Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,204)

Search Parameters:
Keywords = lidar measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2305 KiB  
Article
Research on Accurate Inversion Techniques for Forest Cover Using Spaceborne LiDAR and Multi-Spectral Data
by Yang Yi, Mingchang Shi, Jin Yang, Jinqi Zhu, Jie Li, Lingyan Zhou, Luqi Xing and Hanyue Zhang
Forests 2025, 16(8), 1215; https://doi.org/10.3390/f16081215 (registering DOI) - 24 Jul 2025
Abstract
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to [...] Read more.
Fractional Vegetation Cover (FVC) is an important parameter to reflect vegetation growth and describe plant canopy structure. This study integrates both active and passive remote sensing, capitalizing on the complementary strengths of optical and radar data, and applies various machine learning algorithms to retrieve FVC. The results demonstrate that, for FVC retrieval, the optimal combination of optical remote sensing bands includes B2 (490 nm), B5 (705 nm), B8 (833 nm), B8A (865 nm), and B12 (2190 nm) from Sentinel-2, achieving an Optimal Index Factor (OIF) of 522.50. The LiDAR data of ICESat-2 imagery is more suitable for extracting FVC than that of GEDI imagery, especially at a height of 1.5 m, and the correlation coefficient with the measured FVC is 0.763. The optimal feature variable combinations for FVC retrieval vary among different vegetation types, including synthetic aperture radar, optical remote sensing, and terrain data. Among the three models tested—multiple linear regression, random forest, and support vector machine—the random forest model outperformed the others, with fitting correlation coefficients all exceeding 0.974 and root mean square errors below 0.084. Adding LiDAR data on the basis of optical remote sensing combined with machine learning can effectively improve the accuracy of remote sensing retrieval of vegetation coverage. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 3178 KiB  
Article
Biomass Estimation of Apple and Citrus Trees Using Terrestrial Laser Scanning and Drone-Mounted RGB Sensor
by Min-Ki Lee, Yong-Ju Lee, Dong-Yong Lee, Jee-Su Park and Chang-Bae Lee
Remote Sens. 2025, 17(15), 2554; https://doi.org/10.3390/rs17152554 - 23 Jul 2025
Abstract
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. [...] Read more.
Developing accurate activity data on tree biomass using remote sensing tools such as LiDAR and drone-mounted sensors is essential for improving carbon accounting in the agricultural sector. However, direct biomass measurements of perennial fruit trees remain limited, especially for validating remote sensing estimates. This study evaluates the potential of terrestrial laser scanning (TLS) and drone-mounted RGB sensors (Drone_RGB) for estimating biomass in two major perennial crops in South Korea: apple (‘Fuji’/M.9) and citrus (‘Miyagawa-wase’). Trees of different ages were destructively sampled for biomass measurement, while volume, height, and crown area data were collected via TLS and Drone_RGB. Regression analyses were performed, and the model accuracy was assessed using R2, RMSE, and bias. The TLS-derived volume showed strong predictive power for biomass (R2 = 0.704 for apple, 0.865 for citrus), while the crown area obtained using both sensors showed poor fit (R2 ≤ 0.7). Aboveground biomass was reasonably estimated (R2 = 0.725–0.865), but belowground biomass showed very low predictability (R2 < 0.02). Although limited in scale, this study provides empirical evidence to support the development of remote sensing-based biomass estimation methods and may contribute to improving national greenhouse gas inventories by refining emission/removal factors for perennial fruit crops. Full article
(This article belongs to the Special Issue Biomass Remote Sensing in Forest Landscapes II)
Show Figures

