Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = lifting and lowering hydraulic system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1309 KiB  
Article
Load Weight Estimation in Electric Forklifts via DC–DC Converter Power Signal Analysis of the Electro-Hydraulic Lifting System
by Juan Pablo Acevedo, Cristian Monsalve, Samuel Vergara, Ricardo León, Rodrigo Barraza and Guillermo Ramírez
Appl. Sci. 2025, 15(13), 7470; https://doi.org/10.3390/app15137470 - 3 Jul 2025
Viewed by 334
Abstract
Electric forklifts are increasingly adopted in industrial environments due to their energy efficiency, reduced emissions, and lower operating noise compared to combustion alternatives. This paper presents a novel methodology for estimating the transported load weight in electric forklifts based on the output power [...] Read more.
Electric forklifts are increasingly adopted in industrial environments due to their energy efficiency, reduced emissions, and lower operating noise compared to combustion alternatives. This paper presents a novel methodology for estimating the transported load weight in electric forklifts based on the output power signal of the DC–DC converter driving the electro-hydraulic lifting system. The proposed method leverages non-intrusive measurements of voltage and current to compute the lifting power, lifting speed, and energy, also allowing the computation of the lifting efficiency. The analysis confirmed that lifting energy is not linearly correlated with transported weight but lifting efficiency can be reasonably approximated as a function of lifting power and lifting speed, subsequently allowing the estimation of the transported mass. Experimental validation using 53 lifting events demonstrated that the methodology can estimate load weight with a reasonable mean absolute percentage error of 10.6% and 6.4% when using linear or multivariable regression analysis, respectively. These results demonstrate that the approach is sufficiently accurate for practical applications such as triggering load warnings when the estimated mass exceeds predefined safety thresholds. Full article
Show Figures

Figure 1

25 pages, 6656 KiB  
Article
Energy Efficiency Improvement of Hydraulic Indirect Elevator
by Łukasz Stawiński, Andrzej Kosucki, Justyna Skowrońska and Piotr Malenta
Energies 2025, 18(9), 2163; https://doi.org/10.3390/en18092163 - 23 Apr 2025
Viewed by 607
Abstract
This article addresses the current issue of energy consumption in the hydraulic drive systems of working machines, with particular emphasis on elevators. This paper describes the results of experimental comparative research and estimation of energy and time consumption for two drive systems of [...] Read more.
This article addresses the current issue of energy consumption in the hydraulic drive systems of working machines, with particular emphasis on elevators. This paper describes the results of experimental comparative research and estimation of energy and time consumption for two drive systems of a hydraulic indirect elevator. The purpose of this article is to compare the energy consumption of a typical multi-valve system (MV) system with that of an innovative new electro-hydraulic drive (EHD) system with a variable speed pump. The EHD system uses a frequency converter with an energy recovery module to control the speed of the car in both directions and the return of potential energy during the lowering cycle. The comparison of these drive systems was performed under the same conditions, realizing the same elevator work cycles. This paper proposes methods for estimating the energy consumption of an MV system based on measurement data collected during an experiment. The results indicate that the EHD system was less energy-intensive, even at below 60%. The smaller the load mass, the shorter the operating time of the EHD system compared to the MV system. The introduced coefficients defining the energy consumption per unit of mass and payload displacement showed more than twice the decrease in energy demand during lifting and energy recovery possibility during lowering. The EHD system provides the same coefficient values regardless of the distance traveled, which makes it a predictable system, in contrast to the MV system, especially during lowering cycles. The benefits of the EHD also include a less complex hydraulic system (elimination of most valves). Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

