Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = lifting boxes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1463 KB  
Article
Hybrid LLM-Assisted Fault Diagnosis Framework for 5G/6G Networks Using Real-World Logs
by Aymen D. Salman, Akram T. Zeyad, Shereen S. Jumaa, Safanah M. Raafat, Fanan Hikmat Jasim and Amjad J. Humaidi
Computers 2025, 14(12), 551; https://doi.org/10.3390/computers14120551 - 12 Dec 2025
Viewed by 309
Abstract
This paper presents Hy-LIFT (Hybrid LLM-Integrated Fault Diagnosis Toolkit), a multi-stage framework for interpretable and data-efficient fault diagnosis in 5G/6G networks that integrates a high-precision interpretable rule-based engine (IRBE) for known patterns, a semi-supervised classifier (SSC) that leverages scarce labels and abundant unlabeled [...] Read more.
This paper presents Hy-LIFT (Hybrid LLM-Integrated Fault Diagnosis Toolkit), a multi-stage framework for interpretable and data-efficient fault diagnosis in 5G/6G networks that integrates a high-precision interpretable rule-based engine (IRBE) for known patterns, a semi-supervised classifier (SSC) that leverages scarce labels and abundant unlabeled logs via consistency regularization and pseudo-labeling, and an LLM Augmentation Engine (LAE) that generates operator-ready, context-aware explanations and zero-shot hypotheses for novel faults. Evaluations on a five-class, imbalanced Dataset-A and a simulated production setting with noise and label scarcity show that Hy-LIFT consistently attains higher macro-F1 than rule-only and standalone ML baselines while maintaining strong per-class precision/recall (≈0.85–0.93), including minority classes, indicating robust generalization under class imbalance. IRBE supplies auditable, high-confidence seeds; SSC expands coverage beyond explicit rules without sacrificing precision; and LAE improves operational interpretability and surfaces potential “unknown/novel” faults without altering classifier labels. The paper’s contributions are as follows: (i) a reproducible, interpretable baseline that doubles as a high-quality pseudo-label source; (ii) a principled semi-supervised learning objective tailored to network logs; (iii) an LLM-driven explanation layer with zero-shot capability; and (iv) an open, end-to-end toolkit with scripts to regenerate all figures and tables. Overall, Hy-LIFT narrows the gap between brittle rules and opaque black-box models by combining accuracy, data efficiency, and auditability, offering a practical path toward trustworthy AIOps in next-generation mobile networks. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

24 pages, 1913 KB  
Article
Hyper–Dual Numbers: A Theoretical Foundation for Exact Second Derivatives
by Sung Bum Park and Ji Eun Kim
Mathematics 2025, 13(24), 3909; https://doi.org/10.3390/math13243909 - 6 Dec 2025
Viewed by 192
Abstract
Second-order derivative information, including mixed curvature, is central to Newton and trust-region optimization, uncertainty quantification, and simulation-based design. Classical finite differences (FD) remain popular but require delicate step-size tuning and can suffer from cancelation and noise amplification. Complex-step differentiation offers machine-precision gradients without [...] Read more.
Second-order derivative information, including mixed curvature, is central to Newton and trust-region optimization, uncertainty quantification, and simulation-based design. Classical finite differences (FD) remain popular but require delicate step-size tuning and can suffer from cancelation and noise amplification. Complex-step differentiation offers machine-precision gradients without subtractive cancelation, yet many second-derivative complex-step formulas reintroduce differencing. Hyper-dual numbers provide an algebraically principled alternative: by lifting real code to a four-component commutative nilpotent algebra, one obtains exact first and mixed second derivatives from a single evaluation, without finite differencing. This article gives a consolidated theoretical and experimental foundation for hyper-dual numbers. We formalize the algebra, prove exact Taylor truncation at second order, derive coefficient–extraction formulas for gradients and Hessians, and state assumptions for exactness, including limitations at non-smooth points and the need to branch on real parts. We present implementation patterns and language skeletons (C++, Python 3.11.5, MATLAB R2023b), and we provide fair numerical comparisons with FD, complex-step, and AD baselines. Stability tests under additive noise and ill-conditioning, together with runtime and memory profiling, demonstrate that hyper-dual coefficients are robust and reproducible in floating-point arithmetic, particularly for black-box codes where Hessian information is needed but differencing is fragile. Full article
(This article belongs to the Section C: Mathematical Analysis)
Show Figures

