Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Intervention
- Habituation protocol (first 10 min of session 1): Gradual adaptation to electrical stimulation.
- Task-oriented training (sessions 1–12): After configuring the electrode fields for wrist, thumb, and finger movements, participants performed repetitive tasks (e.g., open/close hand, wrist extension, index flexion) followed by functional tasks (e.g., grasping objects, squeezing a ball, pinch precision). Training was adapted to individual needs and progressively intensified.
2.4. Procedure
2.5. Outcome Measures
- Jebsen–Taylor Hand Function Test (JTHFT) [15]: Evaluates hand function through seven standardized, timed subtests simulating daily activities, including writing a sentence (item 1), turning over cards (item 2), picking up small common objects (item 3), stacking checkers (item 4), simulated feeding (item 5), and moving light (item 6) and heavy objects (item 7). Lower total times indicate better hand function. It demonstrates high internal consistency (Cronbach’s alpha = 0.96 for the dominant hand, 0.92 for the non-dominant hand).
- Nine-Hole Peg Test (NHPT) [16]: Assesses fine motor dexterity by measuring the time required to place and remove nine pegs from corresponding holes. Shorter completion times indicate better manual dexterity. The test has demonstrated high inter-rater and test–retest reliability (r = 0.86–0.98) [17].
- Box and Block Test (BBT) [18]: Measures gross manual dexterity by counting the number of wooden blocks (2.5 cm) transferred from one compartment of a divided box to another within one minute. Higher scores reflect better gross motor skills. Test–retest reliability is high (intraclass correlation coefficients ranging from 0.89 to 0.97) [19].
- Baseline Pinch Gauge: Assesses grip and pinch strength by converting the force applied into a numeric reading in kilograms. It offers excellent test–retest reliability, with intraclass correlation coefficients above 0.90 [15].
- Functional Independence Measure (FIM) [20]: Evaluates the level of functional independence in individuals across 18 items, rated on a 7-point scale (1 = total assistance, 7 = complete independence), with total scores ranging from 18 to 126. The scale includes two subdomains: motor (13 items) and cognitive (5 items). Higher scores indicate greater independence. It has strong internal consistency (Cronbach’s alpha = 0.93) [21].
2.6. Statistical Analysis
2.7. Ethical Considerations
3. Results
3.1. Descriptive Analysis
3.2. Normality Tests
3.3. Baseline Analysis
3.4. Inferential Between-Subjects Analysis
3.5. Intragroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBT | Box And Block Test |
CG | Control Group |
CNS | Central Nervous System |
DS1 | Difference Score Posttest—Pretest |
DS2 | Difference Score Follow Up-Posttest |
EG | Experimental Group |
FES | Functional Electrical Stimulation |
FIM | Functional Independence Measure |
JTHFT | Jebsen–Taylor Hand Function Test |
LLIC | Lower Limit Interval Confidence |
M | Mean |
MS | Multiple Sclerosis |
NHPT | Nine-Hole Peg Test |
PPMS | Primary Progressive Multiple Sclerosis |
SD | Standard Deviation |
SPMS | Secondary Progressive Multiple Sclerosis |
RCT | Randomized Controlled Trial |
RRMS | Relapsing–Remitting Multiple Sclerosis |
ULIC | Upper Limit Interval Confidence |
Appendix A