25 pages, 24946 KiB  
Article
Study on Working Characteristics of 4-Column Hydraulic Support in Lifting–Lowering–Moving State Based on Microcontact Theory and Rigid–Flexible–Mechanical–Hydraulic Coupling Simulation Model
by Bowen Xie and Yang Yang
Actuators 2024, 13(5), 193; https://doi.org/10.3390/act13050193 - 20 May 2024
Cited by 3 | Viewed by 1701
Abstract
A hydraulic support is one of the most important pieces of equipment in fully mechanized coal mining, and its stability and reliability will have a direct impact on fully mechanized coal mining. In order to deeply elucidate the dynamic working characteristics of a [...] Read more.
A hydraulic support is one of the most important pieces of equipment in fully mechanized coal mining, and its stability and reliability will have a direct impact on fully mechanized coal mining. In order to deeply elucidate the dynamic working characteristics of a hydraulic support during lifting, lowering, and moving, and to provide theoretical support for further optimizing the stability and reliability of a hydraulic support, the dynamic characteristics of a hydraulic support are studied in this paper. Firstly, in order to study the dynamic working characteristics of hydraulic support lifting, a rigid–flexible coupling dynamic simulation model of a hydraulic support is established; in order to study the dynamic working characteristics of hydraulic support moving, a microcontact dynamic model of a hydraulic support and the caving face roof and floor based on G-W contact theory is proposed, and the first rigid–flexible–mechanical–hydraulic coupling dynamic simulation system of a hydraulic support and the roof and floor of a caving face is established in the industry. Then, based on this foundation, simulation experiments are conducted for hydraulic support lifting, moving without pressure, and moving with pressure, respectively. The working characteristic parameters of the hydraulic support are collected and analyzed. The results show that working speed, working height, surface contact conditions, residual working resistance, and impact load have different effects on the stability and reliability of the hydraulic support. This study can provide in-depth technical support and theoretical guidance for understanding and improving the dynamic working characteristics of the hydraulic support. Full article
Show Figures

Figure 1

11 pages, 4001 KiB  
Article
Design and Control of a Linear Rotary Electro-Hydraulic Servo Drive Unit
by Andrzej Milecki, Arkadiusz Jakubowski and Arkadiusz Kubacki
Appl. Sci. 2023, 13(15), 8598; https://doi.org/10.3390/app13158598 - 26 Jul 2023
Cited by 4 | Viewed by 3068
Abstract
In this paper, a new solution for an electro-hydraulic servo drive is proposed, which consists of two electro-hydraulic servo drives: one with a hydraulic cylinder and one with a hydraulic rotary motor. In the proposed drive, the linear actuator is attached to a [...] Read more.
In this paper, a new solution for an electro-hydraulic servo drive is proposed, which consists of two electro-hydraulic servo drives: one with a hydraulic cylinder and one with a hydraulic rotary motor. In the proposed drive, the linear actuator is attached to a horizontal base and the hydraulic motor is mounted on the actuator piston rod. Thus, the output signal of the drive is the lifting and lowering of the element suspended on the rope. The paper describes the structure, kinematics, dynamics, and control of a novel electro-hydraulic servo drive. A servo valve and a proportional valve are used to control the flow of the hydraulic cylinder and the hydraulic motor. Special attention is paid to the construction of two actuators in one drive unit. The controller is based on the PLC controller. The measuring system uses laser displacement sensors and an encoder. The results of laboratory investigations are discussed in the paper. The proposed drive contains all of the characteristics of a mechatronic device. The main contribution of this study is the proposal of the controller architecture and the algorithm to control the speed and position when lifting or lowering loads. Full article
Show Figures

Figure 1

25 pages, 12147 KiB  
Article
Leakage Fault Diagnosis of Lifting and Lowering Hydraulic System of Wing-Assisted Ships Based on WPT-SVM
by Ranqi Ma, Haoyang Zhao, Kai Wang, Rui Zhang, Yu Hua, Baoshen Jiang, Feng Tian, Zhang Ruan, Hao Wang and Lianzhong Huang
J. Mar. Sci. Eng. 2023, 11(1), 27; https://doi.org/10.3390/jmse11010027 - 26 Dec 2022
Cited by 12 | Viewed by 3245
Abstract
Wing-assisted technology is an effective way to reduce emissions and promote the decarbonization of the shipping industry. The lifting and lowering of wing-sail is usually driven by hydraulic system. Leakage, as an important failure form, directly affects the safety as well as the [...] Read more.
Wing-assisted technology is an effective way to reduce emissions and promote the decarbonization of the shipping industry. The lifting and lowering of wing-sail is usually driven by hydraulic system. Leakage, as an important failure form, directly affects the safety as well as the functioning of hydraulic system. To increase the system reliability and improve the wing-assisted effect, it is essential to conduct leakage fault diagnosis of lifting and lowering hydraulic system. In this paper, an AMESim simulation model of lifting and lowering hydraulic system of a Very Large Crude Carrier (VLCC) is established to analyze the operation characteristics of the hydraulic system. The effectiveness of the model is verified by the operation data of the actual hydraulic system. On this basis, a wavelet packet transform (WPT)-based sensitive feature extracting method of leakage fault for the hydraulic system is proposed. Subsequently, a support vector machine (SVM)-based multi-classification model and diagnosis method of leakage fault are proposed. The study results show that the proposed method has an accuracy of as high as 97.5% for six leakage fault modes. It is of great significance for ensuring the reliability of the wing-sail operation and improving the utilization rate of the offshore wind resources. Full article
(This article belongs to the Special Issue Advanced Marine Energy Harvesting Technologies)
Show Figures

