torment for 15 min in each condition, separated by 30 min washout periods. Physiological responses were measured using indirect calorimetry (Cortex METAMAX® 3B), heart rate monitoring (Polar V800), and subjective ratings of perceived exertion (RPE). Exercise intensity was classified according to established guidelines, and user satisfaction was assessed using a 10-point scale. Results: Omnidirectional treadmill locomotion resulted in significantly higher physiological responses and perceived exertion across all measured variables compared to controller-based movement: heart rate (76.7 ± 11.7% vs. 51.7 ± 9.5% HRmax, p < 0.001), metabolic equivalents (7.3 ± 1.7 vs. 2.1 ± 0.3 METs, p < 0.001), and RPE (14.4 ± 2.9 vs. 9.3 ± 1.5, p < 0.001). Treadmill gaming achieved vigorous-intensity exercise, while controller gaming remained at light intensity. User satisfaction was significantly higher with treadmill locomotion (8.5 ± 1.3 vs. 5.0 ± 2.3, p < 0.001). Strong correlations were observed between physiological measures only during high-intensity treadmill exercise. Conclusions: Omnidirectional treadmill VR gaming achieves vigorous-intensity physical activity sufficient to meet health recommendations, while traditional controller gaming provides only light-intensity exercise. These findings support the potential of locomotion-enhanced VR systems for health promotion. Full article
Show Figures

Figure 1

24 pages, 5300 KiB  
Article
Biodegradable Antioxidant Composites with Almond Skin Powder
by Irene Gil-Guillén, Idalina Gonçalves, Paula Ferreira, Chelo González-Martínez and Amparo Chiralt
Polymers 2025, 17(16), 2201; https://doi.org/10.3390/polym17162201 - 12 Aug 2025
Viewed by 144
Abstract
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated [...] Read more.
Almond skin (AS) from industrial almond peeling is considered an agri-food waste with adequate composition to obtain composite films for food packaging due to its richness in polysaccharides, proteins, and phenolic compounds. Composite films based on amorphous polylactic acid (PLA) or partially acetylated polyvinilalcohol (PVA) were obtained by melt blending and compression moulding, incorporating different ratios of defatted AS powder (0, 5, 10, and 15 wt.%). The filler was better integrated in the polar PVA matrix, where more interactions were detected with the filler compounds, affecting glass transition and crystallization of the polymer. The AS particles provided the films with the characteristic colour of the powder and strong UV light-blocking effect, while improving the oxygen barrier capacity of both polymeric matrices (24% in PLA with 15% AS and 42% in PVA with 10% AS). The water vapour permeability increased in PLA (by 192% at 15% AS), but decreased in PVA films, especially with low AS content (by 19% with 5% particles). The filler also provided the PLA and PVA films with antioxidant properties due to its phenolic richness, improving the oxygen barrier capacity of the materials and delaying the unsaturated oil oxidation. This was reflected in the lower peroxide and conjugated dienes and trienes values of the sunflower oil packaged in single-dose bags of the different materials. The high oxygen barrier capacity of the PVA bags mainly controlled the preservation of the oil, which made the effect of the antioxidant AS powder less noticeable. Full article
Show Figures

Graphical abstract

21 pages, 1693 KiB  
Article
Calibration and Validation of a PEM Fuel Cell Hybrid Powertrain Model for Energy Management System Design
by Zihao Guo, Elia Grano, Francesco Mazzeo, Henrique de Carvalho Pinheiro and Massimiliana Carello
Designs 2025, 9(4), 94; https://doi.org/10.3390/designs9040094 - 12 Aug 2025
Viewed by 187
Abstract
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management [...] Read more.
This paper presents a calibrated and dynamically responsive simulation framework for hybrid energy systems that integrate Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries, targeting applications in light commercial vehicles (LCVs). The aim is to support the design and assessment of energy management strategies (EMS) under realistic operating conditions. A publicly available PEMFC model is used as the starting point. To improve its representativeness, calibration is performed using experimental polarization curve data, enhancing the accuracy of the stack voltage model, and the air compressor model—critical for maintaining stable fuel cell operation—is adjusted to reflect measured transient responses, ensuring realistic system behavior under varying load demands. Quantitatively, the calibration results are strong: the R2 values of both the fuel cell polarization curve and the overall system efficiency are around 0.99, indicating excellent agreement with experimental data. The calibrated model is embedded within a complete hybrid vehicle powertrain simulation, incorporating longitudinal dynamics and control strategies for power distribution between the battery and fuel cells. Simulations conducted under WLTP driving cycles confirm the model’s ability to replicate key behaviors of PEMFC-battery hybrid systems, particularly with respect to dynamic energy flow and system response. In conclusion, this work provides a reliable and high-fidelity simulation environment based on empirical calibration of key subsystems, which is well suited for the development and evaluation of advanced EMS algorithms. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