Figure 1

25 pages, 3617 KB  
Article
A Distributed Parameter Identification Method for Tractor Electro-Hydraulic Hitch Systems Based on Dual-Mode Grey-Box Modelling
by Xiaoxu Sun, Siwei Pan, Yue Song, Chunxia Jiang and Zhixiong Lu
Processes 2025, 13(11), 3608; https://doi.org/10.3390/pr13113608 - 7 Nov 2025
Viewed by 360
Abstract
To address the pronounced asymmetry and strong nonlinearity exhibited by the tractor electro-hydraulic hitch system during lifting and lowering operations, this study proposes a distributed parameter identification method based on a dual-mode grey-box modelling approach. Following a mode decomposition strategy, the lifting and [...] Read more.
To address the pronounced asymmetry and strong nonlinearity exhibited by the tractor electro-hydraulic hitch system during lifting and lowering operations, this study proposes a distributed parameter identification method based on a dual-mode grey-box modelling approach. Following a mode decomposition strategy, the lifting and lowering processes are regarded as two independent subsystems. Benchmark transfer function models are established for each subsystem through theoretical derivation. Considering the nonlinear characteristics and unmodeled dynamics that cannot be accurately captured by the benchmark model, a long short-term memory (LSTM) neural network compensator is introduced to enhance the model performance. Ultimately, a series-compensated dual-channel grey-box model is established, which effectively integrates mechanistic interpretability with high modelling accuracy. Then, to cope with the high-dimensional and heterogeneous parameter space of the constructed grey-box structure, a distributed parameter identification framework is proposed. This framework employs a staged optimization process that combines the whale optimization algorithm (WOA) with the gradient descent (GD) method to efficiently identify the hybrid parameter set. The identified models are validated through bench experiments. The results show that the proposed grey-box models achieve root mean square errors (RMSEs) of 0.33 mm and 0.48 mm, and mean absolute errors (MAEs) of 0.24 mm and 0.40 mm for the lifting and lowering processes, respectively. Compared with a single transfer function model, the RMSE is reduced by 57.6% and 87.3%, and the MAE is reduced by 59.2% and 87.9%, respectively. The proposed method substantially improves the modelling accuracy of the electro-hydraulic hitch system, providing a reliable foundation for system characterization and the design of high-performance control strategies for tractor electro-hydraulic hitch systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

14 pages, 949 KB  
Article
Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial
by Olalla Saiz-Vázquez, Montserrat Santamaría-Vázquez, Aitor Martín-Odriozola, Tamara Martín-Pérez and Hilario Ortiz-Huerta
Technologies 2025, 13(10), 468; https://doi.org/10.3390/technologies13100468 - 15 Oct 2025
Viewed by 1081
Abstract
This study investigates the use of multi-field electrostimulation with the Fesia Grasp device for hand rehabilitation in patients with Multiple Sclerosis (MS). This research aims to evaluate the effectiveness of this novel approach in improving hand function and dexterity in MS patients. A [...] Read more.
This study investigates the use of multi-field electrostimulation with the Fesia Grasp device for hand rehabilitation in patients with Multiple Sclerosis (MS). This research aims to evaluate the effectiveness of this novel approach in improving hand function and dexterity in MS patients. A cohort of MS patients with varying degrees of hand impairment underwent a structured rehabilitation program using the Fesia Grasp device, which delivers targeted electrical stimulation to specific muscle groups. Outcome measures assessed multiple aspects of hand function, including gross and fine motor skills, strength, and functional independence, at baseline, post-intervention, and 1-month follow-up. The main finding was a sustained between-group improvement in gross manual dexterity, measured by the Box and Block Test, at 1-month follow-up (p = 0.008, η2 = 0.429). Secondary analyses showed task-specific gains in the experimental group, with significant intragroup improvements in Jebsen–Taylor Hand Function Test items related to simulated feeding (p = 0.012) and lifting light objects (p = 0.036), and a trend toward better performance in stacking checkers (p = 0.069) and faster page-turning (p = 0.046) after the intervention. Other outcomes showed non-significant changes favoring the experimental group. This research contributes to the growing body of evidence supporting the use of advanced electrostimulation techniques in neurological rehabilitation and offers promising implications for enhancing the quality of life for individuals with MS-related hand dysfunction. Full article
Show Figures