Figure 1

16 pages, 3916 KiB  
Article
Energy Saving Characteristics of a Winch System Driven by a Four-Quadrant Hydraulic Pump
by Haoling Ren, Shiyi Wu, Tianliang Lin, Yonghua Zhang, Cheng Miao and Zhongshen Li
Machines 2022, 10(12), 1126; https://doi.org/10.3390/machines10121126 - 28 Nov 2022
Cited by 3 | Viewed by 2681
Abstract
In this study, an integrated system of winch driving and potential energy recovery using a four-quadrant pump was proposed, aimed at the large amount of recoverable gravitational potential energy in a winch system. The proposed system changed the original open system into a [...] Read more.
In this study, an integrated system of winch driving and potential energy recovery using a four-quadrant pump was proposed, aimed at the large amount of recoverable gravitational potential energy in a winch system. The proposed system changed the original open system into a closed-structure part, using a four-quadrant pump to drive the winch, and an open-structure part, using an open hydraulic pump to balance torque. The closed-structure and open-structure parts were coaxial, and connected with the engine through the transfer case, which was able to make full use of the four-quadrant pump characteristics. It was able to achieve flow regeneration when the weight was lowered, and to achieve direct use of gravitational potential energy. The AMESim model of the original and proposed systems was further established according to a working characteristics analysis of the energy consumption of the winch-driving system. The simulation results verified that the proposed system kept good controllability while recovering potential energy. An experimental prototype was built; the test results showed that, compared with the original winch system, the proposed system increased lifting speed and reduced fuel consumption significantly. Additionally, diesel consumption was reduced by 87% in the descending process. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

12 pages, 5028 KiB  
Article
Theoretical Prediction on Hydraulic Lift of a Coandă Effect-Based Mining Collector for Manganese Nodule
by Hao Jia, Jian Yang, Xianghui Su, Qiu Xia and Kexin Wu
Energies 2022, 15(17), 6345; https://doi.org/10.3390/en15176345 - 30 Aug 2022
Cited by 25 | Viewed by 2455
Abstract
The undersea collecting vehicle is one of the three main parts in the deep-sea exploitation system. The Coandă effect-based collector picks up manganese nodules by providing an adverse pressure difference over the nodule, through the jet flowing around a curved wall. In order [...] Read more.
The undersea collecting vehicle is one of the three main parts in the deep-sea exploitation system. The Coandă effect-based collector picks up manganese nodules by providing an adverse pressure difference over the nodule, through the jet flowing around a curved wall. In order to overcome the drawbacks of repeated prototyping and experimenting in the traditional design procedure of the Coandă effect-based collector, the theoretical guide should be well placed to ensure correct design of the strongly related parameters of the collector. In this paper, a simplified model of curved wall jets was developed and the solution of approximate closed form was obtained to predict the lift force of the nodules. The variational tendencies of velocity, pressure and single-particle lift index perpendicular to the curved wall were investigated and the Coandă effects were found to be stronger with higher initial velocity, higher non-dimensional jet slot height and lower non-dimensional wall height. A CFD-DEM simulation of a number of particles was additionally performed to give more insight into the predictive accuracy of the simplified theory. Target lift force was found to be related to high efficiency in collection of particles, resulting in certain predictability of the theoretical model to the nodule lifting in a pre-prototype hydraulic device based on the Coandă effect. Full article
(This article belongs to the Special Issue Challenges and Research Trends of Multiphase Flow)
Show Figures