17 pages, 2652 KiB  
Article
First-Principles and Device-Level Investigation of β-AgGaO2 Ferroelectric Semiconductors for Photovoltaic Applications
by Wen-Jie Hu, Xin-Yu Zhang, Xiao-Tong Zhu, Yan-Li Hu, Hua-Kai Xu, Xiang-Fu Xu, You-Da Che, Xing-Yuan Chen, Li-Ting Niu and Bing Dai
Photonics 2025, 12(8), 803; https://doi.org/10.3390/photonics12080803 - 11 Aug 2025
Viewed by 212
Abstract
Ferroelectric semiconductors, with their inherent spontaneous polarization, present a promising approach for efficient charge separation, making them attractive for photovoltaic applications. The potential of β-AgGaO2, a polar ternary oxide with an orthorhombic Pna21 structure, as a light-absorbing material is evaluated. [...] Read more.
Ferroelectric semiconductors, with their inherent spontaneous polarization, present a promising approach for efficient charge separation, making them attractive for photovoltaic applications. The potential of β-AgGaO2, a polar ternary oxide with an orthorhombic Pna21 structure, as a light-absorbing material is evaluated. First-principles computational analysis reveals that β-AgGaO2 possesses an indirect bandgap of 2.1 eV and exhibits pronounced absorption within the visible spectral range. Optical simulations suggest that a 300 nm thick absorber layer could theoretically achieve a power conversion efficiency (PCE) of 20%. Device-level simulations using SCAPS-1D evaluate the influence of hole and electron transport layers on solar cell performance. Among the tested hole transport materials, Cu2FeSnS4 (CFTS) achieves the highest PCE of 14%, attributed to its optimized valence band alignment and reduced recombination losses. In contrast, no significant improvements were observed with the electron transport layers tested. These findings indicate the potential of β-AgGaO2 as a ferroelectric photovoltaic absorber and emphasize the importance of band alignment and interface engineering for optimizing device performance. Full article
Show Figures

Figure 1

24 pages, 6356 KiB  
Article
Sandy Beach Extraction Method Based on Multi-Source Data and Feature Optimization: A Case in Fujian Province, China
by Jie Meng, Duanyang Xu, Zexing Tao and Quansheng Ge
Remote Sens. 2025, 17(16), 2754; https://doi.org/10.3390/rs17162754 - 8 Aug 2025
Viewed by 334
Abstract
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable [...] Read more.
Sandy beaches are vital geomorphic units with ecological, social, and economic significance, playing a key role in coastal protection and ecosystem regulation. However, they are increasingly threatened by climate change and human activities, highlighting the need for large-scale, high-precision monitoring to support sustainable management. Existing remote-sensing-based sandy beach extraction methods face challenges such as suboptimal feature selection and reliance on single data sources, limiting their generalization and accuracy. This study proposes a novel sandy beach extraction framework that integrates multi-source data, feature optimization, and collaborative modeling, with Fujian Province, China, as the study area. The framework combines Sentinel-1/2 imagery, nighttime light data, and terrain data to construct a comprehensive feature set containing 44 spectrum, index, polarization, texture, and terrain variables. The optimal feature subsets are selected using the Recursive Feature Elimination (RFE) algorithm. Six machine learning models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Categorical Boosting (CatBoost)—along with an ensemble learning model, are employed for comparative analysis and performance optimization. The results indicate the following. (1) All models achieved the best performance when integrating all five types of features, with the average overall F1-score and accuracy reaching 0.9714 and 0.9733, respectively. (2) The number of optimal features selected by RFE varied by model, ranging from 19 to 36. The ten most important features across models were Band 2 (B2), Elevation, Band 3 (B3), VVVH_SUM, Spatial Average (SAVG), VH, Enhanced Water Index (EWI), Slope, Variance (VAR), and Normalized Difference Vegetation Index (NDVI). (3) The ensemble learning model outperformed all others, achieving an average overall accuracy, precision, recall, and F1-score of 0.9750, 0.9733, 0.9725, and 0.9734, respectively, under the optimal feature subset. A total of 555 sandy beaches were extracted in Fujian Province, covering an area of 43.60 km2 with a total perimeter of 1263.59 km. This framework demonstrates strong adaptability and robustness in complex coastal environments, providing a scalable solution for intelligent sandy beach monitoring and refined resource management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

