Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (637)

Search Parameters:
Keywords = light direction dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10603 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Viewed by 156
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

11 pages, 2176 KiB  
Communication
Visualization of Light-Impinging Geometry in Nonlinear Photocurrents of Vertical Optoelectronic Devices
by Hacer Koc, Jianbin Chen, Dawei Gu and Mustafa Eginligil
Materials 2025, 18(15), 3503; https://doi.org/10.3390/ma18153503 - 25 Jul 2025
Viewed by 238
Abstract
Nonlinear photocurrents (NPs) are electrical currents expected to be measured at the electrodes of a device consisting of an active area, sensitive to light, with a higher-order in-electric field where light-impinging geometry (LIG) is the determining factor in the experimental observation. Although the [...] Read more.
Nonlinear photocurrents (NPs) are electrical currents expected to be measured at the electrodes of a device consisting of an active area, sensitive to light, with a higher-order in-electric field where light-impinging geometry (LIG) is the determining factor in the experimental observation. Although the phenomenology of this light–matter interaction is clear for light directed on a lateral device plane with well-defined azimuthal and incidence angles, as well as light polarization angle, it can be quite complicated for a vertical device structure and reconsideration of the expected NP contributions is necessary in the latter case. In this study, we used a visual approach to describe the LIG for vertical device structures using a specific example of a photodiode, and showed that these angles must be redefined, namely, the interchangeability of azimuthal and incidence angles. The influence of device geometry-dependent optical illumination is reflected on the behavior of NP; therefore, the NPs that are known to be forbidden in certain LIGs can be allowed and vice versa. These results pave the way for the utilization of NPs in flexible optoelectronic applications. Full article
Show Figures

Figure 1

19 pages, 1683 KiB  
Article
Photochemical Redox Reactions of 2,6-Dichlorophenolindophenol and Its Use to Detect Photoreduced Quinones
by Meredith G. Warsen, Soren Zimmer, Katherine Phan and Lisa M. Landino
Photochem 2025, 5(3), 19; https://doi.org/10.3390/photochem5030019 - 23 Jul 2025
Viewed by 253
Abstract
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically [...] Read more.
Photosynthesis in plants and the electron transport chain in mitochondria are examples of life-sustaining electron transfer processes. The benzoquinones plastoquinone and ubiquinone are key components of these pathways that cycle through their oxidized and reduced forms. Previously, we reported direct photoreduction of biologically relevant quinones mediated by photosensitizers, red light and electron donors. Herein we examined direct photoreduction of the quinone imine 2,6-dichlorophenolindophenol (DCPIP) using red light, methylene blue as the photosensitizer and ethylenediaminetetraacetic acid (EDTA) as the electron donor. Photoreduction of DCPIP by methylene blue and EDTA was very pH-dependent, with three-fold enhanced rates at pH 6.9 vs. pH 7.4. Photochemical redox cycling of DCPIP produced hydrogen peroxide via singlet oxygen-dependent reoxidation of reduced DCPIP. Histidine enhanced photoreduction by scavenging singlet oxygen, whereas increased molecular oxygen exposure slowed DCPIP photoreduction. Attempts to photoreduce DCPIP with pheophorbide A, a chlorophyll metabolite, and triethanolamine as the electron donor in 20% dimethylformamide were unsuccessful. Photoreduced benzoquinones including 2,3-dimethoxy-5-methyl-p-benzoquinone (CoQ0), methoxy-benzoquinone and methyl-benzoquinone were used to examine electron transfer to DCPIP. For photoreduced CoQ0 and methoxy-benzoquinone, electron transfer to DCPIP was rapid and complete, whereas for reduced methyl benzoquinone, it was incomplete due to differences in reduction potential. Nonetheless, electron transfer from photoreduced quinols to DCPIP is a rapid and sensitive method to investigate quinone photoreduction by chlorophyll metabolites. Full article
Show Figures