Figure 1

31 pages, 4937 KiB  
Article
Proximal LiDAR Sensing for Monitoring of Vegetative Growth in Rice at Different Growing Stages
by Md Rejaul Karim, Md Nasim Reza, Shahriar Ahmed, Kyu-Ho Lee, Joonjea Sung and Sun-Ok Chung
Agriculture 2025, 15(15), 1579; https://doi.org/10.3390/agriculture15151579 - 23 Jul 2025
Abstract
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, [...] Read more.
Precise monitoring of vegetative growth is essential for assessing crop responses to environmental changes. Conventional methods of geometric characterization of plants such as RGB imaging, multispectral sensing, and manual measurements often lack precision or scalability for growth monitoring of rice. LiDAR offers high-resolution, non-destructive 3D canopy characterization, yet applications in rice cultivation across different growth stages remain underexplored, while LiDAR has shown success in other crops such as vineyards. This study addresses that gap by using LiDAR for geometric characterization of rice plants at early, middle, and late growth stages. The objective of this study was to characterize rice plant geometry such as plant height, canopy volume, row distance, and plant spacing using the proximal LiDAR sensing technique at three different growth stages. A commercial LiDAR sensor (model: VPL−16, Velodyne Lidar, San Jose, CA, USA) mounted on a wheeled aluminum frame for data collection, preprocessing, visualization, and geometric feature characterization using a commercial software solution, Python (version 3.11.5), and a custom algorithm. Manual measurements compared with the LiDAR 3D point cloud data measurements, demonstrating high precision in estimating plant geometric characteristics. LiDAR-estimated plant height, canopy volume, row distance, and spacing were 0.5 ± 0.1 m, 0.7 ± 0.05 m3, 0.3 ± 0.00 m, and 0.2 ± 0.001 m at the early stage; 0.93 ± 0.13 m, 1.30 ± 0.12 m3, 0.32 ± 0.01 m, and 0.19 ± 0.01 m at the middle stage; and 0.99 ± 0.06 m, 1.25 ± 0.13 m3, 0.38 ± 0.03 m, and 0.10 ± 0.01 m at the late growth stage. These measurements closely matched manual observations across three stages. RMSE values ranged from 0.01 to 0.06 m and r2 values ranged from 0.86 to 0.98 across parameters, confirming the high accuracy and reliability of proximal LiDAR sensing under field conditions. Although precision was achieved across growth stages, complex canopy structures under field conditions posed segmentation challenges. Further advances in point cloud filtering and classification are required to reliably capture such variability. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

27 pages, 6578 KiB  
Article
Evaluating Neural Radiance Fields for ADA-Compliant Sidewalk Assessments: A Comparative Study with LiDAR and Manual Methods
by Hang Du, Shuaizhou Wang, Linlin Zhang, Mark Amo-Boateng and Yaw Adu-Gyamfi
Infrastructures 2025, 10(8), 191; https://doi.org/10.3390/infrastructures10080191 - 22 Jul 2025
Viewed by 43
Abstract
An accurate assessment of sidewalk conditions is critical for ensuring compliance with the Americans with Disabilities Act (ADA), particularly to safeguard mobility for wheelchair users. This paper presents a novel 3D reconstruction framework based on neural radiance field (NeRF), which utilize a monocular [...] Read more.
An accurate assessment of sidewalk conditions is critical for ensuring compliance with the Americans with Disabilities Act (ADA), particularly to safeguard mobility for wheelchair users. This paper presents a novel 3D reconstruction framework based on neural radiance field (NeRF), which utilize a monocular video input from consumer-grade cameras to generate high-fidelity 3D models of sidewalk environments. The framework enables automatic extraction of ADA-relevant geometric features, including the running slope, the cross slope, and vertical displacements, facilitating an efficient and scalable compliance assessment process. A comparative study is conducted across three surveying methods—manual measurements, LiDAR scanning, and the proposed NeRF-based approach—evaluated on four sidewalks and one curb ramp. Each method was assessed based on accuracy, cost, time, level of automation, and scalability. The NeRF-based approach achieved high agreement with LiDAR-derived ground truth, delivering an F1 score of 96.52%, a precision of 96.74%, and a recall of 96.34% for ADA compliance classification. These results underscore the potential of NeRF to serve as a cost-effective, automated alternative to traditional and LiDAR-based methods, with sufficient precision for widespread deployment in municipal sidewalk audits. Full article
Show Figures