Figure 1

26 pages, 4900 KB  
Article
Design and Experiment of Bare Seedling Planting Mechanism Based on EDEM-ADAMS Coupling
by Huaye Zhang, Xianliang Wang, Hui Li, Yupeng Shi and Xiangcai Zhang
Agriculture 2025, 15(19), 2063; https://doi.org/10.3390/agriculture15192063 - 30 Sep 2025
Viewed by 504
Abstract
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor [...] Read more.
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor planting uprightness exist. In this paper, the Hertz–Mindlin with Bonding contact model was used to establish the scallion seedling model. Combined with the Plackett–Burman experiment, steepest ascent experiment, and Box–Behnken experiment, the bonding parameters of scallion seedlings were calibrated. Furthermore, the accuracy of the scallion seedling model parameters was verified through the stress–strain characteristics observed during the actual loading and compression process of the scallion seedlings. The results indicate that the scallion seedling normal/tangential contact stiffness, scallion seedling normal/tangential ultimate stress, and scallion Poisson’s ratio significantly influence the mechanical properties of scallion seedlings. Through optimization experiments, the optimal combination of the above parameters was determined to be 4.84 × 109 N/m, 5.64 × 107 Pa, and 0.38. In this paper, the flexible planting components of scallion seedlings were taken as the research object. Flexible protrusions were added to the planting disc to reduce the damage rate of scallion seedlings, and an EDEM-ADAMS coupling interaction model between the planting components and scallion seedlings was established. Based on this model, optimization and verification were carried out on the key components of the planting components. Orthogonal experiments were conducted with the contact area between scallion seedlings and the disc, rotational speed of the flexible disc, furrow depth, and clamping force on scallion seedlings as experimental factors, and with the uprightness and damage status of scallion seedlings as evaluation criteria. The experimental results showed that when the contact area between scallion seedlings and the disc was 255 mm2, the angular velocity was 0.278 rad/s, and the furrow depth was 102.15 mm, the performance of the scallion planting mechanism was optimal. At this point, the uprightness of the scallion seedlings was 94.80% and the damage rate was 3%. Field experiments were carried out based on the above parameters. The results indicated that the average uprightness of transplanted scallion seedlings was 93.86% and the damage rate was 2.76%, with an error of less than 2% compared with the simulation prediction values. Therefore, the parameter model constructed in this paper is reliable and effective, and the designed and improved transplanting mechanism can realize the upright and low-damage planting of scallion seedlings, providing a reference for the low-damage and high-uprightness transplanting operation of scallions. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