Figure 1

22 pages, 3505 KiB  
Review
Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities
by Surafel Kifle Teklemariam, Rachele Schiasselloni, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(15), 3908; https://doi.org/10.3390/en18153908 - 22 Jul 2025
Viewed by 457
Abstract
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to [...] Read more.
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to patient safety. This review explores the transformative potential of solar energy as a sustainable solution for powering healthcare facilities, reducing dependence on fossil fuels, and improving health outcomes. Consequently, energy harvesting is a vital renewable energy source that captures abundant solar and thermal energy, which can sustain medical centers by ensuring the continuous operation of life-saving equipment, lighting, vaccine refrigeration, sanitation, and waste management. Beyond healthcare, it reduces greenhouse gas emissions, lowers operational costs, and enhances community resilience. To address this issue, the paper reviews critical solar energy technologies, energy storage systems, challenges of energy access, and successful solar energy implementations in rural healthcare systems, providing strategic recommendations to overcome adoption challenges. To fulfill the aims of this study, a focused literature review was conducted, covering publications from 2005 to 2025 in the Scopus, ScienceDirect, MDPI, and Google Scholar databases. With targeted investments, policy support, and community engagement, solar energy can significantly improve healthcare access in underserved regions and contribute to sustainable development. Full article
Show Figures

Figure 1

15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 307
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

15 pages, 1244 KiB  
Article
Shrinkage Behavior of Strength-Gradient Multilayered Zirconia Materials
by Andrea Coldea, John Meinen, Moritz Hoffmann, Adham Elsayed and Bogna Stawarczyk
Materials 2025, 18(14), 3217; https://doi.org/10.3390/ma18143217 - 8 Jul 2025
Viewed by 290
Abstract
To investigate the sintering shrinkage behavior of multigeneration, multilayer zirconia materials using geometrical measurements. Seven zirconia CAD/CAM materials were analyzed, comprising two mono-generation zirconia (HTML: Katana Zr, HTML Plus, 3Y-TZP; UTML: Katana Zr, UTML, 5Y-TZP) and five strength-gradient multilayer zirconia (AIDI: optimill 3D [...] Read more.
To investigate the sintering shrinkage behavior of multigeneration, multilayer zirconia materials using geometrical measurements. Seven zirconia CAD/CAM materials were analyzed, comprising two mono-generation zirconia (HTML: Katana Zr, HTML Plus, 3Y-TZP; UTML: Katana Zr, UTML, 5Y-TZP) and five strength-gradient multilayer zirconia (AIDI: optimill 3D PRO Zir; PRIT: Priti multidisc ZrO2 multicolor; UPCE: Explore Esthetic; ZCPC: IPS e.max ZirCAD Prime; ZYML: Katana YML) materials. Cubes (10 × 10 × 10 mm3) were milled in varying positions within the disks. Geometrical measurements were applied before and after dense sintering using a micrometer screw gauge, light microscopy, as well as surface scans and shrinkages were calculated. Data were analyzed using Kolmogorov–Smirnov, five-way ANOVA followed by the Scheffé post hoc test, and partial eta squared, as well as the Kruskal–Wallis test, including Bonferroni correction (p < 0.05). The highest influence on the shrinkage was exerted by the zirconia material (ηP2 = 0.893, p < 0.001), followed by the test method (ηP2 = 0.175, p < 0.001), while the vertical and horizontal position and measurement point showed no impact on the shrinkage results (p = 0.195–0.763) in the global analysis. Depending on the test method, the pooled shrinkage values of all tested zirconia materials varied between 17.7 and 20.2% for micrometer screw gauge, 17.7 and 20.1% for light microscopy, and 17.8 and 21.1% for surface scan measurements. The shrinkage values measured in the upper, middle, and lower multilayered vertical direction did not differ significantly in the global analysis for the multilayer materials. Therefore, a uniform shrinkage of these strength-gradient multilayer zirconia materials within clinically relevant restorations can be assumed. Full article
Show Figures