18 pages, 5585 KiB  
Article
A CNN-GS Hybrid Algorithm for Generating Pump Light Fields in Atomic Magnetometers
by Miaohui Song, Ying Liu, Feijie Lu, Qian Cao and Yueyang Zhai
Photonics 2025, 12(8), 796; https://doi.org/10.3390/photonics12080796 - 7 Aug 2025
Viewed by 168
Abstract
Atomic magnetometers (AMs), recognized for their ultra-high magnetic sensitivity, demand highly uniform pump light fields to maximize measurement accuracy. In this paper, a phase modulation-based method using convolutional neural networks (CNN) and the Gerchberg–Saxton (GS) algorithm is proposed to generate the pumping light [...] Read more.
Atomic magnetometers (AMs), recognized for their ultra-high magnetic sensitivity, demand highly uniform pump light fields to maximize measurement accuracy. In this paper, a phase modulation-based method using convolutional neural networks (CNN) and the Gerchberg–Saxton (GS) algorithm is proposed to generate the pumping light field, and the model was trained using a supervised learning approach with a custom dataset. The specific training settings are as follows: the backpropagation algorithm was adopted as the training algorithm, and the Adam optimization method was used for network training, with a learning rate of 0.001 and a total of 100 training epochs, utilizing a liquid crystal spatial light modulator (LCSLM) to regulate the light field phase distribution dynamically. By transforming Gaussian beams into flat-top beams, the method significantly enhances polarization uniformity within vapor cells, leading to improved magnetometric sensitivity. The proposed hybrid algorithm reduces the mean square error from 35% to 19% and peak non-uniformity from 21% to 7.6%. A reflective LCSLM-based optical setup is implemented to produce circular and square flat-top beams with a measured non-uniformity of 5.1%, resulting in an enhancement of magnetic sensitivity from 14.54 fT/Hz1/2 to 7.80 fT/Hz1/2. Full article
Show Figures

Figure 1

27 pages, 8913 KiB  
Article
Laser Radar and Micro-Light Polarization Image Matching and Fusion Research
by Jianling Yin, Gang Li, Bing Zhou and Leilei Cheng
Electronics 2025, 14(15), 3136; https://doi.org/10.3390/electronics14153136 - 6 Aug 2025
Viewed by 342
Abstract
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering [...] Read more.
Aiming at addressing the defect of the data blindness of a LiDAR point cloud in transparent media such as glass in low illumination environments, a new method is proposed to realize covert target reconnaissance, identification and ranging using the fusion of a shimmering polarized image and a laser LiDAR point cloud, and the corresponding system is constructed. Based on the extraction of pixel coordinates from the 3D LiDAR point cloud, the method adds information on the polarization degree and polarization angle of the micro-light polarization image, as well as on the reflective intensity of each point of the LiDAR. The mapping matrix of the radar point cloud to the pixel coordinates is made to contain depth offset information and show better fitting, thus optimizing the 3D point cloud converted from the micro-light polarization image. On this basis, algorithms such as 3D point cloud fusion and pseudo-color mapping are used to further optimize the matching and fusion procedures for the micro-light polarization image and the radar point cloud, so as to successfully realize the alignment and fusion of the 2D micro-light polarization image and the 3D LiDAR point cloud. The experimental results show that the alignment rate between the 2D micro-light polarization image and the 3D LiDAR point cloud reaches 74.82%, which can effectively detect the target hidden behind the glass under the low illumination condition and fill the blind area of the LiDAR point cloud data acquisition. This study verifies the feasibility and advantages of “polarization + LiDAR” fusion in low-light glass scene reconnaissance, and it provides a new technological means of covert target detection in complex environments. Full article
(This article belongs to the Special Issue Image and Signal Processing Techniques and Applications)
Show Figures