24 pages, 4881 KB  
Article
Improved YOLOv8s-Based Detection for Lifting Hooks and Safety Latches
by Yunpeng Guo, Dianliang Xiao, Xin Ruan, Ran Li and Yuqian Wang
Appl. Sci. 2025, 15(18), 9878; https://doi.org/10.3390/app15189878 - 9 Sep 2025
Viewed by 824
Abstract
Lifting hooks equipped with safety latches are critical terminal components of lifting machinery. The safety condition of this component is a crucial factor in preventing load dislodgement during lifting operations. To achieve intelligent monitoring of the hook and the safety latch, precise identification [...] Read more.
Lifting hooks equipped with safety latches are critical terminal components of lifting machinery. The safety condition of this component is a crucial factor in preventing load dislodgement during lifting operations. To achieve intelligent monitoring of the hook and the safety latch, precise identification of these components is a crucial initial step. In this study, we propose an improved YOLOv8s detection model called YOLO-HOOK. To reduce computational complexity while simultaneously maintaining precision, the model incorporates an Efficient_Light_C2f module, which integrates a Convolutional Gated Linear Unit (CGLU) with Star Blocks. The neck network utilizes Multi-Scale Efficient Cross-Stage Partial (MSEICSP) to improve edge feature extraction capabilities under complex lighting conditions and multi-scale variations. Furthermore, a HOOK_IoU loss function was designed to optimize bounding box regression through auxiliary bounding boxes, and a piecewise linear mapping strategy was used to improve localization precision for challenging targets. The results of ablation studies and comparative analyses indicate that the YOLO-HOOK secured mAP scores of 90.4% at an Intersection over Union (IoU) threshold of 0.5 and 71.6% across the 0.5–0.95 IoU span, thereby eclipsing the YOLOv8s reference model by margins of 4.6% and 5.4%, respectively. Furthermore, it manifested a paramount precision of 97.0% alongside a commendable recall rate of 83.4%. The model parameters were reduced to 9.6 M, the computational complexity was controlled at 31.0 Giga Floating-point Operations Per Second (GFLOPs), and the inference speed reached 310 frames per second (FPS), balancing a lightweight design with excellent performance. These findings offer a technical approach for the intelligent recognition of hooks and safety latches during lifting operations, thus aiding in refining the safety management of lifting operations. Full article
Show Figures