Figure 1

14 pages, 2829 KiB  
Article
A Rotary Spacer System for Energy-Efficient Membrane Fouling Control in Oil/Water Emulsion Filtration
by Normi Izati Mat Nawi, Afiq Mohd Lazis, Aulia Rahma, Muthia Elma, Muhammad Roil Bilad, Nik Abdul Hadi Md Nordin, Mohd Dzul Hakim Wirzal, Norazanita Shamsuddin, Hazwani Suhaimi and Norhaniza Yusof
Membranes 2022, 12(6), 554; https://doi.org/10.3390/membranes12060554 - 26 May 2022
Cited by 17 | Viewed by 4206
Abstract
Membrane fouling deteriorates membrane filtration performances. Hence, mitigating membrane fouling is the key factor in sustaining the membrane process, particularly when treating fouling-prone feed, such as oil/water emulsions. The use of spacers has been expanded in the membrane module system, including for membrane [...] Read more.
Membrane fouling deteriorates membrane filtration performances. Hence, mitigating membrane fouling is the key factor in sustaining the membrane process, particularly when treating fouling-prone feed, such as oil/water emulsions. The use of spacers has been expanded in the membrane module system, including for membrane fouling control. This study proposed a rotating spacer system to ameliorate membrane fouling issues when treating an oil/water emulsion. The system’s effectiveness was assessed by investigating the effect of rotating speed and membrane-to-disk gap on the hydraulic performance and the energy input and through computational fluid dynamics (CFD) simulation. The results showed that the newly developed rotary spacer system was effective and energy-efficient for fouling control. The CFD simulation results proved that the spacer rotations induced secondary flow near the membrane surface and imposed shear rate and lift force to exert fouling control. Increasing the rotation speed to an average linear velocity of 0.44 m/s increased the permeability from 126.8 ± 2.1 to 175.5 ± 2.7 Lm−2h−1bar−1. The system showed better performance at a lower spacer-to-membrane gap, in which increasing the gap from 0.5 to 2.0 cm lowered the permeability from 175.5 ± 2.7 to 126.7 ± 2.0 Lm−2h−1bar−1. Interestingly, the rotary system showed a low energy input of 1.08 to 4.08 × 10−3 kWhm−3 permeate when run at linear velocities of 0.27 to 0.44 ms−1. Overall, the findings suggest the competitiveness of the rotary spacer system as a method for membrane fouling control. Full article
(This article belongs to the Special Issue Advanced Polymeric Membranes for Energy & Environment)
Show Figures

Graphical abstract

16 pages, 5242 KiB  
Article
Energy Key Performance Indicators for Mobile Machinery
by Pedro Roquet, Gustavo Raush, Luis Javier Berne, Pedro-Javier Gamez-Montero and Esteban Codina
Energies 2022, 15(4), 1364; https://doi.org/10.3390/en15041364 - 14 Feb 2022
Cited by 5 | Viewed by 2079
Abstract
Mobile machinery manufacturers must face and deal with reducing fuel consumption, rising prices, and environmental pollution. The development of methods to evaluate the efficiency and effectiveness of the energy performance of hydraulically actuated systems has become a priority for researchers and OEMs, Original [...] Read more.
Mobile machinery manufacturers must face and deal with reducing fuel consumption, rising prices, and environmental pollution. The development of methods to evaluate the efficiency and effectiveness of the energy performance of hydraulically actuated systems has become a priority for researchers and OEMs, Original Equipment Manufacturers. In this paper, a new methodology that is based on Key Performance Indicators, KPI, is proposed with different goals: (i) to evaluate the energy performance and the monitoring of its evolution in the different stages of its life cycle (design, commissioning, optimization, retrofit, etc.); (ii) compare the energy levels between machines of different sizes and different brands in a benchmarking process; and (iii) establish a database that is state of the art, which facilitates setting achievable goals or limits for improvement. These KPI values can be deduced simply from the energy balances that were made from the experimental study of various machines over a relatively long period. This methodology has been applied to typical hydraulic systems for lifting and lowering loads that are used in a wide variety of mobile machines of different mechanical designs and sizes. Still, it can be included in the generic name of “loaders”. A KPI’s values for the three machines are presented in a dashboard as a decision-making tool. Full article
Show Figures