Variable/Item | Time | p (Shapiro-Wilk) | p | Skewness | Kurtosis | Test Type |
---|---|---|---|---|---|---|
JTHFT Item 1 | Pretest | 0.849 | 0.017 | 1.209 | 1.209 | Non parametric |
Postest | 0.885 | 0.057 | 1.097 | 0.530 | ||
Follow-up | 0.839 | 0.012 | 1.013 | −0.279 | ||
JTHFT Item 2 | Pretest | 0.945 | 0.446 | 0.193 | 0.193 | Parametric |
Postest | 0.914 | 0.154 | 0.934 | 0.258 | ||
Follow-up | 0.919 | 0.184 | 1.048 | 0.953 | ||
JTHFT Item 3 | Pretest | 0.902 | 0.101 | 1.064 | 1.064 | Non parametric |
Postest | 0.927 | 0.215 | 0.438 | −0.872 | ||
Follow-up | 0.783 | 0.002 | 2.217 | 6.248 | ||
JTHFT Item 4 | Pretest | 0.891 | 0.069 | 0.595 | 0.595 | Non parametric |
Postest | 0.860 | 0.024 | 1.477 | 3.300 | ||
Follow-up | 0.674 | 0.000 | 2.804 | 9.095 | ||
JTHFT Item 5 | Pretest | 0.760 | 0.001 | 1.046 | 1.046 | Non parametric |
Postest | 0.737 | 0.001 | 1.701 | 2.095 | ||
Follow-up | 0.808 | 0.005 | 1.872 | 3.959 | ||
JTHFT Item 6 | Pretest | 0.875 | 0.041 | 1.244 | 1.244 | Non parametric |
Postest | 0.677 | 0.000 | 2.077 | 3.461 | ||
Follow-up | 0.460 | 0.000 | 3.532 | 12.957 | ||
JTHFT Item 7 | Pretest | 0.917 | 0.174 | 1.027 | 1.027 | Non parametric |
Postest | 0.872 | 0.036 | 1.336 | 1.751 | ||
Follow-up | 0.553 | 0.000 | 3.152 | 10.610 | ||
Pinch strength | Pretest | 0.802 | 0.004 | 1.530 | 1.515 | Parametric |
Postest | 0.962 | 0.729 | 0.488 | 0.664 | ||
Follow-up | 0.913 | 0.152 | 0.991 | 0.856 | ||
NHPT | Pretest | 0.902 | 0.101 | 1.046 | 0.442 | Parametric |
Postest | 0.872 | 0.036 | 0.588 | –1.236 | ||
Follow-up | 0.843 | 0.014 | 0.830 | –0.874 | ||
FIM | Pretest | 0.978 | 0.952 | 0.064 | −0.469 | Parametric |
Postest | 0.934 | 0.313 | 0.138 | −1.314 | ||
Follow-up | 0.968 | 0.834 | −0.107 | −0.646 | ||
BBT | Pretest | 0.913 | 0.151 | 1.051 | 0.744 | Parametric |
Postest | 0.956 | 0.621 | 0.161 | −1.140 | ||
Follow-up | 0.971 | 0.872 | −0.061 | −0.711 | ||
JTHFT Total | Pretest | 0.914 | 0.157 | 0.787 | −0.110 | Parametric |
Postest | 0.886 | 0.058 | 1.273 | 1.382 | ||
Follow-up | 0.841 | 0.013 | 1.652 | 3.709 |
References
- Martinez-Altarriba, M.C.; Ramos-Campoy, O.; Luna-Calcaño, I.M.; Arrieta-Antón, E. Revisión de la Esclerosis Múltiple (1). A propósito de un caso. SEMERGEN-Med. Fam. 2015, 41, 261–265. [Google Scholar] [CrossRef]
- Jiménez-Pérez, J.P.; Camacho-Castillo, E.Z.; del Toro Chávez, D.Á.; Buenrostro-Villanueva, D.M.; Luevanos-Villalpando, G.; Lomelí-Gómez, A.L.; Acuña-Vaca, S.; Delgado-Lara, D.L. Esclerosis Múltiple, un panorama actual sobre esta entidad eeurodegenerativa Qué sabíamos y qué sabemos ahora? Metodol. Instrumentación Lógica Estadística Evid. Epistemol. Salud 2024, 1, 34–50. [Google Scholar]
- Hocking, D.R.; Bradshaw, J.L.; Fielding, J. Degenerative Disorders of the Brain; Routledge: London, UK, 2019. [Google Scholar]
- Alcoriza Rodríguez, S.; Morais Vargas, C. Esclerosis Múltiple. Bachelor’s Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2015. [Google Scholar]
- Vázquez Sánchez, F.; García López, B. Manual de Neurología para Terapia Ocupacional; Editorial Médica Panamericana: Madrid, Spain, 2023. [Google Scholar]
- Abdullahi, A.; Wong, T.W.; Ng, S.S. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: Some proposed hypotheses and their implications for research and practice. Front. Neurol. 2023, 14, 1225924. [Google Scholar] [CrossRef] [PubMed]