Figure 1

17 pages, 2002 KB  
Article
Hippotherapy in the Treatment of CMD and Bruxism in Dentistry
by Margrit-Ann Geibel, Daniela Kildal, Amina Maria Geibel and Sibylle Ott
Animals 2025, 15(17), 2587; https://doi.org/10.3390/ani15172587 - 3 Sep 2025
Viewed by 919
Abstract
Dysfunctions and disorders of the craniomandibular system are accompanied by pathophysiological changes of muscle groups in the throat/neck and facial area, e.g., pain in the jaw and muscles of mastication and disturbance of occlusion, leading to teeth injury (loss of dental hard tissue, [...] Read more.
Dysfunctions and disorders of the craniomandibular system are accompanied by pathophysiological changes of muscle groups in the throat/neck and facial area, e.g., pain in the jaw and muscles of mastication and disturbance of occlusion, leading to teeth injury (loss of dental hard tissue, fractures/sensibility disorders, etc.). For muscular dysfunctions, even in the context of psychosomatic disorders and chronic stress, hippotherapy is particularly suitable, since it helps actively to relieve muscle tensions. In the current project we combined hippotherapy with progressive muscle relaxation (PMR) to achieve a synergistic effect. The horses used for therapy (two mares and five geldings between seven and twenty-one years old) were especially suitable because of their calm temperament. In two cases, trained therapy horses were used; in five other cases, the patients used their own horses, which were not specially trained. Right from the beginning, the project was accompanied by veterinary support. Conditions of horse keeping (active stable, same-sex groups, no boxes) were assessed as well as the horses themselves prior to, during, and after each therapy unit. In patients, cortisol, as a quantifiable parameter for stress, was measured before and after each therapy unit. From before the start until the end of each therapy unit of 15 min, the heart rate variability (HRV) of both patients and horses was registered continuously and synchronously. In addition, the behavior of the horses was monitored and recorded on video by an experienced coach and a veterinarian. The stress load during the tension phases in the therapy units was low, perceivable in the horses lifting their heads and a slightly shortened stride length. Likewise, the horses reflected the patients’ relaxation phases, so that at the end of the units the horses were physically and psychically relaxed, too, noticeable by lowering their necks, free ear movement, and a decreasing heart frequency (HF). Altogether, the horses benefited from the treatment, too. Obvious stress signs like unrest, head tossing, tail swishing, or tense facial expressions were not noticed at any time. Twenty jumpers served as a control group in different situations (training, tournament, and leisure riding). Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 5907 KB  
Article
Test–Retest Reliability of Task-Oriented Strength and Object Position in a Box Lifting Task Using the Activities of Daily Living Test and Training Device (ADL-TTD) in Children with Unilateral Spastic Cerebral Palsy
by Haowei Guo, Inge Heus, Bart Snijders, Nanne E. Land, Menno van der Holst, Rob. J. E. M. Smeets, Caroline H. G. Bastiaenen and Eugene A. A. Rameckers
Children 2025, 12(8), 1030; https://doi.org/10.3390/children12081030 - 5 Aug 2025
Viewed by 702
Abstract
Purpose: This study investigates the test–retest reliability of maximal voluntary contraction (MVC) and integrated object positioning during bimanual box lifting tasks in children with unilateral spastic cerebral palsy (USCP), using the Activities of Daily Living Test and Training Device (ADL-TTD). Materials and [...] Read more.
Purpose: This study investigates the test–retest reliability of maximal voluntary contraction (MVC) and integrated object positioning during bimanual box lifting tasks in children with unilateral spastic cerebral palsy (USCP), using the Activities of Daily Living Test and Training Device (ADL-TTD). Materials and Methods: Utilizing an explorative cross-sectional design, the study recruited 47 children with USCP. The ADL-TTD, equipped with an Inertial Measurement Unit (IMU) for precise object positioning, measured MVC, and object position in 3D space in a cross-sectional measurement containing two measurements in a fixed time period. Results: The findings demonstrated good test–retest reliability for MVC, with an ICCagreement of 0.95 for the mean MVC value. Additionally, good reliability was observed for object positioning in different directions measured with an IMU, with ICCagreement ranging from 0.82 to 0.86 degrees. Regarding the standard error of measurement (SEM), the SEMagreement for the mean MVC value was 5.94 kg, while the SEMagreement for object positioning was 1.48, 5.39, and 3.43 degrees, respectively. Conclusions: These results indicate that the ADL-TTD demonstrates good test–retest reliability for both MVC and object positioning, making it a valuable tool for analyzing this population in cross-sectional research by providing reliable measures of task-oriented strength and object manipulation. However, the relatively high SEMagreement, particularly in MVC, suggests that caution is needed when using this tool for repeated testing over time. This pioneering approach could significantly contribute to tailored assessment and training for children with USCP, highlighting the importance of integrating task-specific strength and positional accuracy into therapeutic interventions. Full article
(This article belongs to the Section Pediatric Orthopedics & Sports Medicine)
Show Figures