Figure 1

23 pages, 10884 KiB  
Article
Flywheel-Based Boom Energy Recovery System for Hydraulic Excavators with Load Sensing System
by Jiansong Li, Yu Han and Shaohui Li
Actuators 2021, 10(6), 126; https://doi.org/10.3390/act10060126 - 9 Jun 2021
Cited by 7 | Viewed by 3698
Abstract
A hydraulic excavator (HE) is a typical piece of construction equipment and is widely used in various construction fields. However, the poor energy efficiency of HEs results in serious energy waste and has aroused the attention of researchers. Furthermore, rising fuel prices and [...] Read more.
A hydraulic excavator (HE) is a typical piece of construction equipment and is widely used in various construction fields. However, the poor energy efficiency of HEs results in serious energy waste and has aroused the attention of researchers. Furthermore, rising fuel prices and increasing stringent waste gas emission legislation sparked demand for ways to improve energy efficiency. Recovering the otherwise wasted boom potential energy of a conventional HE by proper methods offers the potential to improve the fuel efficiency of HEs. In this paper, a mechanical energy recovery system consisting of a pump/motor and a flywheel is presented for HEs using a load sensing system. When the boom moves down, the boom potential energy is converted into mechanical energy by the boom cylinder and the pump/motor to accelerate the flywheel. When needed, the captured energy stored in the flywheel is converted back into a form of pressure energy to directly drive the boom cylinder up without throttling the main valve. In the lifting process, a compound circuit that consists of a throttling control circuit and a displacement control circuit is presented. A control strategy is proposed to optimize the energy recovery and reuse procedure. A 4-t HE is used as a study case to investigate the energy-saving potential of the proposed system. Numeric simulations show that the proposed system, when compared with a conventional load sensing system, can reduce as much as 48.9% energy consumption in a non-loaded cycle of boom lifting and lowering process. As to a fully loaded case, the energy-saving rate is 16.9%. This research indicates the flywheel-based scheme is promising for developing an energy-efficient fluid power system for HEs and reducing energy consumptions. Full article
(This article belongs to the Special Issue Advanced Fluid Power Systems and Actuators)
Show Figures

Figure 1

24 pages, 21438 KiB  
Article
Preliminary Realization of an Electric-Powered Hydraulic Pump System for a Waste Compactor Truck and a Techno-Economic Analysis
by Michele De Santis, Luca Silvestri, Antonio Forcina, Gianpaolo Di Bona and Anna Rita Di Fazio
Appl. Sci. 2021, 11(7), 3033; https://doi.org/10.3390/app11073033 - 29 Mar 2021
Cited by 10 | Viewed by 4555
Abstract
Most industrial trucks are equipped with hydraulic systems designed for specific operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, [...] Read more.
Most industrial trucks are equipped with hydraulic systems designed for specific operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, the current literature focuses on energy saving strategies for the hydraulic system rather than making the vehicle traction more efficient. This study presents the preliminary realization of an electric-powered hydraulic pump system (e-HPS) that drives the lifting of the dumpster and the garbage compaction in a waste compactor truck, rather than traditional ICE-driven hydraulic pump systems (ICE-HPSs). The different components of the e-HPS are described and the battery pack was modelled using the kinetic battery model. The end-of-life of the battery pack was determined to assess the economic feasibility of the proposed e-HPS for the truck lifespan, using numerical simulations. The aim was twofold: to provide an implementation method to retrofit the e-HPS to a conventional waste compactor truck and to assess its economic feasibility, investigating fuel savings during the use phase and the consequent reduction of CO2 emissions. Results show that the total lifespan cost saving achieved a value of 65,000 €. Furthermore, total CO2 emissions for the e-HPS were about 80% lower than those of the ICE-HPS, highlighting that the e-HPS can provide significant environmental benefits in an urban context. Full article
Show Figures

Figure 1

14 pages, 3169 KiB  
Article
Energy Consumption Structure and Its Improvement of Low-Lifting Capacity Scissor Lift
by Lukasz Stawinski, Jakub Zaczynski, Adrian Morawiec, Justyna Skowronska and Andrzej Kosucki
Energies 2021, 14(5), 1366; https://doi.org/10.3390/en14051366 - 2 Mar 2021
Cited by 9 | Viewed by 5459
Abstract
The article presents the experimental investigation of low-lifting capacity hydraulic scissor lift energy consumption. The analysis is based on experimental tests of two individual drives of the scissor lift: the conventional one and the variable-speed electro-hydraulic one. The investigation focuses on the study [...] Read more.
The article presents the experimental investigation of low-lifting capacity hydraulic scissor lift energy consumption. The analysis is based on experimental tests of two individual drives of the scissor lift: the conventional one and the variable-speed electro-hydraulic one. The investigation focuses on the study of the total energy consumption for lifting and lowering the scissor lift with different masses of transported cargo and also power consumptions of each element supplying these systems. Particular attention was paid to the significant impact of power supply on each control component as the main factor of reduction in the energetic efficiency of the low-lifting capacity scissor lift. A comparison of both drives indicated that the mass of transported cargo has a significant influence on the choice of the drive used. Results of the research show that significant energetic savings are obtained, as the modernized propulsion system consumes 67% energy of the standard one. A decrease in the percentage of energy losses with the increase in the mass handled led to the conclusion that the enhancement of propulsion systems in scissor lifts should be especially considered in machines carrying big loads. Full article
Show Figures