Figure 1

29 pages, 4545 KiB  
Article
Characterization of Fresh and Aged Smoke Particles Simultaneously Observed with an ACTRIS Multi-Wavelength Raman Lidar in Potenza, Italy
by Benedetto De Rosa, Aldo Amodeo, Giuseppe D’Amico, Nikolaos Papagiannopoulos, Marco Rosoldi, Igor Veselovskii, Francesco Cardellicchio, Alfredo Falconieri, Pilar Gumà-Claramunt, Teresa Laurita, Michail Mytilinaios, Christina-Anna Papanikolaou, Davide Amodio, Canio Colangelo, Paolo Di Girolamo, Ilaria Gandolfi, Aldo Giunta, Emilio Lapenna, Fabrizio Marra, Rosa Maria Petracca Altieri, Ermann Ripepi, Donato Summa, Michele Volini, Alberto Arienzo and Lucia Monaadd Show full author list remove Hide full author list
Remote Sens. 2025, 17(15), 2538; https://doi.org/10.3390/rs17152538 - 22 Jul 2025
Viewed by 53
Abstract
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case [...] Read more.
This study describes a quite special and interesting atmospheric event characterized by the simultaneous presence of fresh and aged smoke layers. These peculiar conditions occurred on 16 July 2024 at the CNR-IMAA atmospheric observatory (CIAO) in Potenza (Italy), and represent an ideal case for the evaluation of the impact of aging and transport mechanisms on both the optical and microphysical properties of biomass burning aerosol. The fresh smoke was originated by a local wildfire about 2 km from the measurement site and observed about one hour after its ignition. The other smoke layer was due to a wide wildfire occurring in Canada that, according to backward trajectory analysis, traveled for about 5–6 days before reaching the observatory. Synergetic use of lidar, ceilometer, radar, and microwave radiometer measurements revealed that particles from the local wildfire, located at about 3 km a.s.l., acted as condensation nuclei for cloud formation as a result of high humidity concentrations at this altitude range. Optical characterization of the fresh smoke layer based on Raman lidar measurements provided lidar ratio (LR) values of 46 ± 4 sr and 34 ± 3 sr, at 355 and 532 nm, respectively. The particle linear depolarization ratio (PLDR) at 532 nm was 0.067 ± 0.002, while backscatter-related Ångström exponent (AEβ) values were 1.21 ± 0.03, 1.23 ± 0.03, and 1.22 ± 0.04 in the spectral ranges of 355–532 nm, 355–1064 nm and 532–1064 nm, respectively. Microphysical inversion caused by these intensive optical parameters indicates a low contribution of black carbon (BC) and, despite their small size, particles remained outside the ultrafine range. Moreover, a combined use of CIAO remote sensing and in situ instrumentation shows that the particle properties are affected by humidity variations, thus suggesting a marked particle hygroscopic behavior. In contrast, the smoke plume from the Canadian wildfire traveled at altitudes between 6 and 8 km a.s.l., remaining unaffected by local humidity. Absorption in this case was higher, and, as observed in other aged wildfires, the LR at 532 nm was larger than that at 355 nm. Specifically, the LR at 355 nm was 55 ± 2 sr, while at 532 nm it was 82 ± 3 sr. The AEβ values were 1.77 ± 0.13 and 1.41 ± 0.07 at 355–532 nm and 532–1064 nm, respectively and the PLDR at 532 nm was 0.040 ± 0.003. Microphysical analysis suggests the presence of larger, yet much more absorbent particles. This analysis indicates that both optical and microphysical properties of smoke can vary significantly depending on its origin, persistence, and transport in the atmosphere. These factors that must be carefully incorporated into future climate models, especially considering the frequent occurrences of fire events worldwide. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 2736 KiB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 332
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Figure 1