Figure 1

23 pages, 4984 KB  
Article
Design and Experiment of the Belt-Tooth Residual Film Recovery Machine
by Zebin Gao, Xinlei Zhang, Jiaxi Zhang, Yichao Wang, Jinming Li, Shilong Shen, Wenhao Dong and Xiaoxuan Wang
Agriculture 2025, 15(13), 1422; https://doi.org/10.3390/agriculture15131422 - 30 Jun 2025
Cited by 1 | Viewed by 689
Abstract
To address poor film pickup, incomplete soil–film separation, and high soil content in conventional residual film recovery machines, this study designed a belt-tooth type residual film recovery machine. Its core component integrates flexible belts with nail-teeth, providing both overload protection and efficient conveying. [...] Read more.
To address poor film pickup, incomplete soil–film separation, and high soil content in conventional residual film recovery machines, this study designed a belt-tooth type residual film recovery machine. Its core component integrates flexible belts with nail-teeth, providing both overload protection and efficient conveying. EDEM simulations compared film pickup performance across tooth profiles, identifying an optimal structure. Based on the kinematics and mechanical properties of residual film, a film removal mechanism and packing device were designed, incorporating partitioned packing belts to reduce soil content rate in the collected film. Using Box–Behnken experimental design, response surface methodology analyzed the effects of machine forward speed, film-lifting tooth penetration depth, and pickup belt inclination angle. Key findings show: forward speed, belt angle, and tooth depth (descending order) primarily influence recovery rate; while tooth depth, belt angle, and forward speed primarily affect soil content rate. Multi-objective optimization in Design-Expert determined optimal parameters: 5.2 km/h speed, 44 mm tooth depth, and 75° belt angle. Field validation achieved a 90.15% recovery rate and 5.86% soil content rate. Relative errors below 2.73% confirmed the regression model’s reliability. Compared with common models, the recovery rate has increased slightly, while the soil content rate has decreased by more than 4%, meeting the technical requirements for resource recovery of residual plastic film. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 1050 KB  
Article
Relationships Between Muscle Activation and Thoraco-Lumbar Kinematics in Direction-Specific Low Back Pain Subgroups During Everyday Tasks
by Rebecca Hemming, Alister du Rose, Liba Sheeran and Valerie Sparkes
Biomechanics 2025, 5(2), 42; https://doi.org/10.3390/biomechanics5020042 - 19 Jun 2025
Viewed by 1438
Abstract
Background/Objectives: The assessment of relationships between trunk muscle activity and thoraco-lumbar movements during sagittal bending has demonstrated that low back pain (LBP) subgroups (flexion pattern and active extension pattern motor control impairment) reveal distinct relationships that differentiate these subgroups from control groups. The [...] Read more.
Background/Objectives: The assessment of relationships between trunk muscle activity and thoraco-lumbar movements during sagittal bending has demonstrated that low back pain (LBP) subgroups (flexion pattern and active extension pattern motor control impairment) reveal distinct relationships that differentiate these subgroups from control groups. The study objective was to establish whether such relationships exist during various daily activities. Methods: Fifty participants with non-specific chronic low back pain (NSCLBP) (27 flexion pattern (FP), 23 active extension pattern (AEP)) and 28 healthy controls were recruited. Spinal kinematics were analysed using 3D motion analysis (Vicon™, Oxford, UK) and the muscle activity recorded via surface electromyography during a range of activities (box lift, box replace, reach up, step up, step down, stand-to-sit, and sit-to-stand). The mean sagittal angles for upper and lower thoracic and lumbar regions were correlated with normalised mean amplitude electromyography of bilateral transversus abdominis/internal oblique (IO), external oblique (EO), superficial lumbar multifidus (LM), and erector spinae (ES). Relationships were assessed via Pearson correlations (significance p < 0.01). Results: In the AEP group, increased spinal extension was associated with altered LM activity during box-replace, reach-up, step-up, and step-down tasks. In the FP group, increased lower lumbar spinal flexion was associated with reduced muscle activation, while increased lower thoracic flexion was associated with increased muscle activation. The control group elicited no significant associations. Correlations ranged between −0.812 and 0.754. Conclusions: Differential relationships between muscle activity and spinal kinematics exist in AEP, FP, and pain-free control groups, reinforcing previous observations that flexion or extension-related LBP involves distinct motor control strategies during different activities. These insights could inform targeted intervention approaches, such as movement-based interventions and wearable technologies, for these groups. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