Figure 1

28 pages, 53432 KiB  
Article
Deposition of Mesoporous Silicon Dioxide Films Using Microwave PECVD
by Marcel Laux, Ralf Dreher, Rudolf Emmerich and Frank Henning
Materials 2025, 18(13), 3205; https://doi.org/10.3390/ma18133205 - 7 Jul 2025
Viewed by 283
Abstract
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures [...] Read more.
Mesoporous silicon dioxide films have been shown to be well suited as adhesion-promoting interlayers for generating high-strength polymer–metal interfaces. These films can be fabricated via microwave plasma-enhanced chemical vapor deposition using the precursor hexamethyldisiloxane and oxygen as working gas. The resulting mesoporous structures enable polymer infiltration during overmolding, which leads to a nanoscale form-locking mechanism after solidification. This mechanism allows for efficient stress transfer across the interface and makes the resulting adhesion highly dependent on the morphology of the deposited film. To gain a deeper understanding of the underlying deposition mechanisms and improve process stability, this work investigates the growth behavior of mesoporous silica films using a multiple regression analysis approach. The seven process parameters coating time, distance, chamber pressure, substrate temperature, flow rate, plasma pulse duration, and pause-to-pulse ratio were systematically varied within a Design of Experiments framework. The resulting films were characterized by their free surface area, mean agglomerate diameter, and film thickness using digital image analysis, white light interferometry, and atomic force microscopy. The deposited films exhibit a wide range of morphological appearances, ranging from quasi-dense to dust-like structures. As part of this research, the free surface area varied from 15 to 55 percent, the mean agglomerate diameter from 17 to 126 nm, and the film thickness from 35 to 1600 nm. The derived growth model describes the deposition process with high statistical accuracy. Furthermore, all coatings were overmolded via injection molding and subjected to mechanical testing, allowing a direct correlation between film morphology and their performance as adhesion-promoting interlayers. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

37 pages, 6674 KiB  
Article
Marangoni Convection of Self-Rewetting Fluid Layers with a Deformable Interface in a Square Enclosure and Driven by Imposed Nonuniform Heat Energy Fluxes
by Bashir Elbousefi, William Schupbach and Kannan N. Premnath
Energies 2025, 18(13), 3563; https://doi.org/10.3390/en18133563 - 6 Jul 2025
Viewed by 273
Abstract
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting [...] Read more.
Fluids that exhibit self-rewetting properties, such as aqueous long-chain alcohol solutions, display a unique quadratic relationship between surface tension and temperature and are marked by a positive gradient. This characteristic leads to distinctive patterns of thermocapillary convection and associated interfacial dynamics, setting self-rewetting fluids apart from normal fluids (NFs). The potential to improve heat transfer using self-rewetting fluids (SRFs) is garnering interest for use in various technologies, including low-gravity conditions and microfluidic systems. Our research aims to shed light on the contrasting behaviors of SRFs in comparison to NFs regarding interfacial transport phenomena. This study focuses on the thermocapillary convection in SRF layers with a deformable interface enclosed inside a closed container modeled as a square cavity, which is subject to nonuniform heating, represented using a Gaussian profile for the heat flux variation on one of its sides, in the absence of gravity. To achieve this, we have enhanced a central-moment-based lattice Boltzmann method (LBM) utilizing three distribution functions for tracking interfaces, computing two-fluid motions with temperature-dependent surface tension and energy transport, respectively. Through numerical simulations, the impacts of several characteristic parameters, including the viscosity and thermal conductivity ratios, as well as the surface tension–temperature sensitivity parameters, on the distribution and magnitude of the thermocapillary-driven motion are examined. In contrast to that in NFs, the counter-rotating pair of vortices generated in the SRF layers, due to the surface tension gradient at the interface, is found to be directed toward the SRF layers’ hotter zones. Significant interfacial deformations are observed, especially when there are contrasts in the viscosities of the SRF layers. The thermocapillary convection is found to be enhanced if the bottom SRF layer has a higher thermal conductivity or viscosity than that of the top layer or when distributed, rather than localized, heating is applied. Furthermore, the higher the magnitude of the effect of the dimensionless quadratic surface tension sensitivity coefficient on the temperature, or of the effect of the imposed heat flux, the greater the peak interfacial velocity current generated due to the Marangoni stresses. In addition, an examination of the Nusselt number profiles reveals significant redistribution of the heat transfer rates in the SRF layers due to concomitant nonlinear thermocapillary effects. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 5234 KiB  
Article
Effects of Variations in Water Table Orientation on LNAPL Migration Processes
by Huiming Yu, Qingqing Guan, Xianju Zhao, Hongguang He, Li Chen and Yuan Gao
Water 2025, 17(13), 1989; https://doi.org/10.3390/w17131989 - 2 Jul 2025
Viewed by 296
Abstract
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify [...] Read more.
Light non-aqueous phase liquids (LNAPLs) are significant groundwater contaminants whose migration in aquifers is governed by dynamic groundwater level fluctuations. This study establishes a multiphase flow coupling model integrating hydraulic, gaseous, LNAPL, and chemical fields, utilizing continuous multi-point water level data to quantify water table orientation variations. Key findings demonstrate that (1) LNAPL migration exhibits directional dependence on water table orientation: flatter gradients reduce migration rates, while steeper gradients accelerate movement. (2) Saturation dynamics correlate with gradient steepness, showing minimal variation under flattened gradients but significant fluctuations under steeper conditions. (3) Water table reorientation induces vertical mixing, homogenizing temperature distributions near the interface. (4) Dissolution and volatilization rates of LNAPLs decrease progressively with water table fluctuations. These results elucidate the critical role of hydraulic gradient dynamics in controlling multiphase transport mechanisms at LNAPL-contaminated sites, providing insights for predictive modeling and remediation strategies. Full article
Show Figures