16 pages, 60222 KiB  
Article
Evaluating the Potential of UAVs for Monitoring Fine-Scale Restoration Efforts in Hydroelectric Reservoirs
by Gillian Voss, Micah May, Nancy Shackelford, Jason Kelley, Roger Stephen and Christopher Bone
Drones 2025, 9(7), 488; https://doi.org/10.3390/drones9070488 - 10 Jul 2025
Viewed by 307
Abstract
The construction of hydroelectric dams leads to substantial land-cover alterations, particularly through the removal of vegetation in wetland and valley areas. This results in exposed sediment that is susceptible to erosion, potentially leading to dust storms. While the reintroduction of vegetation plays a [...] Read more.
The construction of hydroelectric dams leads to substantial land-cover alterations, particularly through the removal of vegetation in wetland and valley areas. This results in exposed sediment that is susceptible to erosion, potentially leading to dust storms. While the reintroduction of vegetation plays a crucial role in restoring these landscapes and mitigating erosion, such efforts incur substantial costs and require detailed information to help optimize vegetation densities that effectively reduce dust storm risk. This study evaluates the performance of drones for measuring the growth of introduced low-lying grasses on reservoir beaches. A set of test flights was conducted to compare LiDAR and photogrammetry data, assessing factors such as flight altitude, speed, and image side overlap. The results indicate that, for this specific vegetation type, photogrammetry at lower altitudes significantly enhanced the accuracy of vegetation classification, permitting effective quantitative assessments of vegetation densities for dust storm risk reduction. Full article
Show Figures

Figure 1

24 pages, 32355 KiB  
Article
Evaluating UAV LiDAR and Field Spectroscopy for Estimating Residual Dry Matter Across Conservation Grazing Lands
by Bruce Markman, H. Scott Butterfield, Janet Franklin, Lloyd Coulter, Moses Katkowski and Daniel Sousa
Remote Sens. 2025, 17(14), 2352; https://doi.org/10.3390/rs17142352 - 9 Jul 2025
Viewed by 445
Abstract
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire [...] Read more.
Residual dry matter (RDM) is a term used in rangeland management to describe the non-photosynthetic plant material left on the soil surface at the end of the growing season. RDM measurements are used by agencies and conservation entities for managing grazing and fire fuels. Measuring the RDM using traditional methods is labor-intensive, costly, and subjective, making consistent sampling challenging. Previous studies have assessed the use of multispectral remote sensing to estimate the RDM, but with limited success across space and time. The existing approaches may be improved through the use of spectroscopic (hyperspectral) sensors, capable of capturing the cellulose and lignin present in dry grass, as well as Unmanned Aerial Vehicle (UAV)-mounted Light Detection and Ranging (LiDAR) sensors, capable of capturing centimeter-scale 3D vegetation structures. Here, we evaluate the relationships between the RDM and spectral and LiDAR data across the Jack and Laura Dangermond Preserve (Santa Barbara County, CA, USA), which uses grazing and prescribed fire for rangeland management. The spectral indices did not correlate with the RDM (R2 < 0.1), likely due to complete areal coverage with dense grass. The LiDAR canopy height models performed better for all the samples (R2 = 0.37), with much stronger performance (R2 = 0.81) when using a stratified model to predict the RDM in plots with predominantly standing (as opposed to laying) vegetation. This study demonstrates the potential of UAV LiDAR for direct RDM quantification where vegetation is standing upright, which could help improve RDM mapping and management for rangelands in California and beyond. Full article
Show Figures

Figure 1

37 pages, 10760 KiB  
Article
AI-Based Vehicle State Estimation Using Multi-Sensor Perception and Real-World Data
by Julian Ruggaber, Daniel Pölzleitner and Jonathan Brembeck
Sensors 2025, 25(14), 4253; https://doi.org/10.3390/s25144253 - 8 Jul 2025
Viewed by 234
Abstract
With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use [...] Read more.
With the rise of vehicle automation, accurate estimation of driving dynamics has become crucial for ensuring safe and efficient operation. Vehicle dynamics control systems rely on these estimates to provide necessary control variables for stabilizing vehicles in various scenarios. Traditional model-based methods use wheel-related measurements, such as steering angle or wheel speed, as inputs. However, under low-traction conditions, e.g., on icy surfaces, these measurements often fail to deliver trustworthy information about the vehicle states. In such critical situations, precise estimation is essential for effective system intervention. This work introduces an AI-based approach that leverages perception sensor data, specifically camera images and lidar point clouds. By using relative kinematic relationships, it bypasses the complexities of vehicle and tire dynamics and enables robust estimation across all scenarios. Optical and scene flow are extracted from the sensor data and processed by a recurrent neural network to infer vehicle states. The proposed method is vehicle-agnostic, allowing trained models to be deployed across different platforms without additional calibration. Experimental results based on real-world data demonstrate that the AI-based estimator presented in this work achieves accurate and robust results under various conditions. Particularly in low-friction scenarios, it significantly outperforms conventional model-based approaches. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