11 pages, 3288 KB  
Article
From Knowledge to Leverage: How to Use Musculoskeletal Simulation to Design Exoskeleton Concepts
by John Rasmussen
Appl. Sci. 2025, 15(11), 5903; https://doi.org/10.3390/app15115903 - 23 May 2025
Viewed by 1437
Abstract
Background: An exoskeleton and its wearer form a mutually dependent biomechanical system, where design choices for the exoskeleton can affect the wearer in complex and often unforeseeable ways, and this makes exoskeleton design challenging. Advanced simulation methods provide an insight into the consequences [...] Read more.
Background: An exoskeleton and its wearer form a mutually dependent biomechanical system, where design choices for the exoskeleton can affect the wearer in complex and often unforeseeable ways, and this makes exoskeleton design challenging. Advanced simulation methods provide an insight into the consequences of design choices, but such analysis is usually employed towards the end of the design process. This paper demonstrates an option for musculoskeletal simulation to be used already in the conceptual design phase. Methods: We present the workflow by means of an example of box lifting. We show that the mathematical algorithm underlying the solution of the redundant equilibrium equations in musculoskeletal modeling has a structure that can be exploited to gain information about ideal actuator forces for an exoskeleton supporting the selected work task. Results: Based on the identified forces, passive or active actuators can be selected, and control strategies can be devised. Conclusions: We conclude that this methodology can save design cycles and improve exoskeleton development. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

17 pages, 6740 KB  
Article
Calibration and Experimental Validation of Discrete Element Parameters for Long-Grain Rice with Different Moisture Contents Based on Repose Angle
by Zhengfa Chen, Gang Che, Lin Wan, Hongchao Wang and Kun Zhang
Agriculture 2025, 15(10), 1058; https://doi.org/10.3390/agriculture15101058 - 14 May 2025
Cited by 2 | Viewed by 999
Abstract
The accurate determination of discrete element parameters is crucial for ensuring reliable results in simulating the critical post-harvest stages of rice grain (processing, transportation, and storage) with different moisture contents. To determine the discrete element parameters, a physical model of rice grain was [...] Read more.
The accurate determination of discrete element parameters is crucial for ensuring reliable results in simulating the critical post-harvest stages of rice grain (processing, transportation, and storage) with different moisture contents. To determine the discrete element parameters, a physical model of rice grain was constructed by the multi-sphere (MS) modeling approach. Using the repose angle as the evaluation index, the discrete element parameters of rice grain were calibrated and optimized through the Plackett–Burman (PB) test, the steepest climbing test, and the Box–Behnken (BB) test using EDEM software. A moisture content–significance discrete element parameters model was further developed based on a moisture content–repose angle model (R2 = 0.992) and a repose angle–significance discrete element parameters model (R2 = 0.970). The calibration results showed that the relative error between the simulated and actual repose angle did not exceed 3.52%. Meanwhile, the cylinder lifting method and unloading mass flow rate verification were performed. And the results showed that the relative errors of the repose angle and mass flow rate of rice grain did not exceed 2.09% and 7.72%, respectively. The study provides a general and reliable method for determining the parameters of discrete element method simulation for rice grain with different moisture contents. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 5639 KB  
Article
Parameter Calibration and Experimental Validation of Fermented Grain Particles During the Loading Process Based on the Discrete Element Model
by Xiaolian Liu, Taotao Chen, Shaopeng Gong, Hairui Xu and Chunjiang Zhao
Symmetry 2025, 17(5), 729; https://doi.org/10.3390/sym17050729 - 9 May 2025
Viewed by 752
Abstract
This study presents a systematic calibration of discrete element model (DEM) parameters for fermented grains (19.4% moisture) using the Hertz–Mindlin with JKR contact model to optimize robotic end-effector design in liquor distillation. By integrating cylinder lift experiments and response surface methodology, we identified [...] Read more.
This study presents a systematic calibration of discrete element model (DEM) parameters for fermented grains (19.4% moisture) using the Hertz–Mindlin with JKR contact model to optimize robotic end-effector design in liquor distillation. By integrating cylinder lift experiments and response surface methodology, we identified three critical parameters (JKR surface energy, restitution, and rolling friction coefficients) through Plackett–Burman screening and steepest ascent optimization. The Box–Behnken design derived optimal values of 0.0429 J/m2 surface energy, 0.183 restitution coefficient, and 0.216 rolling friction coefficient. The validation results demonstrated excellent agreement between the simulated and experimental angles of repose (AORs), with a simulated AOR of 36.805° and an experimental value of 36.412°, corresponding to a 1.08% error. The geometric congruence of the deposition morphology and the notable symmetrical distribution characteristics of the left and right angles of repose confirm the robustness of the parameter calibration methodology. This study provides a theoretical basis for the kinematic parameter optimization of the end-effector distribution mechanism in fermented grain-loading robots, providing critical insights for advancing automated control in solid-state liquor distillation processes. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