- Offner, F.F.; Liberson, W.T. Method of Muscular Stimulation in Human Beings to Aid in Walking. U.S. Patent No. 3,344,792, 3 October 1967. [Google Scholar]
- Sabut, S.K.; Lenka, P.K.; Kumar, R.; Mahadevappa, M. Effect of functional electrical stimulation on the effort and walking speed, surface electromyography activity, and metabolic responses in stroke subjects. J. Electromyogr. Kinesiol. 2010, 20, 1170–1177. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Song, J.-Y.; Park, S.-H.; Lee, M.-M. Effect of functional electrical stimulation-based mirror therapy using gesture recognition biofeedback on upper extremity function in patients with chronic stroke: A randomized controlled trial. Medicine 2023, 102, e36546. [Google Scholar] [CrossRef] [PubMed]
- Martín-Odriozola, A.; Rodríguez-de-Pablo, C.; Caceres-Salegi, A.; García-Calleja, A.; Marín-Ojea, J.I.; Hernández, E.; Imatz-Ojanguren, E.; Keller, T.; Zabaleta-Rekondo, H. Analysis of the movements generated by a multi-field functional electrical stimulation device for upper extremity rehabilitation. Artif. Organs 2022, 46, 2027–2033. [Google Scholar] [CrossRef]
- Marquez-Chin, C.; Popovic, M.R. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: A review. Biomed. Eng. Online 2020, 19, 34. [Google Scholar] [CrossRef]
- Sears, E.D.; Chung, K.C. Validity and responsiveness of the Jebsen–Taylor hand function test. J. Hand Surg. 2010, 35, 30–37. [Google Scholar] [CrossRef]
- Fabbri, B.; Berardi, A.; Tofani, M.; Panuccio, F.; Ruotolo, I.; Sellitto, G.; Galeoto, G. A systematic review of the psychometric properties of the Jebsen–Taylor Hand Function Test (JTHFT). Hand Surg. Rehabil. 2021, 40, 560–567. [Google Scholar] [CrossRef]
- Santamaría-Vázquez, M.; Ortiz-Huerta, J.H.; Martín-Odriozola, A.; Saiz-Vazquez, O. Improvement of Motor Imagination and Manual Ability Through Virtual Reality and Selective and Nonselective Functional Electrical Stimulation: Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2024, 13, e63329. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Valdes, K. Reliability of pinch strength testing in elderly subjects with unilateral thumb carpometacarpal osteoarthritis. J. Phys. Ther. Sci. 2014, 26, 993–995. [Google Scholar] [CrossRef]
- Feys, P.; Lamers, I.; Francis, G.; Benedict, R.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R. Multiple Sclerosis Outcome Assessments Consortium the Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 711–720. [Google Scholar] [CrossRef]
- Figueiredo, I.; Sampaio, R.; Mancini, M.; Silva, F.; Souza, M. Test of grip strength using the Jamar dynamometer. Acta Fisiátrica 2007, 14, 104–110. [Google Scholar] [CrossRef]
- Desrosiers, J.; Bravo, G.; Hébert, R.; Dutil, É.; Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 1994, 75, 751–755. [Google Scholar]
- Mathiowetz, V.; Rennells, C.; Donahoe, L. Effect of elbow position on grip and key pinch strength. J. Hand Surg. 1985, 10, 694–697. [Google Scholar] [CrossRef]
- Rozo, A.L.; Juliao, A.J. Medida de la independencia funcional con escala FIM en los pacientes con evento cerebro vascular del Hospital Militar Central de Bogotá en el periodo octubre 2010–mayo 2011. Revista Med. 2013, 21, 72–82. [Google Scholar]
- Dodds, T.A.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [PubMed]
- I.B.M Corporation. IBM SPSS Statistics, Version 28.0; I.B.M Corporation: Armonk, NY, USA, 2021.