50 pages, 28354 KiB  
Article
Mobile Mapping Approach to Apply Innovative Approaches for Real Estate Asset Management: A Case Study
by Giorgio P. M. Vassena
Appl. Sci. 2025, 15(14), 7638; https://doi.org/10.3390/app15147638 - 8 Jul 2025
Viewed by 493
Abstract
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both [...] Read more.
Technological development has strongly impacted all processes related to the design, construction, and management of real estate assets. In fact, the introduction of the BIM approach has required the application of three-dimensional survey technologies, and in particular the use of LiDAR instruments, both in their static (TLS—terrestrial laser scanner) and dynamic (iMMS—indoor mobile mapping system) implementations. Operators and developers of LiDAR technologies, for the implementation of scan-to-BIM procedures, initially placed particular care on the 3D surveying accuracy obtainable from such tools. The incorporation of RGB sensors into these instruments has progressively expanded LiDAR-based applications from essential topographic surveying to geospatial applications, where the emphasis is no longer on the accurate three-dimensional reconstruction of buildings but on the capability to create three-dimensional image-based visualizations, such as virtual tours, which allow the recognition of assets located in every area of the buildings. Although much has been written about obtaining the best possible accuracy for extensive asset surveying of large-scale building complexes using iMMS systems, it is now essential to develop and define suitable procedures for controlling such kinds of surveying, targeted at specific geospatial applications. We especially address the design, field acquisition, quality control, and mass data management techniques that might be used in such complex environments. This work aims to contribute by defining the technical specifications for the implementation of geospatial mapping of vast asset survey activities involving significant building sites utilizing iMMS instrumentation. Three-dimensional models can also facilitate virtual tours, enable local measurements inside rooms, and particularly support the subsequent integration of self-locating image-based technologies that can efficiently perform field updates of surveyed databases. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 1027 KiB  
Review
Photon Detector Technology for Laser Ranging: A Review of Recent Developments
by Zhihui Li, Xin Jin, Changfu Yuan and Kai Wang
Coatings 2025, 15(7), 798; https://doi.org/10.3390/coatings15070798 - 8 Jul 2025
Viewed by 432
Abstract
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically [...] Read more.
Laser ranging technology holds a key position in the military, aerospace, and industrial fields due to its high precision and non-contact measurement characteristics. As a core component, the performance of the photon detector directly determines the ranging accuracy and range. This paper systematically reviews the technological development of photonic detectors for laser ranging, with a focus on analyzing the working principles and performance differences of traditional photodiodes [PN (P-N junction photodiode), PIN (P-intrinsic-N photodiode), and APD (avalanche photodiode)] (such as the high-frequency response characteristics of PIN and the internal gain mechanism of APD), as well as their applications in short- and medium-range scenarios. Additionally, this paper discusses the unique advantages of special structures such as transmitting junction-type and Schottky-type detectors in applications like ultraviolet light detection. This article focuses on photon counting technology, reviewing the technological evolution of photomultiplier tubes (PMTs), single-photon avalanche diodes (SPADs), and superconducting nanowire single-photon detectors (SNSPDs). PMT achieves single-photon detection based on the external photoelectric effect but is limited by volume and anti-interference capability. SPAD achieves sub-decimeter accuracy in 100 km lidars through Geiger mode avalanche doubling, but it faces challenges in dark counting and temperature control. SNSPD, relying on the characteristics of superconducting materials, achieves a detection efficiency of 95% and a dark count rate of less than 1 cps in the 1550 nm band. It has been successfully applied in cutting-edge fields such as 3000 km satellite ranging (with an accuracy of 8 mm) and has broken through the near-infrared bottleneck. This study compares the differences among various detectors in core indicators such as ranging error and spectral response, and looks forward to the future technical paths aimed at improving the resolution of photon numbers and expanding the full-spectrum detection capabilities. It points out that the new generation of detectors represented by SNSPD, through material and process innovations, is promoting laser ranging to leap towards longer distances, higher precision, and wider spectral bands. It has significant application potential in fields such as space debris monitoring. Full article
Show Figures