Figure 1

32 pages, 2080 KiB  
Review
Multiple Signals Can Be Integrated into Pathways of Blue-Light-Mediated Floral Transition: Possible Explanations on Diverse Flowering Responses to Blue Light Manipulation
by Yun Kong and Youbin Zheng
Agronomy 2025, 15(7), 1534; https://doi.org/10.3390/agronomy15071534 - 25 Jun 2025
Cited by 1 | Viewed by 457
Abstract
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such [...] Read more.
Blue light (BL) plays a crucial role in regulating floral transition and can be precisely manipulated in controlled-environment agriculture (CEA). However, previous studies on BL-mediated flowering in CEA have produced conflicting results, likely due to species-specific responses and variations in experimental conditions (such as light spectrum and intensity) as summarized in our recent systematic review. This speculation still lacks a mechanistic explanation at the molecular level. By synthesizing recent advances in our understanding of the signaling mechanisms underlying floral transition, this review highlights how both internal signals (e.g., hormones, carbohydrates, and developmental stage) and external cues (e.g., light spectrum, temperature, nutrients, stress, and magnetic fields) are integrated into the flowering pathway mediated by BL. Key signal integration nodes have been identified, ranging from photoreceptors (e.g., cryptochromes) to downstream components such as transcription factors and central flowering regulator, FLOWERING LOCUS T (FT). This signal integration offers a potential mechanistic explanation for the previously inconsistent findings, which may arise from interspecies differences in photoreceptor composition and variation in the expression of downstream components influenced by hormonal crosstalk, environmental conditions, and developmental stage, depending on the specific context. This review provides novel molecular insights into how BL modulates floral transition through interactions with other signals. By systematically compiling and critically assessing recent research findings, we identify key research gaps and outline future directions, particularly the need for more studies in agriculturally important crops. Furthermore, this review proposes a conceptual framework for optimizing BL-based lighting strategies and exploring underexamined interaction factors in the regulation of flowering. Full article
Show Figures