- Kim, H.-Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restor. Dent. Endod. 2013, 38, 52. [Google Scholar] [CrossRef]
- Koch, M.W.; Repovic, P.; Mostert, J.; Bowen, J.D.; Comtois, J.; Strijbis, E.; Uitdehaag, B.; Cutter, G. The nine hole peg test as an outcome measure in progressive MS trials. Mult. Scler. Relat. Disord. 2023, 69, 104433. [Google Scholar]
- Khan, M.A.; Fares, H.; Ghayvat, H.; Brunner, I.C.; Puthusserypady, S.; Razavi, B.; Lansberg, M.; Poon, A.; Meador, K.J. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front. Neurol. 2023, 14, 1272992. [Google Scholar] [CrossRef]
- Luo, S.; Xu, H.; Zuo, Y.; Liu, X.; All, A.H. A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med. 2020, 22, 447–463. [Google Scholar] [CrossRef]
- Miller, L.; McFadyen, A.; Lord, A.C.; Hunter, R.; Paul, L.; Rafferty, D.; Bowers, R.; Mattison, P. Functional electrical stimulation for foot drop in multiple sclerosis: A systematic review and meta-analysis of the effect on gait speed. Arch. Phys. Med. Rehabil. 2017, 98, 1435–1452. [Google Scholar]
- Sampson, P.; Freeman, C.; Coote, S.; Demain, S.; Feys, P.; Meadmore, K.; Hughes, A.-M. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 235–248. [Google Scholar] [CrossRef]
- Malešević, J.; Štrbac, M.; Isaković, M.; Kojić, V.; Konstantinović, L.; Vidaković, A.; Dedijer Dujović, S.; Kostić, M.; Keller, T. Temporal and Spatial Variability of Surface Motor Activation Zones in Hemiplegic Patients During Functional Electrical Stimulation Therapy Sessions. Artif. Organs 2017, 41, E166–E177. [Google Scholar] [CrossRef]
- Hoffmann, U.; Deinhofer, M.; Keller, T. Automatic determination of parameters for multipad functional electrical stimulation: Application to hand opening and closing. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1859–1863. [Google Scholar]
- Imatz-Ojanguren, E.; Sánchez-Márquez, G.; Asiain-Aristu, J.R.; Cueto-Mendo, J.; Jaunarena-Goicoechea, E.; Zabaleta, H.; Keller, T. A foot drop compensation device based on surface multi-field functional electrical stimulation—Usability study in a clinical environment. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319862141. [Google Scholar] [CrossRef] [PubMed]
- Malešević, N.M.; Maneski, L.Z.; Ilić, V.; Jorgovanović, N.; Bijelić, G.; Keller, T.; Popović, D.B. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 2012, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Barr, C.J.; Patritti, B.L.; Bowes, R.; Crotty, M.; McLoughlin, J.V. Orthotic and therapeutic effect of functional electrical stimulation on fatigue induced gait patterns in people with multiple sclerosis. Disabil. Rehabil. Assist. Technol. 2017, 12, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-J.; Hsu, M.-J.; Chen, S.-M.; Lin, C.-H. Decreased central fatigue in multiple sclerosis patients after 8 weeks of surface functional electrical stimulation. J. Rehabil. Res. Dev. 2011, 48, 555–564. [Google Scholar] [CrossRef]