Figure 1

18 pages, 5181 KiB  
Article
New Possibilities of Field Data Survey in Forest Road Design
by Mihael Lovrinčević, Ivica Papa, David Janeš, Luka Hodak, Tibor Pentek and Andreja Đuka
Sensors 2025, 25(13), 4192; https://doi.org/10.3390/s25134192 - 5 Jul 2025
Viewed by 294
Abstract
Field data, as the basis for planning and designing forest roads, must have high spatial accuracy. Classical (using a theodolite and a level) and modern (based on total stations and GNSSs) surveying methods are used in current field data survey for forest road [...] Read more.
Field data, as the basis for planning and designing forest roads, must have high spatial accuracy. Classical (using a theodolite and a level) and modern (based on total stations and GNSSs) surveying methods are used in current field data survey for forest road design. This study analyzed the spatial accuracy of classical and modern surveying methods, the accuracy of spatial data recorded using a UAV equipped with an RGB camera at different flight altitudes, and the accuracy of lidar data of the Republic of Croatia. This study was conducted on a forest area where salvage logging was carried out, which enabled the use of a GNSS receiver in RTK mode as a reference method. The highest RMSE values of the spatial coordinates were recorded for measurements obtained with the classical surveying method (0.89 m) and a total station (0.33 m). The flight altitude of the UAV did not significantly affect the spatial error of the collected data, which ranged between 0.07 and 0.09 m. The cross-terrain slope, as one of the factors that significantly affect the amount of earthworks, did not differ statistically significantly between the methods. The ALS error was strongly influenced by the cross-terrain slope. The authors conclude that the new survey methods (SfM and lidar data) provide high-accuracy data but also draw attention to challenges in their use, such as vegetation and biomass on the ground. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

19 pages, 16060 KiB  
Article
Synergic Lidar Observations of Ozone Episodes and Transport During 2023 Summer AGES+ Campaign in NYC Region
by Dingdong Li, Yonghua Wu, Thomas Ely, Thomas Legbandt and Fred Moshary
Remote Sens. 2025, 17(13), 2303; https://doi.org/10.3390/rs17132303 - 4 Jul 2025
Viewed by 330
Abstract
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island [...] Read more.
We present coordinated observations from ozone Differential Absorption lidar (DIAL), aerosol lidar, and Doppler wind lidar at the City College of New York (CCNY) in northern Manhattan during the summer 2023 AGES+ campaigns across the New York City (NYC) region and Long Island Sound (LIS) areas. The results highlight significant ozone formation within the planetary boundary layer (PBL) and the concurrent transport of ozone/aerosol plumes aloft and mixing into the PBL during 26–28 July 2023. Especially, 26 July experienced the highest ozone concentration within the PBL during the three-day ozone episode despite having a lower temperature than the following two days. In addition, the onset of the afternoon sea breeze contributed to increased ozone levels in the PBL. A mobile ozone DIAL was also deployed at Columbia University’s Lamont–Doherty Earth Observatory (LDEO) in Palisades, NY, 29 km north of NYC, from 11 August to 8 September 2023. A notable high-ozone episode was observed by both ozone DIALs at the CCNY and the LDEO site during an unusual heatwave event in early September. On 7 September, the peak ozone concentration at the LDEO reached 120 ppb, exceeding the ozone levels observed in NYC. This enhancement was associated with urban plume transport, as indicated by wind lidar measurements, the HRRR (High-Resolution Rapid Refresh) model, and the Copernicus Sentinel-5 TROPOMI (TROPOspheric Monitoring Instrument) tropospheric column NO2 product. The results also show that, during both heatwave events, those days with slow southeast to southwest winds experienced significantly higher ozone pollution. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