Figure 1

23 pages, 2655 KiB  
Review
The Role of Nutrition in HIV-Associated Neurocognitive Disorders: Mechanisms, Risks, and Interventions
by Carlotta Siddi, Jihane Balla, Christy Agbey, Paola Fadda and Simona Dedoni
Life 2025, 15(6), 982; https://doi.org/10.3390/life15060982 - 19 Jun 2025
Viewed by 1711
Abstract
HIV-associated neurocognitive disorders (HANDs) refer to a range of cognitive deficits that afflict people living with the Human Immunodeficiency Virus (HIV). The fundamental processes of HAND include persistent inflammation, immunological activation, and direct viral impact on the central nervous system. Emerging research shows [...] Read more.
HIV-associated neurocognitive disorders (HANDs) refer to a range of cognitive deficits that afflict people living with the Human Immunodeficiency Virus (HIV). The fundamental processes of HAND include persistent inflammation, immunological activation, and direct viral impact on the central nervous system. Emerging research shows that nutritional status, especially food consumption and body weight, is critical in determining the course and severity of HAND. Malnutrition exacerbates neurocognitive impairment by increasing inflammation and oxidative stress, while obesity may contribute to HAND through the promotion of metabolic disruption, gut microbiota alterations, and systemic inflammation. Additionally, the introduction of antiretroviral treatment (ART) has substantially enhanced the prognosis of people living with HIV by lowering viral load and improving immune function. However, depending on the regimen, ART can cause changes in body weight, which may influence the progression of HAND. This emphasizes the intricate interplay between HIV, nutrition, body weight, and neurocognitive health. As a result, various dietary approaches are currently being investigated to improve the quality of life of individuals with HIV and possibly help prevent neurocognitive decline in this population. This review aims to elucidate the relationship between nutrition and neurocognitive function in individuals living with HIV, shedding light on aspects of HANDs related to diet, body weight fluctuations, and metabolic syndrome. It explores the shift from current pharmacological treatments to innovative non-pharmacological interventions, including specific dietary strategies, to support overall health and cognitive well being in HIV-positive people. Full article
Show Figures

Figure 1

28 pages, 3163 KiB  
Review
Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery
by Hongxuan Wu, Xinzhong Wang, Xuegeng Chen, Yafei Zhang and Yaowen Zhang
Agriculture 2025, 15(12), 1297; https://doi.org/10.3390/agriculture15121297 - 17 Jun 2025
Viewed by 1106
Abstract
Autonomous navigation technology plays a crucial role in advancing smart agriculture by enhancing operational efficiency, optimizing resource utilization, and reducing labor dependency. With the rapid integration of information technology, modern agricultural machinery increasingly incorporates advanced techniques such as high-precision positioning, environmental perception, path [...] Read more.
Autonomous navigation technology plays a crucial role in advancing smart agriculture by enhancing operational efficiency, optimizing resource utilization, and reducing labor dependency. With the rapid integration of information technology, modern agricultural machinery increasingly incorporates advanced techniques such as high-precision positioning, environmental perception, path planning, and path-tracking control. This paper presents a comprehensive review of recent advancements in these core technologies, systematically analyzing their methodologies, advantages, and application scenarios. Despite notable progress, considerable challenges persist, primarily due to the unstructured nature of farmland, varying terrain conditions, and the demand for robust and adaptive control strategies. This review also discusses current limitations and outlines prospective research directions, aiming to provide valuable insights for the future development and practical deployment of autonomous navigation systems in agricultural machinery. Future research is expected to focus on enhancing multi-modal perception under occlusion and variable lighting conditions, developing terrain-aware path planning algorithms that adapt to irregular field boundaries and elevation changes and designing robust control strategies that integrate model-based and learning-based approaches to manage disturbances and non-linearity. Furthermore, tighter integration among perception, planning, and control modules will be crucial for improving system-level intelligence and coordination in real-world agricultural environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