Figure 1

26 pages, 3940 KiB  
Article
In Vitro Proof-of-Concept Study: Lidocaine and Epinephrine Co-Loaded in a Mucoadhesive Liquid Crystal Precursor System for Topical Oral Anesthesia
by Giovana Maria Fioramonti Calixto, Aylla Mesquita Pestana, Arthur Antunes Costa Bezerra, Marcela Tavares Luiz, Jonatas Lobato Duarte, Marlus Chorilli and Michelle Franz-Montan
Pharmaceuticals 2025, 18(8), 1166; https://doi.org/10.3390/ph18081166 - 6 Aug 2025
Viewed by 285
Abstract
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and [...] Read more.
Background: Local anesthesia is essential for most dental procedures, but its parenteral administration is often painful. Topical anesthetics are commonly used to minimize local anesthesia pain; however, commercial formulations fail to fully prevent the discomfort of local anesthetic injection. Methods: We developed and characterized a novel lidocaine and epinephrine co-loaded liquid crystalline precursor system (LCPS) for topical anesthesia. The formulation was structurally characterized using polarized light microscopy (PLM) and small-angle X-ray scattering (SAXS). Rheological behavior was assessed through continuous and oscillatory rheological analyses. Texture profile analysis, in vitro mucoadhesive force evaluation, in vitro drug release and permeation studies, and an in vivo toxicity assay using the chicken chorioallantoic membrane (CAM) model were also conducted. Results: PLM and SAXS confirmed the transition of the LCPS from a microemulsion to a lamellar liquid crystalline structure upon contact with artificial saliva. This transition enhanced formulation consistency by over 100 times and tripled mucoadhesion strength. The LCPS also provided controlled drug release, reducing permeation flow by 93% compared to the commercial formulation. Importantly, the CAM assay indicated that the LCPS exhibited similar toxicity to the commercial product. Conclusions: The developed LCPS demonstrated promising physicochemical and biological properties for topical anesthesia, including enhanced mucoadhesion, controlled drug delivery, and acceptable biocompatibility. These findings support its potential for in vivo application and future clinical use to reduce pain during dental anesthesia procedures. Full article
(This article belongs to the Special Issue Advances in Topical and Mucosal Drug Delivery Systems)
Show Figures

Graphical abstract

15 pages, 3583 KiB  
Article
Parameter Calibration of Rotating Wave Plate Polarization Detection Device Using Dual Beams
by Haonan Zhang, Junbo Liu, Ziliang Yan, Chuan Jin, Jian Wang and Song Hu
Sensors 2025, 25(15), 4803; https://doi.org/10.3390/s25154803 - 5 Aug 2025
Viewed by 268
Abstract
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration [...] Read more.
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration methods’ insufficient accuracy and incomplete consideration of the error parameters, this study constructed an error-transfer analytical model for an in-depth analysis of the principle of measuring Stokes parameters using the rotating wave plate method. It also clarified the quantitative parameter relationship between the measurement, wave plate, and polarizer errors. A device parameter calibration scheme using multi-angle polarized light (horizontally linearly polarized, [1,1,0,0]T, and 45° linearly polarized, [1,0,1,0]T) was further proposed, and by using the deviation between the theoretical response of the standard incident light and the actual measurement data, an error equation was established to solve the device parameter error and precisely calibrate the polarization detection device. The experimental results show that after using this method, the calibration error of the Stokes parameters decreased from 4.83% to within 0.46%, significantly overcoming the traditional methods’ limitations regarding incomplete consideration of the error parameters and accuracy improvement, providing a more concise and reliable method for high-precision polarization measurement. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 2812 KiB  
Article
Fungal Laccases with High and Medium Redox Potential: Is the T1 Center Potential a Key Characteristic of Catalytic Efficiency in Heterogeneous and Homogeneous Reactions?
by Olga Morozova, Maria Khlupova, Irina Vasil’eva, Alexander Yaropolov and Tatyana Fedorova
Int. J. Mol. Sci. 2025, 26(15), 7488; https://doi.org/10.3390/ijms26157488 - 2 Aug 2025
Viewed by 312
Abstract
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation [...] Read more.
Catalytic and bioelectrocatalytic properties of four white rot fungal laccases (Trametes hirsuta, ThL; Coriolopsis caperata, CcL; Steccherinum murashkinskyi, SmL; and Antrodiella faginea, AfL) from different orthologous groups were comparatively studied in homogeneous reactions of electron donor substrate oxidation and in a heterogeneous reaction of dioxygen electroreduction. The ThL and CcL laccases belong to high-redox-potential enzymes (E0T1 = 780 mV), while the AfL and SmL laccases are medium-redox-potential enzymes (E0T1 = 620 and 650 mV). We evaluated the efficiency of laccases in mediatorless bioelectrocatalytic dioxygen reduction by the steady-state potential (Ess), onset potential (Eonset), half-wave potential (E1/2), and the slope of the linear segment of the polarization curve. A good correlation was observed between the T1 center potential of the laccases and their electrocatalytic characteristics; however, no correlation with the homogeneous reactions of electron donor substrates’ oxidation was detected. The results obtained are discussed in the light of the known data on the three-dimensional structures of the laccases studied. Full article
(This article belongs to the Special Issue Advanced Research on Enzymes in Biocatalysis)
Show Figures

Graphical abstract

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 495
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

Back to TopTop