21 pages, 12628 KiB  
Article
Convection Parameters from Remote Sensing Observations over the Southern Great Plains
by Kylie Hoffman and Belay Demoz
Sensors 2025, 25(13), 4163; https://doi.org/10.3390/s25134163 - 4 Jul 2025
Viewed by 271
Abstract
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE [...] Read more.
Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), commonly used measures of the instability and inhibition within a vertical column of the atmosphere, serve as a proxy for estimating convection potential and updraft strength for an air parcel. In operational forecasting, CAPE and CIN are typically derived from radiosonde thermodynamic profiles, launched only twice daily, and supplemented by model-simulated equivalent values. This study uses remote sensing observations to derive CAPE and CIN from continuous data, expanding upon previous research by evaluating the performance of both passive and active profiling systems’ CAPE/CIN against in situ radiosonde CAPE/CIN. CAPE and CIN values are calculated from Atmospheric Emitted Radiance Interferometer (AERI), Microwave Radiometer (MWR), Raman LiDAR, and Differential Absorption LiDAR (DIAL) systems. Among passive sensors, results show significantly greater accuracy in CAPE and CIN from AERI than MWR. Incorporating water vapor profiles from active LiDAR systems further improves CAPE values when compared to radiosonde data, although the impact on CIN is less significant. Beyond the direct capability of calculating CAPE, this approach enables evaluation of the various relationships between the water vapor mixing ratio, CAPE, cloud development, and moisture transport. Full article
(This article belongs to the Special Issue Remote Sensing in Atmospheric Measurements)
Show Figures

Figure 1

18 pages, 3373 KiB  
Article
A Novel FMCW LiDAR Multi-Target Denoising Method Based on Optimized CEEMDAN with Singular Value Decomposition
by Zhiwei Li, Ning Wang, Yao Li, Jiaji He and Yiqiang Zhao
Electronics 2025, 14(13), 2697; https://doi.org/10.3390/electronics14132697 - 3 Jul 2025
Viewed by 208
Abstract
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the [...] Read more.
Frequency-modulated continuous-wave (FMCW) LiDAR systems frequently experience noise interference during multi-target measurements in real-world applications, resulting in target overlapping and diminished detection accuracy. Conventional denoising approaches—such as Empirical Mode Decomposition (EMD) and wavelet thresholding—are often constrained by challenges like mode mixing and the attenuation of weak target signals, which limits their detection precision. To address these limitations, this study presents a novel denoising framework that integrates an optimized Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) algorithm and singular value decomposition (SVD). The CEEMDAN algorithm’s two critical parameters—the noise standard deviation and the number of noise additions—are optimally determined using particle swarm optimization (PSO), with the envelope entropy of the intrinsic mode functions (IMFs) serving as the fitness criterion. IMFs are subsequently selected based on spectral and amplitude comparisons with the original signal to facilitate initial signal reconstruction. Following CEEMDAN-based decomposition, SVD is employed with a normalized soft thresholding technique to further suppress residual noise. Validation using both synthetic and experimental datasets demonstrates the superior performance of the proposed approach over existing methods in multi-target scenarios. Specifically, it reduces the root mean square error (RMSE) by 45% to 59% and the mean square error (MSE) by 34% to 69%, and improves the signal-to-noise ratio (SNR) by 1.85–4.38 dB and the peak signal-to-noise ratio (PSNR) by 1.18–6.94 dB. These results affirm the method’s effectiveness in enhancing signal quality and target distinction in noisy FMCW LiDAR measurements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

Back to TopTop