- Maneski, L.Z.P.; Malešević, N.M.; Savić, A.M.; Keller, T.; Popović, D.B. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles. Muscle Nerve 2013, 48, 930–937. [Google Scholar] [CrossRef]
- Imatz-Ojanguren, E.; Keller, T. Evoked sensations with transcutaneous electrical stimulation with different frequencies, waveforms, and electrode configurations. Artif. Organs 2023, 47, 117–128. [Google Scholar] [CrossRef]
- Marcus, R. What is multiple sclerosis? JAMA 2022, 328, 2078. [Google Scholar] [CrossRef] [PubMed]
CG (n = 8) | EG (n = 8) | Total (N = 16) | |
---|---|---|---|
Age (M ± SD) | 49.75 ± 10.83 | 53.50 ± 12.30 | 51.62 ± 11.36 |
Sex—Man | 4 (50%) | 3 (37.5%) | 7 (43.8%) |
Sex—Women | 4 (50%) | 5 (62.5%) | 9 (56.3%) |
Type MS—EMRR | 2 (25%) | 3 (37.5%) | 5 (31.3%) |
Type MS—EMSP | 2 (25%) | 5 (62.5%) | 7 (43.8%) |
Type MS—EMPP | 4 (50%) | 0 (0%) | 4 (25%) |
Disease/Duration (years, M ± SD) | 13.00 ± 9.64 | 11.00 ± 7.21 | 12.00 ± 8.28 |
Dominant Hand—Right | 8 (50%) | 8 (50%) | 16 (100%) |
Alcohol consumption | 2 (25%) | 1 (12.5%) | 3 (18.8%) |
No alcohol consumption | 6 (75%) | 7 (87.5%) | 13 (81.3%) |
Smoker | 1 (12.5%) | 1 (12.5%) | 2 (12.5%) |
Non-smoker | 7 (87.5%) | 7 (87.5%) | 14 (87.5%) |
Physical activity | 2 (25%) | 2 (25%) | 4 (25%) |
1 day/week | 1 (12.5%) | 3 (37.5%) | 4 (25%) |
2 days/week | 4 (50%) | 1 (12.5%) | 5 (31.3%) |
More than 2 days/week | 1 (12.5%) | 2 (25%) | 3 (18.8%) |
Associated diseases—None | 1 (100%) | 2 (25%) | 10 (62.5%) |
Associated diseases—Yes | 0 (0%) | 6 (75%) | 6 (37.5%) |
Dominant right hand | 7 (87.5%) | 6 (75%) | 13 (81.3%) |
Dominant left hand | 1 (12.5%) | 2 (25%) | 3 (18.8%) |
F (Levene) | Sig. Levene | t | gl | p | LLIC | ULIC | |
---|---|---|---|---|---|---|---|
JTHFT Item 2 | 1.212 | 0.290 | 0.778 | 14 | 0.450 | −5884.93 | 2752.43 |
Pinch strength | 0.107 | 0.748 | 0.049 | 14 | 0.962 | −2.896 | 3.031 |
NHPT | 5.305 | 0.037 | 2.303 | 14 | 0.037 | −207.7 | −7.130 |
FIM | 0.557 | 0.468 | 1.282 | 14 | 0.221 | −7.828 | 31.078 |
BBT | 0.403 | 0.536 | −0.425 | 14 | 0.678 | −13.61 | 9.110 |
JTHFT Total | 2.028 | 0.176 | 1.026 | 14 | 0.325 | −18,788.63 | 52,926.13 |
Variable | Comparison | M EG. | M CG | F (gl1,gl2) | p | η2ₚ |
---|---|---|---|---|---|---|
JTHFT Item 2 | DS1 | −2332.5 | −1161.25 | 0.413 (1,14) | 0.531 | 0.029 |
JTHFT Item 2 | DS2 | −118.75 | 2527.14 | 0.413 (1,14) | 0.531 | 0.029 |
Pinch strength | DS1 | 1.17 | 0.26 | 1.437 (1,14) | 0.251 | 0.093 |
Pinch strength | DS2 | −0.19 | 0.39 | 0.039 (1,14) | 0.846 | 0.003 |
FIM | DS1 | 1.63 | −6.38 | 1.501 (1,14) | 0.241 | 0.097 |