17 pages, 6802 KB  
Article
Design and Experiment of a Dual-Disc Potato Pickup and Harvesting Device
by Xianjie Li, Abouelnadar Salem, Yi Liu, Bin Sun, Guanzheng Shi, Xiaoning He, Dongwei Wang and Zengcun Chang
AgriEngineering 2025, 7(5), 148; https://doi.org/10.3390/agriengineering7050148 - 8 May 2025
Cited by 3 | Viewed by 1125
Abstract
To address the inefficiency and high cost of manual potato pickup in segmented harvesting, a dual-disc potato pickup and harvesting device was designed. The device utilizes counter-rotating dual discs to gather and preliminarily lift the potato–soil mixture, and combines it with an elevator [...] Read more.
To address the inefficiency and high cost of manual potato pickup in segmented harvesting, a dual-disc potato pickup and harvesting device was designed. The device utilizes counter-rotating dual discs to gather and preliminarily lift the potato–soil mixture, and combines it with an elevator chain to achieve potato–soil separation and transportation. Based on Hertz’s collision theory, the impact of disc rotational speed on potato damage was analyzed, establishing a maximum speed limit (≤62.56 r/min). Through kinematic analysis, the disc inclination angle (12–24°) and operational parameters were optimized. Through coupled EDEM-RecurDyn simulations and Box–Behnken experimental design, the optimal parameter combination was determined with the potato loss rate and potato damage rate as evaluation indices: disc rotational speed of 50 r/min, disc inclination angle of 16°, and machine forward speed of 0.6 m/s. Field validation tests revealed that the potato loss rate and potato damage rate were 1.53% and 2.45%, respectively, meeting the requirements of the DB64/T 1795-2021 standard. The research findings demonstrate that this device can efficiently replace manual potato picking, providing a reliable solution for the mechanized harvesting of potatoes. Full article
Show Figures

Figure 1

24 pages, 14848 KB  
Article
Analysis of the Resistance to Teeth During the Picking Process Based on DEM-MBD Coupling Simulation
by Weiquan Fang, Xinzhong Wang, Dianlei Han and Israel Enema Ohiemi
Agronomy 2025, 15(5), 1002; https://doi.org/10.3390/agronomy15051002 - 22 Apr 2025
Cited by 2 | Viewed by 797
Abstract
To improve the film-picking performance of toothed chain tillage residual film recycling machines, the working parameters of a film-picking device were optimized using a Box–Behnken design, with the film-picking rate as the response parameter. The effectiveness of the film-picking device, along with soil [...] Read more.
To improve the film-picking performance of toothed chain tillage residual film recycling machines, the working parameters of a film-picking device were optimized using a Box–Behnken design, with the film-picking rate as the response parameter. The effectiveness of the film-picking device, along with soil compaction, torque, and stress on the picking teeth during the process, was evaluated through DEM-MBD coupling simulations and experiments. The optimized working parameters for the film-lifting device were found to be forward speed v=1.94 m·s1, picking tooth speed n=10.47 rad·s1, and penetration depth h=125 mm. Under these conditions, the film-picking rate for the single-tooth and multi-tooth devices were 88% and 90%, respectively, with a 2% error. The simulation and experimental values for soil compaction, torque, and stress during the film-picking process were 800 Pa, 2.72 N·m, and 6.4 N, respectively. The corresponding simulation values were 870 Pa, 2.53 N·m, and 6.5 N, with errors of 8%, 7%, and 2%. This study provides valuable insights for optimizing the design of residual film recycling machines and predicting soil compaction, tooth torque, and stress. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

Back to TopTop