12 pages, 608 KiB  
Brief Report
A Brief Overview of Uveal Melanoma Treatment Methods with a Focus on the Latest Advances
by Krystian Wdowiak, Joanna Dolar-Szczasny, Robert Rejdak, Agnieszka Drab and Agnieszka Maciocha
J. Clin. Med. 2025, 14(12), 4058; https://doi.org/10.3390/jcm14124058 - 8 Jun 2025
Viewed by 836
Abstract
Background: Uveal melanoma (UM) is a relatively rare malignancy, yet it remains the most common primary intraocular cancer in adults. Several risk factors have been identified, including light iris color, fair skin tone, and cutaneous freckles. Methods: The aim of this [...] Read more.
Background: Uveal melanoma (UM) is a relatively rare malignancy, yet it remains the most common primary intraocular cancer in adults. Several risk factors have been identified, including light iris color, fair skin tone, and cutaneous freckles. Methods: The aim of this article was an overview of the treatment methods for uveal melanoma, with a particular focus on emerging therapies such as tebentafusp and da-rovasertib. The research method was a review of the latest literature. Results: Genetic studies have uncovered key mutations in GNAQ and GNA11, which significantly contribute to UM pathogenesis. Treatment selection depends on tumor location and disease stage. In localized disease, radiotherapy—especially brachytherapy—is commonly used and generally effective. However, the prognosis worsens significantly once distant metastases, most often to the liver, develop, as no standard systemic therapy has demonstrated high efficacy in this setting. Recent years have seen the emergence of promising therapies, including tebentafusp, which stimulates immune responses against gp100-expressing melanoma cells, and darovasertib, a potent PKC inhibitor that targets MAPK pathway activation driven by GNAQ/GNA11 mutations. Both agents have shown encouraging tolerability; tebentafusp has demonstrated clinical benefit in Phase II and III trials, while darovasertib is still under investigation. Additionally, melphalan-based liver-directed therapy, particularly via hepatic arterial infusion (approved by the FDA), has shown potential in controlling liver-dominant disease in metastatic UM. This localized approach may provide significant benefit for patients with limited extrahepatic spread. Conclusions: Future research should focus on optimizing these novel strategies—tebentafusp, darovasertib, melphalan, and combination therapies—and on expanding our understanding of UM’s molecular drivers to enable the development of more effective, personalized treatments. Full article
(This article belongs to the Special Issue Clinical Highlights in Uveal Melanoma)
Show Figures

Figure 1

16 pages, 2229 KiB  
Article
Investigation of the Effect of Molecules Containing Sulfonamide Moiety Adsorbed on the FAPbI3 Perovskite Surface: A First-Principles Study
by Shiyan Yang, Yu Zhuang, Youbo Dou, Jianjun Wang, Hongwen Zhang, Wenjing Lu, Qiuli Zhang, Xihua Zhang, Yuan Wu and Xianfeng Jiang
Molecules 2025, 30(11), 2463; https://doi.org/10.3390/molecules30112463 - 4 Jun 2025
Viewed by 527
Abstract
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite [...] Read more.
First-principles calculations were conducted to examine the impact of three sulfonamide-containing molecules (H4N2O2S, CH8N4O3S, and C2H2N6O4S) adsorbed on the FAPbI3(001) perovskite surface, aiming to establish a significant positive correlation between the molecular structures and their regulatory effects on the perovskite surface. A systematic comparison was conducted to evaluate the adsorption stability of the three molecules on the two distinct surface terminations. The results show that all three molecules exhibit strong adsorption on the FAPbI3(001) surface, with C2H12N6O4S demonstrating the most favorable binding stability due to its extended frameworks and multiple electron-donating/withdrawing groups. Simpler molecules lacking carbon skeletons exhibit weaker adsorption and less dependence on surface termination. Ab initio molecular dynamics simulations (AIMD) further corroborated the thermal stability of the stable adsorption configurations at elevated temperatures. Electronic structure analysis reveals that molecular adsorption significantly reconstructs the density of states (DOS) on the PbI2-terminated surface, inducing shifts in band-edge states and enhancing energy-level coupling between molecular orbitals and surface states. In contrast, the FAI-terminated surface shows weaker interactions. Charge density difference (CDD) analysis indicates that the molecules form multiple coordination bonds (e.g., Pb–O, Pb–S, and Pb–N) with uncoordinated Pb atoms, facilitated by –SO2–NH2 groups. Bader charge and work function analyses indicate that the PbI2-terminated surface exhibits more pronounced electronic coupling and interfacial charge transfer. The C2H12N6O4S adsorption system demonstrates the most substantial reduction in work function. Optical property calculations show a distinct red-shift in the absorption edge along both the XX and YY directions for all adsorption systems, accompanied by enhanced absorption intensity and broadened spectral range. These findings suggest that sulfonamide-containing molecules, particularly C2H12N6O4S with extended carbon skeletons, can effectively stabilize the perovskite interface, optimize charge transport pathways, and enhance light-harvesting performance. Full article
Show Figures