FIM | DS2 | 1.63 | −4.71 | 1.627 (1,14) | 0.223 | 0.104 |
BBT | DS1 | 5.75 | −1.38 | 2.909 (1,14) | 0.110 | 0.172 |
BBT | DS2 | 3.63 | −0.43 | 9.774 (1,13) | 0.008 | 0.429 |
JTHFT Total | DS1 | −13,710.0 | −6605.0 | 1.980 (1,14) | 0.181 | 0.124 |
JTHFT Total | DS2 | −21,090.0 | 7377.14 | 1.566 (1,13) | 0.234 | 0.107 |
NHPT | DS1 (ANCOVA) | −1482.043 | 2962.668 | 1.168 (1,13) | 0.299 | 0.082 |
NHPT | DS2 (ANCOVA) | −2668.125 | 6091.4286 | 3.216 (1,12) | 0.098 | 0.379 |
Item | DS1 (p) | DS2 (p) |
---|---|---|
JTHFT Item 1 | 0.462 | 0.867 |
JTHFT Item 3 | 0.674 | 0.281 |
JTHFT Item 4 | 0.248 | 0.152 |
JTHFT Item 5 | 0.600 | 0.189 |
JTHFT Item 6 | 0.036 * | 0.867 |
JTHFT Item 7 | 0.141 | 0.536 |
Variable | Mean EG | SD EG | r EG | p EG | LLIC EG | ULIC EG | Mean CG | SD CG | r CG | p CG | LLIC CG | ULIC CG |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JTHFT Item 2 | 13,228.75 | 3435.18 | 0.018 | 0.968 | −3881.55 | 4131.55 | 11,662.5 | 4542.61 | 0.361 | 0.390 | −3291.3 | 7457.3 |
Pinch strength | 4.8438 | 2.7452 | 0.761 | 0.028 | −1.08 | 1.205 | 4.7763 | 2.7806 | 0.812 | 0.014 | −1.712 | 0.387 |
NHPT | 50,368.75 | 19,863.97 | 0.959 | 0.000 | −3474.91 | 4782.41 | 32,699.38 | 8731.09 | 0.876 | 0.004 | −671.2 | 1512.2 |
BBT | 36.875 | 9.357 | 0.837 | 0.010 | −4.421 | 7.171 | 39.125 | 11.7039 | 0.881 | 0.004 | −9.278 | 3.403 |
FIM | 110.5 | 17.2295 | 0.955 | 0.000 | −1.879 | 13.129 | 98.875 | 19.007 | 0.903 | 0.002 | −5.298 | 1.368 |
Item | p CG | p EG |
---|---|---|
Item 1 | 0.889 | 0.176 |
JTHFT Item 3 | 0.208 | 0.889 |
JTHFT Item 4 | 0.779 | 0.012 * |
JTHFT Item 5 | 0.208 | 0.069 * |
JTHFT Item 6 | 0.401 | 0.036 * |
JTHFT Item 7 | 0.735 | 0.401 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiz-Vázquez, O.; Santamaría-Vázquez, M.; Martín-Odriozola, A.; Martín-Pérez, T.; Ortiz-Huerta, H. Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial. Technologies 2025, 13, 468. https://doi.org/10.3390/technologies13100468
Saiz-Vázquez O, Santamaría-Vázquez M, Martín-Odriozola A, Martín-Pérez T, Ortiz-Huerta H. Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial. Technologies. 2025; 13(10):468. https://doi.org/10.3390/technologies13100468
Chicago/Turabian StyleSaiz-Vázquez, Olalla, Montserrat Santamaría-Vázquez, Aitor Martín-Odriozola, Tamara Martín-Pérez, and Hilario Ortiz-Huerta. 2025. "Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial" Technologies 13, no. 10: 468. https://doi.org/10.3390/technologies13100468
APA StyleSaiz-Vázquez, O., Santamaría-Vázquez, M., Martín-Odriozola, A., Martín-Pérez, T., & Ortiz-Huerta, H. (2025). Multi-Field Functional Electrical Stimulation with Fesia Grasp for Hand Rehabilitation in Multiple Sclerosis: A Randomized, Controlled Trial. Technologies, 13(10), 468. https://doi.org/10.3390/technologies13100468