Figure 1

18 pages, 4031 KiB  
Article
Potential Energy Recovery System for Electric Heavy Forklift Based on Double Hydraulic Motor-Generators
by Shengjie Fu, Haibin Chen, Haoling Ren, Tianliang Lin, Cheng Miao and Qihuai Chen
Appl. Sci. 2020, 10(11), 3996; https://doi.org/10.3390/app10113996 - 9 Jun 2020
Cited by 18 | Viewed by 5919
Abstract
Heavy forklifts that are widely used in ports and stations have large gravitational potential energy at the lowering of the boom. As concerning the large rated power level, the engine is still the main power source for the heavy forklifts. With the increasingly [...] Read more.
Heavy forklifts that are widely used in ports and stations have large gravitational potential energy at the lowering of the boom. As concerning the large rated power level, the engine is still the main power source for the heavy forklifts. With the increasingly stringent emissions regulations, the electric heavy forklift becomes an important choice. The structure and the working mode of an electric heavy forklift are introduced. Additionally the schematic of double hydraulic motor-generators is adopted to regenerate the potential energy when the boom is descending. The judge rule of the working mode and control strategy are analyzed. A test rig of a prototype electric heavy forklift is established. Control mode discrimination of potential energy regeneration, the control performance and the influence factors on regeneration efficiency are tested based on the test rig. The experimental results show that the discrimination method of the working mode of the proposed double hydraulic motor-generators with a potential energy regeneration system for potential energy is feasible. The descending of the lifting cylinder is consistent with the handle. The forklift can obtain the good following ability. Although the lifting cylinder descends at low velocity, the velocity is stable and the fluctuation of the rodless chamber pressure is within 0.1 MPa. With the increase of the load mass and descending velocity, the regeneration efficiency increases accordingly. The maximum efficiency is up to 74%. Hence, the proposed potential energy regeneration system is feasible and potential energy regeneration system does not affect the control performance of the boom. Full article
Show Figures

Graphical abstract

17 pages, 4017 KiB  
Article
Experimental Study on Fast and Energy-Efficient Direct Driven Hydraulic Actuator Unit
by Teemu Koitto, Heikki Kauranne, Olof Calonius, Tatiana Minav and Matti Pietola
Energies 2019, 12(8), 1538; https://doi.org/10.3390/en12081538 - 24 Apr 2019
Cited by 20 | Viewed by 3760
Abstract
In this experimental study, a Direct Driven Hydraulics (DDH) system of the closed circuit type was utilized for cyclic vertical actuation in heavy load material handling. The actuator was controlled by a speed-controlled fixed displacement pump. The high energy saving potential of this [...] Read more.
In this experimental study, a Direct Driven Hydraulics (DDH) system of the closed circuit type was utilized for cyclic vertical actuation in heavy load material handling. The actuator was controlled by a speed-controlled fixed displacement pump. The high energy saving potential of this system has been demonstrated in previous studies by the authors, but the dynamic characteristics of the ramped and P-controlled base system were considered unsatisfactory. Therefore, the system was implemented with an open-loop S-curve control that utilized a pre-calculated RPM (revolutions per minute) profile for the electric motor in order to realize a smooth actuator and load transition as a function of time. The results indicate that S-curve control is exceptionally well suited for producing a controlled lifting–lowering rapid motion with a heavy load, while still keeping the actuator chamber pressures within acceptable limits. In comparison, the motion produced by P-control was characterized by large unwanted pressure peaks together with velocity fluctuations and vibrations at the end of the stroke. Using a combination of S-curve control and hydraulic load compensation, a mass of 1325 kg could be moved 0.26 m in less than 0.5 s. The load compensation reduced the energy consumption by 64%, which would allow downsizing the electric motor and enable cost-efficient DDH implementation. Full article
(This article belongs to the Special Issue Energy Efficiency and Controllability of Fluid Power Systems 2018)
Show Figures

Figure 1

Back to TopTop