Figure 1

25 pages, 5856 KiB  
Article
Analysis of Spatiotemporal Dynamics and Driving Mechanisms of Cultural Heritage Distribution Along the Jiangnan Canal, China
by Runmo Liu, Dan Meng, Ming Wang, Huili Gong and Xiaojuan Li
Sustainability 2025, 17(11), 5026; https://doi.org/10.3390/su17115026 - 30 May 2025
Viewed by 680
Abstract
As a crucial component of the Beijing–Hangzhou Grand Canal’s hydraulic engineering, the Jiangnan Canal has historically played a pivotal role in China’s development as a key hydraulic infrastructure. This water conservancy project, connecting northern and southern water systems, not only facilitated regional economic [...] Read more.
As a crucial component of the Beijing–Hangzhou Grand Canal’s hydraulic engineering, the Jiangnan Canal has historically played a pivotal role in China’s development as a key hydraulic infrastructure. This water conservancy project, connecting northern and southern water systems, not only facilitated regional economic integration but also nurtured unique cultural landscapes along its course. The Jiangnan Canal and its adjacent cities were selected as the study area to systematically investigate 334 tangible cultural heritage (TCH) sites and 420 intangible cultural heritage (ICH) elements. Through integrated Geographical Information System (GIS) spatial analyses—encompassing nearest neighbor index, kernel density estimation, standard deviation ellipse assessment, multi-ring buffer zoning, and Geodetector modeling, the spatiotemporal distribution features of cultural heritage were quantitatively characterized, with a focus on identifying the underlying driving factors shaping its spatial configuration. The analysis yields four main findings: (1) both TCH and ICH exhibit significant spatial clustering patterns across historical periods, with TCH distribution displaying an axis-core structure centered on the canal, whereas ICH evolved from dispersed to clustered configurations. (2) The center of gravity of TCH is primarily around Taihu Lake, while that of ICH is mainly on the south side of Taihu Lake, and the direction of distribution of both is consistent with the direction of the canal. (3) Multi-ring buffer analysis indicates that 77.2% of TCH and 49.8% of ICH clusters are concentrated within 0–10 km of the canal, demonstrating distinct spatial patterns: TCH exhibits a gradual canal-dependent density decrease with distance, whereas ICH reveals multifactorial spatial dynamics. (4) Human activity factors, particularly nighttime light intensity, are identified as predominant drivers of heritage distribution patterns, with natural environmental factors exerting comparatively weaker influence. These findings provide empirical support for developing differentiated conservation strategies for canal-related cultural heritage. The methodology offers replicable frameworks for analyzing heritage corridors in complex historical landscapes, contributing to both applied conservation practices and theoretical advancements in cultural geography. Full article
(This article belongs to the Special Issue Cultural Heritage Conservation and Sustainable Development)
Show Figures

Figure 1

Back to TopTop